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Abstract 

Background:  Regardless of improvements in controlling the COVID-19 pandemic, the lack of comprehensive insight 
into SARS-COV-2 pathogenesis is still a sophisticated challenge. In order to deal with this challenge, we utilized 
advanced bioinformatics and machine learning algorithms to reveal more characteristics of SARS-COV-2 pathogenesis 
and introduce novel host response-based diagnostic biomarker panels.

Methods:  In the present study, eight published RNA-Seq datasets related to whole-blood (WB) and nasopharyngeal 
(NP) swab samples of patients with COVID-19, other viral and non-viral acute respiratory illnesses (ARIs), and healthy 
controls (HCs) were integrated. To define COVID-19 meta-signatures, Gene Ontology and pathway enrichment 
analyses were applied to compare COVID-19 with other similar diseases. Additionally, CIBERSORTx was executed in WB 
samples to detect the immune cell landscape. Furthermore, the optimum WB- and NP-based diagnostic biomarkers 
were identified via all the combinations of 3 to 9 selected features and the 2-phases machine learning (ML) method 
which implemented k-fold cross validation and independent test set validation.

Results:  The host gene meta-signatures obtained for SARS-COV-2 infection were different in the WB and NP samples. 
The gene ontology and enrichment results of the WB dataset represented the enhancement in inflammatory host 
response, cell cycle, and interferon signature in COVID-19 patients. Furthermore, NP samples of COVID-19 in com-
parison with HC and non-viral ARIs showed the significant upregulation of genes associated with cytokine produc-
tion and defense response to the virus. In contrast, these pathways in COVID-19 compared to other viral ARIs were 
strikingly attenuated. Notably, immune cell proportions of WB samples altered in COVID-19 versus HC. Moreover, the 
optimum WB- and NP-based diagnostic panels after two phases of ML-based validation included 6 and 8 markers with 
an accuracy of 97% and 88%, respectively.

Conclusions:  Based on the distinct gene expression profiles of WB and NP, our results indicated that SARS-COV-2 
function is body-site-specific, although according to the common signature in WB and NP COVID-19 samples versus 
controls, this virus also induces a global and systematic host response to some extent. We also introduced and vali-
dated WB- and NP-based diagnostic biomarkers using ML methods which can be applied as a complementary tool to 
diagnose the COVID-19 infection from non-COVID cases.
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Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-
COV-2), known as 2019-nCoV, has spread worldwide, 
causing about 490 million cases and more than 6.15 mil-
lion fatalities (5 April 2022). Coronavirus disease 2019 
(COVID-19) has a wide range of clinical manifestations, 
from asymptomatic patients to severe inflammatory 
reactions, resulting in organ failure and death (Chen et al. 
2020). It is not yet completely clarified whether severe 
outcomes of disease are related to the viral infection, 
the host’s immunological response, host underlying dis-
eases, or a combination of these variables (Williamson 
et al. 2020). Evidence indicates that the host responses to 
SARS-COV-2 are highly different than antiviral responses 
to other respiratory viruses like influenza and seasonal 
corona (Smith et  al. 2021). According to the analysis of 
SARS-COV-2-specific immunological responses, SARS-
COV-2 inhibits innate immune system activation like 
dendritic cells while increasing proinflammatory mac-
rophage activation and IL-6 and tumor necrosis fac-
tor (TNF) production (Zhou et  al. 2020; Schultze and 
Aschenbrenner 2021). Besides, studies have revealed 
that one of the important damaging factors, locally in the 
lungs and systemically in the circulation, is an increase 
in neutrophils (Vanderbeke et  al. 2021). Despite the 
observed peripheral lymphopenia, SARS-COV-2-specific 
B cell responses and the number of plasma cells increase 
in COVID-19 patients (Smith et al. 2021).

Recent studies have demonstrated that the  host tran-
scriptome undergoes substantial changes upon SARS-
COV-2 infection in a variety of tissues like respiratory 
epithelial cells, nasopharynx, colonocytes, and whole 
blood or plasma samples (Ong et  al. 2020; Lioa et  al. 
2020). Therefore, RNA sequencing can be employed as 
a robust tool to identify host transcriptional signatures 
affected by SARS-COV-2, leading to the development of 
some novel diagnostic biomarkers and therapeutic strate-
gies (Ng et al. 2021; Thair et al. 2020a; Mick et al. 2020). 
Furthermore, understanding the similarities and differ-
ences of the host response to SARS-COV-2 infection 
compared to other (viral or non-viral) respiratory infec-
tions is necessary to find common/virus-specific tran-
scriptional signatures (Thair et al. 2020a).

The conventional diagnostic test for COVID-19, viral 
nucleic acid amplification tests (NAAT) using reverse 
transcription-polymerase chain reaction (RT-PCR), pro-
vides a considerable rate of false-negative results because 
the virus load in individuals can be low and significantly 

change during the course of the disease (Pan et al. 2020; 
Wölfel et al. 2020). Therefore, identification of the host-
specific biomarkers as a complementary tool is critical to 
accurately diagnose the COVID-19 infection from non-
COVID cases (Mick et al. 2020). Several studies focused 
on finding effective repurposable drugs for the COVID-
19 treatment and introduced some potential therapeutic 
targets by analyzing a single gene expression dataset of 
COVID-19 patients. In a study by Ahmed et al., a micro-
array dataset consisting of 10 and 4 PBMC samples of 
patients with SARS-CoV-1 infection and healthy con-
trols, respectively was analyzed to find hub genes and 
remarkable signaling pathways in SARS-CoV-1 infec-
tion. The repurposable drugs for SARS-CoV-1 infections 
were then identified and validated for the treatment of 
SARS-CoV-2 infections (Ahmed et  al. 2022). Further-
more, Mosharaf et  al. analyzed an RNA-seq dataset 
consisting of 35 lung tissue samples infected with SARS-
COV-2 (case) and 5 control samples to find differentially 
expressed genes (DEGs). By constructing a protein–pro-
tein interaction network, key genes and signaling path-
ways in SARS-COV-2 infection were determined to 
be used as targets for drug repurposing in COVID-19 
(Mosharaf et al. 2022). However, recent developments in 
"omics" technologies, along with advances in computer 
sciences, have provided an opportunity to integrate and 
analyze multi-cohort datasets using systems biology 
approaches and machine learning (ML) methods, lead-
ing to decreased heterogeneity of publicly available single 
population-based transcriptome datasets (Tavassolifar 
et al. 2020). The multi-cohort analysis of published tran-
scriptional data derived from whole blood (WB), periph-
eral blood mononuclear cells (PBMCs), epithelial cells, 
or cell lines that represented infections from 7 viruses 
(adenovirus, influenza, SARS, RSV, HRV, enterovirus, 
HHV6) and 4 bacteria (S. pneumonia, S. aureus, E. coli, 
Salmonella), proposed a common host signature across 
different respiratory viral infections. These findings could 
discriminate individuals with viral infections from those 
with bacterial infections and healthy controls (Andres-
Terre et al. 2015).

Cross-platform normalization (CPN) as a data integra-
tion technique increases sample sizes, improves overall 
heterogeneity estimation, identifies more specific host 
response signatures, and reduces the effect of individual 
study-specific biases. It has been shown that novel diag-
nostic panels with more power, robustness, and general-
ity can be introduced by using CPN (Hamid et al. 2009; 
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Larsen et  al. 2014; Irigoyen et  al. 2018; Taminau et  al. 
2014; Maleknia et  al. 2020). In this study, we developed 
an integrated, multi-cohort analysis framework that takes 
advantage of the heterogeneity seen in Gene Expression 
Omnibus (GEO) public data repositories to identify and 
validate robust, reproducible, and more specific host 
response signatures by CPN. This study involved the five 
gene expression datasets including 179 human WB sam-
ples from SARS-COV-2 infected patients and healthy 
controls (HC) and also four gene expression datasets 
including 1387 human nasopharyngeal (NP) samples 
from patients with SARS-COV-2 infection, other viral 
acute respiratory illnesses (ARIs), and non-viral ARIs, 
as well as HC individuals. Our methods were employed 
for two different hypotheses. In the first step, the gene 
expression profiles of 9 WB and NP datasets were ana-
lyzed to find out SARS-COV-2 pathogenesis and per-
turbed host immune response pathways which we termed 
‘COVID-19 meta-signature’ (CMS). We investigated the 
similarities and differences of the host response to SARS-
COV-2 infection compared to other (viral or non-viral) 
respiratory infections in NP samples. In the continuum, 
to introduce diagnostic biomarker panels as complemen-
tary tools along with the conventional diagnostic test, 
we leveraged feature selection and ML methods on the 
integrated datasets. In the first phase of the ML methods, 
the optimum combinations of features were designated 
by using k-fold cross validation on a train set (80% of the 
population), and then in the second phase, the best com-
binations based on accuracy parameter were selected to 
be validated on independent test sets (20% of the popu-
lation). Finally, we could identify high-performance 3 to 
9-biomarker panels related to WB and NP samples that 
could accurately distinguish COVID-19 patients from 
HCs and non-COVID individuals (Fig. 1).

Methods
Data collection and pre‑processing
The entire analysis was accomplished with publicly 
available data. In order to reach proper gene expres-
sion profiles, the keyword “COVID-19” was searched 
in the GEO database restricted to “Homo sapiens” tax-
onomy and “Expression profiling by high throughput 
sequencing”. Afterwards, data obtained from WB and 
NP samples were selected, while the data related to 
organoids, single-cell, cell lines, recurrent patients, and 
drug treatments were excluded from the results. Finally, 
by setting the sample count on more than 20 samples 
on 11/20/2021, three datasets with accession numbers 
GSE163151, GSE151161, and GSE152641 related to 
WB samples and four datasets with accession numbers 
GSE163151, GSE152075, GSE156063, and GSE188678 

related to NP samples were used for this study. To raise 
the number of HCs related to WB, 27 HC samples were 
imported to the study from two non-COVID studies 
with accession numbers GSE169687 and GSE172450 
(Table 1).

Rather than doing conventional biological experi-
ments, we chose cohorts from various centers to incor-
porate technical variation and population-related 
biological heterogeneity in the study. The samples in 
these datasets characterized different biological condi-
tions including viral infections (SARS-COV-2, influ-
enza, other Coronaviruses, and other viruses causing 
ARIs), non-viral ARIs (types of bacterial infections), 
and HC. To add on the technological heterogeneity 
property in our study, datasets profiled by RNA-seq 
technology from several manufacturers were used. The 
Ensemble IDs that represented transcripts in each data-
set were mapped to gene symbols (HGNC) to facili-
tate integrated analysis. If multiple Ensemble IDs were 
matched to one gene, the expression values for those 
IDs were averaged to one value using the aggregate 
function from the stats package version 4.0.3 (Fig. 1).

We selected 9 datasets (GSE163151(WB and NP), 
GSE151161, GSE152641, GSE169687, GSE172450, 
GSE152075, GSE156063, and GSE188678). The NP 
samples in GSE163151 related to “Influenza” and “other 
corona” viruses were labeled as other viruses in the 
CMS analysis. Cohorts related to NP samples contained 
samples from SARS-COV-2 infection and other condi-
tions such as HC, other viral ARIs, and non-viral ARIs. 
Cohorts related to WB samples contained samples from 
SARS-COV-2 infection and HC individuals.

Data integration via cross‑platform normalization
we performed the CPN method on the finalized cohorts 
and samples (Walsh et al. 2015). In order to gain a uni-
form dataset associated with each tissue while employ-
ing more heterogeneity in the population, the datasets 
related to each group were integrated by merge func-
tion from the base package, R 4.0.3. The genes with 0 
read count in at least 60% of all classes (COVID-19, 
HC, non-viral, and other viral) were excluded from the 
datasets. Subsequently, the batch correction was per-
formed using ComBat-seq from the sva package version 
3.38 (Zhang et al. 2020) to minimize experimental vari-
ance. The parameter group was set to the vector of the 
disease condition (Pei et al. 2021).

Differential gene expression analysis between COVID‑19 
and non‑COVID
Two uniform gene expression datasets included 179 
human WB samples from COVID-19 patients and HC 
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Fig. 1  The workflow of the study: The RNA-Seq datasets related to whole blood (WB) and nasopharyngeal (NP) samples from patients with 
COVID-19 infection and other similar disease conditions including viral and non-viral acute respiratory illnesses (ARI) as well as healthy controls were 
acquired from GEO database. Data were integrated and the batch effects were eliminated. Subsequently, the datasets were subjected to pathway 
enrichment and GO analyses. Furthermore, the candidate diagnostic biomarker panels were identified using machine learning methods on train 
datasets and validated on independent cohorts to introduce the best biomarker combinations. Besides, the RF-based generic prediction models 
were generated by using all combinations of 3 to 9 markers related to 23 common WB/NP DEGs was done. Finally, the results of two prediction 
models, including the LASSO feature-based prediction model and RF-based generic prediction model were compared. WB whole blood, NP 
nasopharyngeal, ARI acute respiratory illnesses, RF random forest
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individuals and 1387 human NP samples from patients 
with SARS-COV-2 infection, other viral ARIs, non-viral 
ARIs, and HC individuals were imported for differential 
gene expression analysis. Read counts were normalized 
by TMM scaling from the DEseq2 and edgeR packages 
version 1.30.1 and 3.32.1. Afterward, DEGs were iden-
tified by using the lmFit, and empirical Bayes (eBayes) 
functions within the limma package version 3.46.0 
(Ritchie et  al. 2015). The P values were corrected for 
multiple comparisons by the Benjamini–Hochberg false 
discovery rate (FDR) method (Benjamini and Hochberg 
1995). The significant DEGs were defined by adjusted 
P-value < 0.05, and the absolute value of the log2-trans-
formed fold-change in the expression level was set to 
more than 1. The volcano plots related to each set of 
DEGs were plotted by ggplot2 package version 3.3.3.

Identifying CMS by gene set enrichment and gene 
ontology analyses in WB and NP samples
To identify enriched biological processes and pathways 
associated with each set of DEGs in WB and NP samples, 
we utilized EnrichR (Kuleshov et al. 2016) and ToppGene 
(Chen et  al. 2009) to explore the most significant Gene 
Ontology Biological processes (BPs), Molecular functions 
(MFs), Cellular components (CCs), and signaling path-
ways. Due to the popularity of the EnrichR tool in scien-
tific resources (Stephenson et al. 2021; Sajuthi et al. 2020; 
Unterman et al. 2022; Müller et al. 2021), the results and 
discussion of this study are mostly based on EnrichR find-
ings. We illustrated the results by dot-plot and bar plot 
functions in the ggplot2 package.

Estimation of the immune cell type proportion in WB 
samples by CIBERSORT
In this step, WB row counts achieved from batch cor-
rection were normalized using the counts per million 
(CPM). A computational method called CIBERSORTx 
(https://​ciber​sort.​stanf​ord.​edu/) method was applied 
to quantify immune cell-type proportions from Gene 
Expression Profiles (GEPs) (Newman et al. 2015). As ref-
erence gene expression signatures, the standard LM22 
signature matrix was leveraged to estimate the relative 
proportions of each cell type (Chen et al. 2018). The sig-
nature matrix consists of 547 genes that precisely rec-
ognize 22 functionally defined human immune subsets, 
including seven T cell types, naïve and memory B cells, 
plasma cells, NK cells, and myeloid subsets. By applying 
the independent samples T-test, the differences of each 
cell type between two considering groups of COVID-19 
patients and HC individuals were tested.

Comparison of SARS‑COV‑2‑infected WB and NP 
transcriptome profiles
In order to detect similarities and differences in gene 
expression patterns between two types of SARS-COV-
2-infected tissues, we compared two sets of DEGs 
between COVID-19 patients versus HC in WB and NP 
samples. We first explored the DEGs sets via the venn 
diagram by venn package version 1.10 to recognize 
the overlapping genes between two DEGs sets. Then, 
enriched biological processes and pathways associated 
with each set of the common DEGs were obtained by 
Enrichr and ToppGene databases.

In‑silico discovery of diagnostic biomarkers in WB and NP 
samples
To discriminate COVID-19 patients from HC individu-
als in WB samples, an ML method was used to recognize 

Table 1  The number of WB and NP samples applied in this study

a Genomic Spatial Event (GSE) database (Danford et al. 2008)
b The samples related to “Influenza” and “other corona” were labeled as other viruses in the analysis

Tissue GSEa COVID-19 HC Not-COVID Other respiratory diseases Refs

WB 163,151 7 20 Ng et al. (2021)

WB 151,161 39 –

WB 152,641 62 24 Thair et al. (2020a)

WB 169,687 14 –

WB 172,450 13 –

NP 152,075 430 54 Lieberman et al. (2020)

NP 156,063 93 Other viruses = 41, non-viral = 100 Mick et al. (2020)

NP 163,151 138 11 Influenza = 76b, other Corona viruses = 12b, 
other viruses = 32, non-viral = 82

Ng et al. (2021)

NP 188,678 90 other viruses = 59, non-viral = 169 –

https://cibersort.stanford.edu/
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the diagnostic biomarker panel. The same approach was 
applied to distinguish patients with COVID-19 and non-
COVID  in NP samples. Non-COVID  samples in NP 
mean the total samples of non-viral, other viral, and the 
not-COVID samples in GSE152075. Samples were strati-
fied randomly but proportionally assigned into a training 
set (80%) or an independent test set (20%). The methods 
used are as follows:

Feature selection in the train sets of WB and NP samples
Diagnostic features were selected in two ways. Initially, 
the DEGs were found by pairwise comparisons among 
considering groups in the train sets of WB and NP sam-
ples. These genes were exploited as input features to 
fit a Least Absolute Shrinkage and Selection Operator 
(LASSO) regression model for feature selection (Tib-
shirani 1997; L’Heureux 2017). The glmnet package ver-
sion 4–1.1 was used plus the cross-validation method to 
estimate lambda’s regularization parameter by cv.glmnet 
function. The eligibility criteria to enter the features into 
the classification step were as follows: absolute LASSO 
coefficient more than 0.1 OR the non-zero LASSO coeffi-
cient and the absolute value of logFC more than 1.3. Sub-
sequently, EnrichR and ToppGene databases were used 
to explore enriched biological processes and pathways 
associated with these features. In parallel, we also consid-
ered the common DEGs between NP and WB to check 
whether they could also be applied as diagnostic features.

Discrimination of COVID‑19 patients from non‑COVID 
individuals by optimal biomarker panels
To detect the optimal, powerful and robust diagnos-
tic biomarker panel obtained by the LASSO method, a 
two-phase ML platform was done. The Random Forest 
(RF) classifier (Breiman 2001) by randomForest R pack-
age version 4.6–14 was employed in both phases. In the 
first phase, the classifier was performed on the training 
set (80%) of the WB and NP datasets using fivefold and 
tenfold cross validations, respectively. The input features 
of the first phase were all combinations of 3 to 9 selected 
features based on LASSO. The statistical parameters; 
sensitivity, specificity, and accuracy, were estimated by 
confusion Matrix function from caret package version 
6.0–86. The best combinations considering the highest 
sensitivity and specificity were picked out for the next 
phase. In the second phase, the best combinations of fea-
tures in the training set (80%), were validated once more, 
based on the independent test set (20%). The sensitivity, 
specificity, and accuracy obtained from the two phases 
were displayed by line plots. Likewise, the receiver oper-
ating characteristic (ROC) curves were plotted, and the 
Area Under Curve (AUC) was computed through pROC 
package version 1.17.0.1.

In parallel, to find the best diagnostic panels among 
common DEGs between WB and NP samples of COVID-
19 patients compared to HC, we used RF classifier on 
all combinations of 3 to 9 common features in the train-
ing set (80%), and then they were validated based on 
the independent test set (20%). Finally, the results of the 
LASSO feature-based prediction model and common 
WB/NP feature-based model were compared.

Results
Data integration and batch effect correction in WB and NP 
datasets
The statistics of the samples used for this study is dem-
onstrated in Table  1. The number of WB samples for 
COVID-19 patients and HC individuals was 108 and 
71 samples, respectively. Meanwhile, the number of NP 
samples for COVID-19 patients, HC, and AIRs were751, 
11, and 571, respectively.

Both genders were included in these datasets, and all 
individuals were adults. The gene expression datasets 
related to each tissue were integrated, and the effect of 
batches was corrected to obtain a uniform dataset in WB 
and NP samples, individually. To check the uniformity of 
the datasets, principal components analysis (PCA) was 
performed before and after removing the batch effect 
(Additional file 1: Figs. S1 and S2).

WB transcriptome analysis of patients with COVID‑19
The differential gene expression analysis between 
COVID-19 and HC groups in WB final dataset resulted 
in the identification of 345 DEGs, of which 309 genes 
were upregulated, and 36 genes were downregulated in 
COVID-19 (Fig.  2A). The 20 non-redundant significant 
BPs and all seven significant hallmark pathways with 
adjusted P-value < 0.05 based on EnrichR and ToppGene 
findings were depicted in Fig. 2B, C. The significant BPs 
were enhancement in “neutrophil activation”, “cell cycle”, 
“inflammatory host response”, “interferon signature”, and 
reduction in “gas and oxygen transport”. Interestingly, 
GO functional analyses of DEGs using the ToppGene 
database also confirmed that BPs listed above are highly 
linked with the SARS-COV-2 infection (Additional file 2: 
Table  S1). Furthermore, downregulated genes were sig-
nificantly involved in “ferrous iron binding”, “heme bind-
ing”, and “hemoglobin alpha binding” and belonged to 
the endocytic vesicle lumen. The pathway analysis of 
WB samples from patients with COVID-19 compared 
with HC showed notable enrichment of genes in multi-
ple pathways associated with “inflammatory response”, 
“interferon-alpha”, “G2M checkpoint”, “mitotic spindle”, 
and “interferon-gamma response” as well as “KRAS Sign-
aling Up”. The complete list of DEGs, significant BPs, 
MF, and CCs, and enriched signaling pathways based on 
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EnrichR and ToppGene databases as well as their com-
monalities are available in Additional file 2: Table S1.

COVID‑19 immune cell landscape
Specific alterations in gene expression between SARS-
COV-2 and HC individuals might be derived from 
changes in tissue cellular composition such as immune 
cell types. To examine this, the CPM of WB samples 
was imported to the CIBERSORTx tool and cell-type 
proportions were estimated. The results of the inde-
pendent T-test between different immune cell types of 
COVID-19 and HC groups were presented in Additional 
file  3: Table  S2. Remarkably, SARS-COV-2 infection 
increased the proportion of T regulatory cells (Tregs) 

while decreasing the proportions of CD8, CD4 naïve, and 
CD4 memory resting cells. Correspondingly, the propor-
tions of neutrophils, B cells naïve, plasma cells, and mac-
rophages (M0 and M1) were augmented in COVID-19 vs 
HC (Fig. 3).

NP transcriptome analysis of patients with COVID‑19
To delineate the molecular pathogenesis of SARS-COV-2 
based on host NP gene expression, differential gene 
expression, GO and hallmark gene set analyses were per-
formed in three paired conditions including; COVID-19 
vs HC, COVID-19 vs non-viral ARIs, and COVID-19 vs 
other viral ARIs to highlight the contrasts.

Fig. 2  Transcriptome analysis of whole blood samples of COVID-19 patients versus healthy controls: The volcano plot to demonstrate differential 
expressed genes which had adjusted P-value < 0.05, |Log2FC|> 1. Red and green show up and downregulated genes, respectively (A). Dot plot 
to show BPs (GO) according to significantly upregulated and downregulated genes. The size of the dots is proportional to the gene ratio in 
considering process and the color corresponds to the –log10 of the adjusted P-value. Selected top and not-redundant terms are visualized (B). Bar 
plot to depict hallmark gene set enrichment analysis. The size of the bars is proportional to the gene ratio in considering pathway and the color 
corresponds to the –log10 of the adjusted P-value (C). BP biological process, GO gene ontology
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The number of up and downregulated genes were 
depicted in volcano plots (Fig. 4A). 341 upregulated and 
1598 downregulated genes were found when the NP tran-
scriptome profile of COVID-19 patients was compared to 
that of healthy individuals. The expression of 64 and 1344 
genes was also significantly increased and decreased in 
COVID-19 compared to non-viral ARIs, respectively. 
Additionally, 1722 and 358 genes were up and downreg-
ulated in COVID-19 vs other viral ARIs, respectively. A 
striking contrast highlighted by differential gene expres-
sion analysis between the first two groups and the third 
group emerged in the enrichment of interferon signa-
ture. According to enrichment analysis using two data-
bases, SARS-COV-2 infection in comparison with HC 
and non-viral ARIs leads to the significant upregulation 

of genes associated with regulation of cytokine produc-
tion, cellular response to cytokines, defense response to 
the virus, innate immune response, and inflammatory 
response. However, these BPs in SARS-COV-2 infection 
were noticeably attenuated compared to other viral ARIs. 
Likewise, the genes relevant to neutrophil functions had 
distinct expression patterns among study groups. The 
expression of genes involved in neutrophil-mediated 
immunity, neutrophil activation involved in immune 
response, and neutrophil degranulation was reduced 
in COVID-19 compared to other-viral ARIs. However, 
neutrophil chemotaxis and neutrophil migration were 
increased in COVID-19 vs non-viral ARIs (Table. S3). 
Furthermore, the results of enriched MFs indicated that 
genes with CXCR3 chemokine receptor binding activity 

Fig. 3  Cell-type proportions in whole blood of COVID-19 in comparison to healthy control: the box plots for the estimated immune cell type 
proportions of the COVID-19 patients and the HC individuals which were obtained by Cibersortx. HC healthy control

(See figure on next page.)
Fig. 4  Transcriptome analysis of nasopharyngeal samples of patients with COVID-19 versus non-viral and other viral acute respiratory illnesses 
(ARIs) as well as healthy controls: The volcano plot to demonstrate differential expressed genes which had adjusted P-value < 0.05, |Log2FC|> 1. Red 
and green show up and downregulated genes, respectively (A). Dot plots to show BPs according to significantly up/downregulated genes (B) and 
hallmark gene set enrichment analysis (C). The size of the dots is proportional to the gene ratio in considering process and pathway; and the color 
corresponds to the –log10 of the adjusted P-value. Selected top and not-redundant terms are visualized. BP biological process
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Fig. 4  (See legend on previous page.)
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which play important role in recruiting pro-inflammatory 
cells such as neutrophils were upregulated in COVID-
19. The regulation of the RIG-I signaling pathway, viral 
genome replication, and regulation of ribonuclease activ-
ity were incremented in the COVID-19 group compared 
to HC and non-viral groups. Moreover, the CCs related 
to the nucleus and cytosolic ribosome were overrepre-
sented in the COVID-19 patients compared to HC.

According to the results, the NADH dehydrogenase 
complex which has an important role in the redox sys-
tem by producing reactive oxygen species was increased 
in COVID-19 compared to non-viral ARIs. Furthermore, 
few genes involved in “protein polyubiquitination” were 
specifically upregulated in COVID-19 patients compared 
to other viral patients and the HC group (Fig.  4B and 
Additional file 4: Table S3).

Pathway enrichment analysis also confirmed that 
dysregulation of CXCL10, CXCL11, CXCL9, DDX60, 
EPSTI1, IFI27, IFI44, IFIT2, IFIT3, ISG15, SAMD9L, and 
SAMHD1 genes in COVID-19 patients results in activa-
tion of interferon-alpha and gamma signaling pathways 
compared to HC and non-viral groups (Fig.  4C). How-
ever, apoptosis and p53 pathways were only enhanced in 
COVID- 19 patients compared to the non-viral group. 
The main dysregulated genes involved in these pathways 
were GADD45A, IFITM3, IFNGR1, and IER3.

On the other hand, the TNF-alpha signaling pathway 
was enriched in COVID-19 relative to other-viral ARIs. 
Moreover, some genes related to protein secretion and 
reactive oxygen species pathways like MAPK1, RAB14, 
RAB22A, SOD1, and CAT​ were dysregulated in COVID-
19 versus other-viral diseases. All of these four sets of 
DEGs, BPs, MF, CCs, and enriched signaling pathways 
are accessible in Additional file 4: Table S3.

Common and distinct gene signatures associated 
with COVID‑19 in WB and NP samples
To investigate the overlapped molecular mechanisms 
involved in SARS-COV-2 host responses between WB 
and NP samples, common genes which were differen-
tially expressed in WB and NP samples of COVID-19 
patients compared to HC were determined. Using the 
Venn diagram, the common DEGs indicated in Fig.  5A 
were partitioned into three groups: upregulated in WB 
and upregulated in NP (UB-UN), downregulated in WB 
and downregulated in NP (DB-DN), and upregulated in 
WB and downregulated in NP (UB-DN).

The first group had 19 genes, and the next two groups 
contained 4 and 43 genes, respectively. The BPs related 
to innate immune response such as cellular response to 
IFNI, IFN-b production, defense response to virus, and 
cytokine signaling pathways, as well as alpha–beta T 
cell differentiation, were increased in both WB and NP 

groups, while the gas transportation, hydrogen peroxide 
metabolism, and cell death were reduced in both WB and 
NP groups (Fig.  5B). Also, consistent with the enriched 
“gas transportation” BP, MFs such as “heme binding” and 
“haptoglobin binding” were decreased in both WB and 
NP groups. Interestingly, the cell cycle and ubiquitin-
protein ligase activity were enriched BPs in the UB-DN 
group. These findings were in line with functional enrich-
ment analyses performed independently in the previ-
ous sections on WB and NP transcriptomes of patients 
with COVID-19. Most of the enriched BPs by EnrichR 
(Fig.  5B) were also validated by the ToppGene database 
(Additional file 5: Table S4).

Likewise, CCs validated by both EnrichR and ToppGene 
databases for DB-DN genes were related to endocytic 
vesicle lumen, cytosolic small ribosomal subunit, and 
small ribosomal subunit, which were in line with the pre-
vious enriched CCs obtained independently from SARS-
COV-2 infected NP and WB transcriptome analyses. The 
common overexpressed genes of NP and WB samples, 
including SERPING1, OLR1, IFITM3, CXCL10, IFI27, 
IFI44, IFI44L, IFIT3, and ISG15 were mostly members 
of complement, IL-2/STAT5, inflammatory response, 
interferon alpha, and interferon gamma responses, and 
TNF-alpha signaling pathways (Fig.  5C). Furthermore, 
we found that the CDC20, PLK1, and BIRC5 genes lead 
to enriching E2F targets and the G2-M checkpoint path-
way in the UB-DN group. Intriguingly, downregulation 
of KRAS signaling was observed in both UB-UN and 
DB-DN groups (Fig.  5C). The complete list of common 
DEGs in WB and NP samples of COVID-19 patients 
compared to the control group, significant BPs, MF, and 
CCs, and enriched signaling pathways based on EnrichR 
and ToppGene databases as well as their commonalities 
are available in Additional file 6: Table S5.

Identification of high‑performance diagnostic biomarker 
panels for COVID‑19 in WB and NP samples
To determine the best diagnostic biomarker panel, in the 
first phase, the DEGs associated with train sets of WB 
and NP samples were applied as inputs to the LASSO 
regression method for feature selection. We selected 80% 
of each group of WB and NP samples as train sets using 
a stratified random sampling method. The genes with an 
absolute LASSO coefficient more than 0.1 OR the genes 
with a non-zero LASSO coefficient and an absolute 
value of logFC more than 1.3 were selected (described in 
Table 2), and used in the RF classifier. According to the 
mentioned criteria, 22 and 23 markers related to WB and 
NP datasets were detected and almost all of them have 
previously been implicated in COVID-19 or other viral 
or inflammatory illnesses.
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The RF classification was implemented on all combina-
tions of 3 to 9 features based on 5/tenfold cross validation 
in WB/NP training sets. The biomarker panels were des-
ignated to enter the next phase based on different values 
of Accuracy. Considering that the number of combina-
tions for 3 to 9 features varied from 4620 to 4,476,780, in 
order to keep the calculation cost-effective, it was desir-
able that as few biomarker panels as possible be included 
in subsequent evaluations. Consequently, the biomarker 
panels with the accuracy of 75% for 3-marker panels to 
85% for 9-marker panels were selected in WB datasets 
to enter the next phase. These criteria in the NP dataset 
were 80% for 3-marker panels to 85% for 9-marker pan-
els, as well. 5272 and 1259 combinations for WB and NP 
samples were selected to be applied in the second phase. 

In the next phase, the RF classifier was applied on inde-
pendent test sets to validate the best selected biomarker 
panels. The employed methodology gained the final pan-
els based on more data than any of the previous studies 
and also was validated twice. Therefore, these biomarker 
combinations could be more generalized, robust, and 
powerful. The parameters related to the first and second 
phases for the best combinations of markers were illus-
trated in Additional file 6: Table S5     and Table 3. The 
best final 3- to 9-marker panels to diagnose COVID-19 
in WB samples had an accuracy of 88% to 98% in the first 
phase and 91% to 98% in the second phase. Similarly, the 
best final 3- to 9-marker panels for classifying NP sam-
ples had an accuracy of 82% to 88% in the first phase 
and 80% to 88% in the second one. Correspondingly, line 

Fig. 5  Analysis of common dysregulated genes in SARS-COV-2 -infected whole blood and nasopharyngeal samples in comparison with healthy 
controls: The Venn diagram to display the distribution of genes in four desired groups (UB upregulated genes in blood, DB downregulated genes 
in blood, UN upregulated genes in nasal, and DN downregulated genes in nasal) (A). Dot plot to show BPs according to common genes of each 
paired group. The size of the dots is proportional to the gene ratio in considering process and the color corresponds to the –log10 of the adjusted 
P-value. Selected top and not-redundant terms are visualized (B). Bar plot to depict hallmark gene set enrichment analysis. The size of the bars is 
proportional to the gene ratio in considering pathway and the color corresponds to paired groups whose common genes were studied. The “KRAS 
Signaling Dn” pathway was enriched in two groups (C). BP biological process
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plots of the sensitivity, specificity, and accuracy as well as 
ROC curves obtained from two phases for NP and WB 
samples were presented in Figs. 6 and 7.

The best biomarker panels obtained from the 
LASSO method, as subsets of DEGs, were part of 
CMS achieved by gene set enrichment and GO analy-
ses of WB and NP transcriptomes. method. Functional 
enrichment analysis based on EnrichR and ToppGene 
databases showed that WB-based diagnostic markers 
were mostly involved in cell cycle-related BPs and path-
ways. Besides, in agreement with previous results, the 
“hemoglobin biosynthetic process” and “hemoglobin 
metabolic process” were decreased MFs, indicating the 
important role of candidate biomarkers in COVID-19 
pathogenesis. Functional annotation of NP biomark-
ers indicated that the MFs of “antiviral innate immune 
response,” “cellular response to cytokine stimulus,” and 
“positive regulation of immune system process” were 
enhanced. They significantly contributed to interferon 
signaling pathways (Additional file 7: Table S6). In the 
next step, we investigated whether 23 common DEGs in 
WB and NP samples of COVID-19 patients compared 

to the control group could be used as robust features 
to classify COVID-19 from non-COVID cases using 
the RF algorithm. The total number of combinations 
with 3 to 9-markers related to 23 common DEGs was 
1,697,883. we selected the first 100 top panels with the 
highest accuracy and sensitivity for each class (Addi-
tional file 8: Table S7).

We then compared the results of the LASSO feature-
based prediction model and the common WB/NP 
feature-based prediction model (an RF-based generic 
prediction model) (Table 4). The genes IFI44L, IFI6, and 
CXCL10 were observed in the best NP-based diagnostic 
panels of both prediction models. Likewise, GTF2H2C 
as a novel gene related to SARS-COV-2 infection was 
presented in the best WB-based diagnostic panels of the 
LASSO- and common feature-based prediction models.

Our findings indicated that the accuracy of the best 
panels in the LASSO feature-based prediction model 
was higher than that in the RF-based generic predic-
tion model. In addition, as represented in Additional 
file  6: Table  S5 and Additional file  8: Table  S7, LASSO-
based panels have higher performance in comparison to 

Table 2  The selected features based on the criteria* in the train sets of WB and NP samples

WB whole blood, NP nasopharyngeal

*Absolute LASSO coefficient more than 0.1 OR the non-zero LASSO coefficient and the absolute value of logFC more than 1.3

NP WB

Gene L.Coef Abs.L.Coef logFC Abs.logFC Gene L.Coef Abs.L.Coef logFC Abs.logFC

IFI6 − 0.28491 0.284913 1.613021 1.613021 SLC24A5 − 1.00469 1.004693 − 2.03768 2.037676

IFI44L − 0.27956 0.279561 1.970857 1.970857 SLC45A2 0.706125 0.706125 1.208076 1.208076

SIGLEC1 − 0.27801 0.278012 1.332828 1.332828 C1QC 0.416476 0.416476 1.196718 1.196718

NUCB1 0.226323 0.226323 − 1.00591 1.005905 NMNAT2 0.403256 0.403256 1.065142 1.065142

XAF1 − 0.21556 0.215562 1.081608 1.081608 LGSN 0.313768 0.313768 1.034986 1.034986

TMED9 0.201803 0.201803 − 1.50563 1.505627 HIST2H4A 0.306524 0.306524 2.531967 2.531967

SAMHD1 0.168243 0.168243 − 1.00134 1.001343 INSC 0.300362 0.300362 1.489929 1.489929

SDC1 − 0.15729 0.157293 − 1.00398 1.003981 GOLGA8M 0.288115 0.288115 1.033698 1.033698

TIMM13 0.154103 0.154103 − 1.1873 1.187303 CDCA5 0.209252 0.209252 1.05616 1.05616

IL1R2 0.14483 0.14483 − 1.37001 1.370005 NOS1AP 0.194112 0.194112 1.137223 1.137223

CXCL11 0.122537 0.122537 1.340965 1.340965 BEGAIN 0.190819 0.190819 1.167257 1.167257

LAMB3 0.092874 0.092874 − 1.46286 1.462858 OTOF 0.171533 0.171533 1.280815 1.280815

TMA7 0.081283 0.081283 − 1.315 1.314995 UGT2B11 − 0.15846 0.158463 − 1.48498 1.484976

ADIRF 0.069208 0.069208 − 1.30839 1.308395 GSTM1 − 0.15549 0.155486 − 1.43369 1.433691

BBS10 0.05455 0.05455 − 1.40761 1.407608 OR10G2 − 0.13769 0.137689 − 1.95528 1.95528

OR1I1 0.050515 0.050515 − 1.4272 1.427201 TRIP13 0.115733 0.115733 1.028476 1.028476

MIF 0.031292 0.031292 − 1.80266 1.802656 CCDC27 − 0.10699 0.106987 − 1.99933 1.999328

CXCL10 0.029183 0.029183 1.5632 1.5632 ABCC11 0.08954 0.08954 1.31761 1.31761

C19orf33 0.015395 0.015395 − 1.33282 1.33282 EIF1AY − 0.08357 0.083573 − 1.76969 1.769694

COPA 0.014771 0.014771 − 1.31686 1.316856 OR2A42 − 0.0225 0.022504 − 2.24545 2.245455

ADAM17 0.012107 0.012107 − 1.36326 1.363259 GTF2H2C 0.01273 0.01273 1.429336 1.429336

TCTEX1D4 0.006927 0.006927 − 1.52527 1.52527 SCN5A 0.007577 0.007577 1.405947 1.405947

IFIT2 0.005005 0.005005 1.308344 1.308344
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Table 3  The criteria obtained for WB and NP samples in the first and second phases by the RF classifier based on LASSOfeatures

WB whole blood, NP nasopharyngeal

*Selected to depict ROC curves

Tissue The first phase based on the k-fold CV on 
the train set

The second phase based on train and 
test sets

Number 
of 
features

Genes

Sensitivity_cv Specificity_cv Accuracy_cv Sensitivity Specificity Accuracy

WB 0.895238095 0.855072464 0.879310345 0.90625 0.923076923 0.911111111 3 CCDC27, CDCA5, EIF1AY

0.971428571 0.898550725 0.942528736 0.90625 0.923076923 0.911111111 4 CCDC27, HIST2H4A, NOS1AP, TRIP13

0.971428571 0.927536232 0.954022989 0.90625 0.923076923 0.911111111 5 CCDC27, HIST2H4A, LGSN, NOS1AP, 
TRIP13

0.980952381 0.956521739 0.967816092 1 0.923076923 0.977777778 6* C1QC, CCDC27, HIST2H4A, INSC, 
OTOF, SLC24A5

0.980952381 0.956521739 0.967816092 1 0.923076923 0.977777778 6 CCDC27, CDCA5, INSC, NMNAT2, 
OR2A42, SLC24A5

0.980952381 0.913043478 0.948275862 1 0.923076923 0.977777778 7 ABCC11, CCDC27, INSC, NMNAT2, 
OTOF, SLC24A5, TRIP13

0.971428571 0.942028986 0.971264368 1 0.923076923 0.977777778 8 ABCC11, CCDC27, CDCA5, GTF2H2C, 
INSC, OTOF, SLC24A5, SLC45A2

0.971428571 0.971014493 0.977011494 1 0.923076923 0.977777778 9* CCDC27, CDCA5, EIF1AY, GOLGA8M, 
GTF2H2C, INSC, NMNAT2, OTOF, 
SLC24A5

0.971428571 0.971014493 0.977011494 1 0.923076923 0.977777778 9 CCDC27, GSTM1, GTF2H2C, INSC, 
NMNAT2, NOS1AP, OTOF, SLC24A5, 
TRIP13

NP 0.861148198 0.777070064 0.822803195 0.815508021 0.785714286 0.808 3 IFI6, MIF, NUCB1

0.891855808 0.805732484 0.852578068 0.855614973 0.825396825 0.848 4 IFI6, LAMB3, MIF, NUCB1

0.887850467 0.823248408 0.8583878 0.863636364 0.873015873 0.866 5 IFI44L, IFI6, IL1R2, MIF, NUCB1

0.903871829 0.824840764 0.867828613 0.852941176 0.857142857 0.854 6 ADIRF, IFI6, IL1R2, MIF, NUCB1, TMA7

0.910547397 0.837579618 0.877269426 0.868983957 0.873015873 0.87 7 CXCL10, IFI6, MIF, NUCB1, SAMHD1, 
SIGLEC1, TMED9

0.90787717 0.839171975 0.87654321 0.871657754 0.912698413 0.882 8 COPA, CXCL11, IFI6, MIF, NUCB1, 
SAMHD1, SIGLEC1, TMED9

0.90787717 0.855095541 0.883805374 0.871657754 0.904761905 0.88 9 CXCL11, IFI6, IFIT2, LAMB3, MIF, 
NUCB1, SAMHD1, TMA7, XAF1

Fig. 6  The criteria of classifiers: The Line plots to indicate the value of the sensitivity, specificity, and accuracy of the classifiers for whole blood (WB) 
and nasopharyngeal (NP) samples in the first and second phases based on the number of features
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biomarker panels which were achieved using common 
WB/NP DEGs.

Discussion
Understanding the pathogenesis of COVID-19 plays a 
key role in drug design and treatment. Besides, identify-
ing the host responses in different tissues can give us a 
more comprehensive conception.

Fig. 7  The ROC curves: These ROC curves illustrate the sensitivity, 1-specificity, and AUC associated to phase I (A and C) and phase II (B and D) for 
whole blood and nasopharyngeal samples among the top 3 to 9 features, respectively
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In the present study, we implemented a meta-analysis 
and integrated 9 public datasets from different popula-
tions to improve individual study-specific biases. Using 
this approach, we notably increased the sample size and 
decreased the heterogeneity of the samples compared to 
previous studies. we applied GO and enrichment analy-
ses to scrutinize more pathophysiological aspects of this 
novel pandemic virus compared to other ARIs and physi-
ological conditions and developed the diagnostic panels 
based on host WB and NP transcriptomes using the ML 
methods.

The results revealed the distinct gene expression pat-
terns of WB and NP samples in patients with COVID-
19 versus other individuals. In agreement with previous 
studies (Thair et  al. 2020a; Aschenbrenner et  al. 2020), 
WB transcriptomics followed by the analysis of immune 
cell type proportion showed an increase in the number 
and activity of neutrophils in COVID-19 patients com-
pared to healthy individuals.

T cells have been found to play a key role in viral infec-
tions and immunological homeostasis. The observed 
decline in CD4+ and CD8+ T cells could be attrib-
uted to SARS-COV-2 replication and dissemination, 
and the associated immunopathology damage (Huang 
et  al. 2021). Despite the reduction of CD4+ and CD8+ 
T lymphocyte subsets in COVID-19-infected patients, 
our deconvolution analysis demonstrated that the Treg 
population was highly increased. These findings imply 
that Tregs may exert a negative effect on COVID-19 
patients via inhibiting antiviral T-cell responses during 

the infection (Galván-Peña et al. 2021). In particular, our 
research showed that naïve B cells and plasma cells were 
highly increased in COVID-19 whose antibody produc-
tion may prevent COVID-19 patients from deteriorat-
ing) (Huang et  al. 2021; Wu et  al. 2020). Transcriptome 
analysis revealed that the oxygen transport process was 
decremented in WB samples of COVID-19 patients, cor-
responding to the clinical features of hypoxia. Hypoxia 
not only plays an essential role in inflammation by 
increasing the release of pro-inflammatory cytokines but 
may also affect viral replication (Tavassolifar et al. 2020, 
2021; Zhou et al. 2021; Maras et al. 2021), an enriched BP 
which was also observed in this study.

Impaired regulation of host antiviral immune 
responses, such as IFN pathway activation and 
chemokine production, is part of the characteristics of 
viral infections (Salazar-Mather and Hokeness 2006; 
McNab et  al. 2015). In line with previous studies (Kim 
and Shin 2021; Hadjadj et  al. 2020), the IFN-mediated 
antiviral signature was obtained in the WB and NP 
samples of SARS-COV-2 infected patients as a crucial 
immune system response. Serum IFN-I levels in COVID-
19 patients are higher in comparison to HC, proposing a 
beneficial effect of enhanced IFN-I in the blood for kill-
ing SARS-COV-2 (Huang et  al. 2021). However, IFN-
mediated antiviral pathways, innate immune responses, 
and response to virus pathways were less activated in NP 
samples infected by SARS-COV-2 compared to other 
respiratory viruses. Further, it has been mentioned that 
specific expression patterns of IFN pathway activation in 

Table 4  The comparison of criteria related to the best panels of the LASSO feature-based prediction model and RF-based generic 
prediction model

WB whole blood, NP nasopharyngeal

Tissue Number of 
features

The best LASSO-based panels based on train 
and test sets

The best common-based panels based on train 
and test sets

Difference of 
accuracies

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

WB 3 0.906 0.923 0.911 0.938 0.769 0.889 0.022

4 0.906 0.923 0.911 0.969 0.692 0.889 0.022

5 0.906 0.923 0.911 0.969 0.769 0.911 0.000

6 1 0.923 0.978 0.938 0.846 0.911 0.067

7 1 0.923 0.978 0.938 0.846 0.911 0.067

8 1 0.923 0.978 0.938 0.846 0.911 0.067

9 1 0.923 0.978 0.906 0.846 0.889 0.089

NP 3 0.816 0.786 0.808 0.743 0.802 0.758 0.050

4 0.856 0.825 0.848 0.810 0.810 0.810 0.038

5 0.864 0.873 0.866 0.826 0.841 0.830 0.036

6 0.853 0.857 0.854 0.829 0.865 0.838 0.016

7 0.869 0.873 0.870 0.832 0.881 0.844 0.026

8 0.872 0.913 0.882 0.850 0.841 0.848 0.034

9 0.872 0.905 0.880 0.850 0.857 0.852 0.028
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SARS-COV-2 differ from those found in other respira-
tory viruses (Ng et al. 2021). A specific immune response 
is necessary during the incubation and non-severe phases 
to eradicate the virus and prevent disease progression to 
severe stages. SARS-COV-2 replicates during the incu-
bation period and severely damages the targeted tissues, 
particularly in organs with high ACE2 levels, by impair-
ing the protective immune response (Shi et  al. 2020). 
Consequently, the lower innate immune response and 
inflammation compared to other viruses during the incu-
bation period may lead to enhance viral replication and 
propagation and subsequent enormous destruction of the 
affected tissues. In general, transcriptome analysis of WB 
and NP samples illustrated that the expression pattern of 
some genes is altered in SARS-COV-2 compared to HCs. 
Some of them like genes involved in the cell cycle showed 
an opposite expression pattern in SARS-COV-2-infected 
NP and WB samples which means that the pathogen-
esis of COVID-19 is body-site-specific. Albeit, due to 
the common DEGs in WB and NP samples of COVID-19 
patients versus HC, such as those involved in the INF and 
cytokine pathways, we showed that SARS-COV-2 could 
also induce a global and systematic host response.

RT-PCR, as the gold standard method of SARS-COV-2 
detection, has clinical sensitivity ranging from 66 to 80% 
(Nag et  al. 2020). Hence, host transcriptional biomark-
ers could be employed alone or combined with molecu-
lar detection of SARS-COV-2 to reduce false-negative 
and false-positive results, such as those caused by insuf-
ficient viral load or cross-contamination (Mick et  al. 
2020). We attempted to address this problem by using 
two meta-datasets from WB and NP samples to develop 
COVID-19 diagnostic biomarker panels that are precise 
and clinically practical and can overcome the constraints 
of direct viral genetic material detection. The differential 
gene expression analysis followed by the LASSO method 
led to the detection of 22 and 23 markers for WB and NP, 
respectively. The high-performance 3 to 9-gene sets of 
WB samples were determined from 22 features. We also 
applied 23 common WB/NP DEGs as input features to 
construct RF-based prediction models and observed that 
the accuracy, sensitivity, and specificity of these models 
were less than LASSO feature-based prediction models. 
Intriguingly, both prediction models included some com-
mon markers, such as the GTF2H2C gene, which was 
found in the best WB-based diagnostic panels in both 
prediction models.

Most of the 22 features of WB which were achieved 
by the LASSO method introduced as key factors in the 
pathogenesis of SARS-COV-2 or other viral infections 
in previous studies. For instance, ABCC11 is one of the 
ABC transporter genes whose genetic polymorphism has 
been associated with SARS-COV-2 infection (Yamamoto 

et  al. 2021). Likewise, transcription of complement 
genes such as C1QC has been reported to be induced 
in response to SARS-COV-2, while higher expression 
has been observed in the lung relative to blood (Daamen 
et al. 2021; Lazara et al. 2021). A protein–protein interac-
tion analysis also showed that CDCA5, a gene involved 
in the cell cycle, could be one of the significant charac-
teristics of SARS-COV-2 infection (Mo et al. 2021). The 
GSTM1 gene, another introduced biomarker increases 
the risk of various oxidative stress-related multifactorial 
disorders, it might therefore play a role in susceptibility 
to SARS-COV-2 infection, as well (Abbas et  al. 2021). 
Although the association of some biomarkers such as 
SCN5A and BEGAIN with SARS-COV-2 infection has 
been previously reported (Guidicessai et  al. 2020; Thair 
et  al. 2020b), their specific function in SARS-COV-2 
pathogenesis needs to be experimentally clarified. Fur-
thermore, the importance of some features like GOL-
GA8M and SLC24A5 has been stated in the other viral 
infections or autoimmune diseases. GOLGA8M, which 
encodes Golgin A8 family member M, contributes to the 
development of HBV-related HCC (Jiang et  al. 2020). 
The researchers have shown that the transport protein 
SLC24A5 induces a significantly higher frequency of CD8 
T cell activation in an autoimmune disease like Alopecia 
areata (Wang et al. 2019).

The NP-based diagnostic biomarker panels that 
could discriminate COVID-19 patients from non-
COVID individuals were obtained from 23 features. 
Among them, the overexpression of pro-inflammatory 
chemokines and cytokines is a key hallmark of SARS-
COV-2-induced pulmonary complications, which con-
tribute to a cytokine storm (Callahan et  al. 2021). The 
gene CXCL10 as a pro-inflammatory chemokine, which 
was presented in the best panels of both prediction 
models, could be one of the main mediators involved in 
the SARS-COV-2-related cytokine storm. The expres-
sion level of CXCL10 has shown a strongly significant 
positive correlation with viral load and progression of 
COVID-19, thus it could be also used as a biomarker for 
COVID-19 acute respiratory distress syndrome (ARDS) 
patients (Oliviero et al. 2021; Hemida et al. 2010). Fur-
thermore, the significant overexpression of CXCL11 
transcripts has been demonstrated in patients with 
mild to severe disease, which may be related to differ-
ent T cell responses in COVID-19 patients (Yang et al. 
2020). Macrophage migration inhibitory factor (MIF), 
another biomarker candidate, has an important role in 
the inflammatory response to SARS-COV-2 infection 
by inducing the pulmonary inflammatory cytokines 
(Dheir et  al. 2021). In addition, it has been observed 
that the level of MIF is higher in severe patients with 
COVID-19 (Aksakal et  al. 2021). Therefore, MIF was 
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also identified as a biomarker for determining the 
patients with COVID-19 ARDS (Bleilevens et al. 2021). 
We also identified that the interferon-stimulated genes 
(ISGs) such as IFIT2, IFI6, and IFI44L were upregu-
lated in COVID-19 patients. Studies have shown that 
IFIT2 and IFI44L are strongly induced in bronchoal-
veolar lavage (BAL) cells and peripheral blood mono-
nuclear cells (PBMCs) of COVID-19 patients, leading 
to enhance antiviral and immune modulatory func-
tions (Zhu et  al. 2020; Shaath et  al. 2020). Transcrip-
tome analysis of PBMCs also highlighted the potential 
role of IFI6 in responses to SARS-COV-2 in compari-
son to other respiratory viruses (Shaath et  al. 2020; 
Qi et  al. 2021). According to our findings, IL1R2 is a 
downregulated NP marker for COVID-19 patients. 
IL1R2, known as anti-inflammatory cytokines, is highly 
expressed in monocyte-macrophages from BALF and 
follicular regulatory T (TFR) cells; however, TFR cells 
have been reported to be significantly lower in hospital-
ized COVID-19 patients (Meckiff et al. 2020; Xu et al. 
2020). LAMB3 which is present in anchoring junctions 
of epithelial cells was among NP-based diagnostic bio-
markers. The human papillomavirus penetrates the epi-
thelial barrier by inducing some changes in the LAMB3 
of anchoring junctions (Dong et  al. 2020). Evidence 
has shown that blockers of anchoring junction pro-
teins such as LAMB3 could prevent COVID-19 infec-
tion (Doehn et al. 2021). SAMHD1 is the molecule that 
controls the cellular deoxyribonucleoside triphosphates 
(dNTP) pool and has an inhibitory effect on HIV-1 rep-
lication by reducing the concentration of intracellular 
dNTP pools (Monit et al. 2019; Buffone et al. 2019). It 
has been suggested that SAMHD1 may be associated 
with neurological complications of COVID-19 (Khan 
and Sergi 2020). XIAP-associated factor 1 (XAF1), as a 
novel binding ligand of XIAP, can reverse XIAP’s anti-
apoptotic activity (Gao et al. 2021). Zhu et al. reported 
that the expression of XAF1 in T, B, NK, and DC cells 
from patients with COVID-19 and influenza was 
upregulated, thus it may increase apoptosis in T-cells of 
COVID-19 patients (Zhu et al. 2020).

The best final host response-based markers were 
acquired using a 2-phase ML approach which employed 
k-fold cross validation on discovery sets (80% of the 
population) in the first step by all 3 to 9 combinations 
of selected features. The best results were then vali-
dated on independent test datasets (20% of the popu-
lation), as well. Data integration from several different 
laboratories followed by a 2-phase ML method made 
the final host response-based biomarker panels more 
powerful, robust, and generalized. The optimal WB- 
and NP-based diagnostic panels which have the mini-
mum number of markers with maximum accuracy 

included 6 and 8 markers with an accuracy of 97% and 
88% in both two phases.

Conclusion
Distinct transcriptome profiles of different SARS-COV-
2-infected tissues relative to HCs and other pathophysi-
ological conditions shed the light on the necessity of 
SARS-COV-2-specific drug design. Comparison of gene 
expression profiles of WB and NP samples with HCs 
demonstrated that expression of some genes is exclusively 
altered in WB or NP samples. Intriguingly, some of them 
like genes involved in the cell cycle showed a remarkably 
opposite expression pattern which means that the patho-
genesis of COVID-19 may be body-site-specific. On the 
other hand, SARS-COV-2 induces a global and system-
atic host response according to common gene signa-
tures in WB and NP e.g. the genes involved in INF and 
cytokine pathways, demonstrating the disease’s complex-
ity, as well. We introduced and validated host-response-
based diagnostic biomarkers using ML methods which 
could be applied as a complementary tool to diagnose the 
COVID-19 infection from non-COVID cases.
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