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Network‑based analysis of key 
regulatory genes implicated in Type 
2 Diabetes Mellitus and Recurrent 
Miscarriages in Turner Syndrome
Anam Farooqui1, Alaa Alhazmi2, Shafiul Haque3, Naaila Tamkeen4, 
Mahboubeh Mehmankhah1, Safia Tazyeen1, Sher Ali5 & Romana Ishrat1*

The information on the genotype–phenotype relationship in Turner Syndrome (TS) is inadequate 
because very few specific candidate genes are linked to its clinical features. We used the microarray 
data of TS to identify the key regulatory genes implicated with TS through a network approach. The 
causative factors of two common co-morbidities, Type 2 Diabetes Mellitus (T2DM) and Recurrent 
Miscarriages (RM), in the Turner population, are expected to be different from that of the general 
population. Through microarray analysis, we identified nine signature genes of T2DM and three 
signature genes of RM in TS. The power-law distribution analysis showed that the TS network carries 
scale-free hierarchical fractal attributes. Through local-community-paradigm (LCP) estimation we find 
that a strong LCP is also maintained which means that networks are dynamic and heterogeneous. 
We identified nine key regulators which serve as the backbone of the TS network. Furthermore, 
we recognized eight interologs functional in seven different organisms from lower to higher levels. 
Overall, these results offer few key regulators and essential genes that we envisage have potential as 
therapeutic targets for the TS in the future and the animal models studied here may prove useful in the 
validation of such targets.

The medical systems and scientists throughout the world are under an unprecedented challenge to meet the 
medical needs of much of the world’s population that are suffering from chromosomal anomalies. As there is no 
cure for such anomalies, early detection and specific interventions are likely to be the key aspect of economically 
efficient and high-quality healthcare systems. Turner Syndrome (TS), also known as monosomy of X, is one 
such chromosomal disorder where there is a complete or partial deletion of an X chromosome in all or some 
of the somatic cells1,2, usually due to sporadic chromosomal non-disjunction. TS is the only chromosome that 
represents haploinsufficiency compatible with life in less than 1% surviving pregnancy3. The reason why some 
TS fetuses are miscarried while others make it through pregnancy without many complications is still unknown. 
The most likely reason for the TS fetus’s survival may be the level of mosaicism that enables them to remain alive 
and develop. It has been reported that about 50% of TS patients have haplotype 45, X, while about 20–30% have 
mosaicism where 45, X cell line is accompanied by one or more other cell lines having a complete or structurally 
abnormal sex chromosome (X or Y)4,5. Some of the distinctive symptoms of TS include short height, webbed 
neck, low hairline at the back of the neck, low-set ears, markedly elevated levels of follicle-stimulating hormone 
(FSH), chronic otitis media (OM), lymphedema of extremities, small mandible, and multiple pigmented nevi6. 
TS is often accompanied by many other co-morbidities like autoimmune diseases (AD), hypothyroidism, kidney 
dysfunction, loss of ovarian function or other reproductive disorders, neurological or ophthalmological abnor-
malities, osteoporosis, diabetes mellitus (DM), dyslipidemia, recurrent miscarriages (RM), hypertension, and 
heart disease7–12. Since TS is non-heritable and no good animal model is available, this further complicates its 
status13. Therefore, the causal genes of TS co-morbidity are still unstated.

The prevailing theory of gene dosage imbalance due to the loss of an X chromosome is not enough to justify 
this burden of co-morbidity which has worsened the living circumstances of these patients. Two such acquired 
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co-morbidities of TS which is the focus of our present work are Type 2 Diabetes Mellitus (T2DM) and Recur-
rent Miscarriages (RM). Even though T2DM and RM seem to be extremely frequent, there is a void of literature 
related to them.

Reports suggest that the prevalence of T2DM occurs at any age group in life. Some studies suggest that 
impaired beta-cell function or reduced insulin sensitivity may be the causal factor for T2DM in TS14. The latest 
clinical practice guidelines for TS states that glucose intolerance and T2DM prevalence in TS is 15–50% and 10%, 
respectively; nevertheless, the frequency of T1DM is yet to be determined1. It is expected that the factors that 
trigger T2DM in TS are different from that of the traditional risk factors of T2DM in the general population. It 
is currently believed that Xp haplotype gene deficiency may be the reason for the high incidence rate of T2DM 
in the TS population which may lead to impaired β-cell function15. Further, overexpression of some genes of 
Xq may worsen the condition. Whilst these factors may account for T2DM in TS, the exact reason and the key 
genes involved remain obscure.

Another distinctive feature of TS is ovarian failure which renders the TS women infertile in most cases. 
However, in a few of the TS cases i.e. 5–10%, spontaneous puberty occurs of them only 2–5% become pregnant 
spontaneously16. These pregnancies are at high risks and must be followed up carefully. Recurrent miscarriages 
are defined as two or more successive pregnancy losses before 22 weeks of gestation. It has been assessed that 
RM occurs in 0.5–5% of all reproductive-age women17, however, this rate is higher in turner’s population18. 
Despite worthy studies that have ascribed the increased risk of miscarriage in TS patients to small uterine size 
and reduced endometrial thickness and receptivity18,19, little is known about it at the genomic level. Therefore, 
such genetic alterations leading to the enhanced risk of RM in TS women must be evaluated.

Many studies have shown that impaired glucose tolerance, diabetes mellitus and Insulin Resistance (IR) 
have somehow been responsible for adverse reproductive/pregnancy outcomes, including infertility and 
miscarriages20,21. However, there is little information and data to verify this claim. Since the data claims that in 
the general population, T2DM and RM may somehow be associated, we expect a similar scenario in the case of 
the TS population.

The molecular components of a human cell are functionally interdependent which means that a disease or a 
syndrome is a consequence of the perturbations of the complex intracellular and intercellular interactions. With 
the advancement in the field of Network biology, many potential disease genes and their better drug targets have 
been identified. The emerging tool of Network medicine has important applications to systematically explore 
drug targets, biomarker/key genes of the network through the identification of disease modules and pathways, 
thus providing improvements in the diagnosis, prognosis, and treatment of complex diseases22–26. In our study, 
the proposed network protocol not only provides a global analysis of the TS proteins but also presents a detailed 
view on specific proteins and their association with the specific co-morbidities i.e., T2DM and RM. The current 
research also sheds light on few key genes, pathways, and some interologs which can be targeted to offer better 
interventions for TS along with its associated co-morbidities.

Results
The workflow of the whole integrative network-based approach followed in this study is illustrated in Fig. 1. The 
figures in this study were drawn in Adobe Illustrator CS6.

Differentially expressed genes (DEGs) of TS.  The information regarding the datasets pertaining to the 
microarray series used in the study is listed in Table 1. The box plots for the normalized data sets are illustrated 
in Supplementary Figures S1−S3. Only those DEGs that surpassed the cut-off criteria of “P-value < 0.05” and 
“|logFC|≥ 0.5” in both the series of each category were considered as the significant DEGs. We did not use the 
adjusted p-value for multiple comparisons, rather we used the p-value cut-off < 0.05 to select the maximum 
number of DEGs of Turner Syndrome and then proceeded with the network construction. The DEGs of each 
dataset that surpassed the cut-off criteria are listed in Supplementary Table S1. A total of 355 genes were found 
to be differentially expressed in TS, of them 239 genes were upregulated, and 116 genes were downregulated 
(Supplementary Figure S4A). These genes were used to construct the PPI network to get the elaborated view in 
terms of protein–protein interactions in TS.

Signature genes of T2DM and RM in TS.  Here, we adopted an integrative approach for the meta-anal-
ysis of multiple gene expression profiles of TS and its comorbidities i.e., T2DM and RM, specifically. Using the 
same cut-off criteria, a total of 185 genes were found to be differentially expressed in T2DM, of them 138 genes 
were upregulated, and 47 genes were downregulated (Supplementary Figure S4B, Supplementary Table S2). And 
in the case of RM, 112 genes were found to be differentially expressed, 42 of them were upregulated, and 70 genes 
were downregulated (Supplementary Figure S4C, Supplementary Table S3). On overlapping these sets of DEGs, 
9 genes were found to be common with TS and T2DM and 3 genes were common with TS and RM (Fig. 2a). 
We call them the “Signature Genes” that may be responsible for T2DM and RM in TS. These signature genes are 
listed in Table 2. The values of the fold change and p-value of the DEGs and the signature genes of TS, T2DM, 
and RM are listed in the Supplementary Tables.

Association between T2DM and RM in TS through pathway analysis.  The pathway enrichment 
and functional enrichment was analyzed for all the DEGs of TS along with their interacting partner. We found 
that the DEGs were significantly enriched in many biological, cellular, and molecular functions as well as some 
pathways (Table 3). Most of these genes are enriched in protein binding, ATP binding, RNA binding, and trans-
lational processes. Supplementary Figure S5 illustrates the involvement of different pathways in TS. Further-
more, in the current study, we evaluated the association between RM and T2DM in TS. For this, we selected the 
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Figure 1.   Illustration of the workflow of the integrative network-based approach of our study.

Table 1.   Microarray datasets of (A) Turner Syndrome (B) Type 2 Diabetes Mellitus (C) Recurrent Miscarriage.

Geo accession Platform No. of probes No. of samples (control/disease) Sample type Organism

(A) Turner Syndrome

GSE46687 GPL570 54,675 36 samples (10/26) peripheral blood mononuclear cells Homo sapiens

GSE58435 GPL570 54,675 10 samples (5/5) Second trimester amniotic fluid Homo sapiens

(B) Type 2 Diabetes Mellitus

GSE23343 GPL570 54,675 17 samples (7/10) Liver tissue Homo sapiens

GSE25724 GPL96 22,283 13 samples (7/6) Pancreatic islets Homo sapiens

(C) Recurrent Miscarriage

GSE22490 GPL570 54,675 10 samples (6/4) Placenta Homo sapiens

GSE26787 GPL570 54,675 15 samples (5/10) Endometrium Homo sapiens
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Figure 2.   (a) Signature genes of T2DM and RM in TS. (b) The percentage of genes on each chromosome that 
was differentially expressed in TS at the significance threshold “P-value < 0.05” and “|logFC|≥ 0.5”. (c) The heat 
map showing the change in expression of the DEGs from TS fetus (GSE58435) to TS adult (GSE46687).

Table 2.   List of signature genes of T2DM and RM in TS.

S. no Gene name Chromosomal location Status in TS Status in T2DM

1 SLC29A2 11q13.2 Upregulated Upregulated

2 THBS1 15q14 Upregulated Upregulated

3 GPRC5B 16p12.3 Upregulated Upregulated

4 CSHL1 17q23.3 Upregulated Upregulated

5 ADAM22 7q21.12 Upregulated Upregulated

6 IGHM 14q32.33 Upregulated Upregulated

7 WIZ 19p13.12 Upregulated Upregulated

8 IGHD 14q32.33 Upregulated Upregulated

9 COX11 17q22 Downregulated Downregulated

S. no Gene name Chromosomal location Status in TS Status in RM

1 ATXN7L1 7q22.3 Upregulated Upregulated

2 UBE3B 12q24.11 Upregulated Upregulated

3 FANCM 14q21.2 Downregulated Downregulated
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Go term Total no. of genes involved from the list Seed genes present P-value

Molecular function

Protein binding 403

ZNF703, ZNF24, ZKSCAN3, ZFYVE27, ZFHX3, ZBTB17, 
ZBTB10, YTHDC2, XPO5, WWOX, WRNIP1, WIZ, WBP2, 
VPS37B, USP22, UBE2Z, TYRP1, TTC23, TSPAN2, TPM1, 
TOPORS, TOB2, TNXB, TMEM8A, TMEM67, THY1, 
THBS1, TBX5, TAF1C, SYNE2, SYNCRIP, STMN2, STK16, 
STAT2, STAT1, SRGAP2, SRC, SPON1, SPG7, SOX2, SOX13, 
SOCS3, SNRPN, SMYD2, SLC9A9, SFI1, SETDB1, SEPT6, 
RYK, RPL31, RPH3AL, RAB3IP, PXN, PTPN22, PPP6R2, 
POU2F1, POSTN, POGK, PMEPA1, PKHD1, PKD1, 
PHF1, PEX3, PDLIM5, PDE4DIP, PCNX4, PBXIP1, PBX2, 
PAPOLA, OLFM1, OCIAD1, NR4A1, NPC1, NIPSNAP1, 
NFATC3, NFATC1, NF2, NEK8, MKL1, MAPT, MAPK1, 
MAGEC2, LRR1, LIFR, LGALS3, LCP2, LAPTM4B, KRR1, 
KRAS, KMT2A, KIF1C, KCNJ15, JRK, ITPR3, ITIH4, IL23A, 
IL1R2, IKZF3, IGHM, IFT27, HSPA1L, HIPK2, HIPK1, 
HFE, HEXIM1, HBB, GUCY1A3, GSE1, GOPC, GNAS, 
GADD45B, FOXN3, FOXK1, FLT1, FKBP8, FGFR1OP2, 
FBLIM1, FANCM, FANCC, FAM20A, FAM161A, FAF1, 
ETV6, ETS2, ENO2, ENAM, EDC3, DYRK1A, DTNA, 
DOT1L, DGKZ, DCAF8, CXCR5, CUL9, CRTC2, CNOT2, 
CEP152, CELF1, CEACAM1, CDK15, CDC34, CASP2, 
CASK, CARS, CACNG2, BICD1, BCL6, BCL2L1, BAZ2A, 
ATXN7L1, ATF6B, ASXL1, ARID4B, ARHGAP22, APLP2, 
AP5Z1, ANKRD44, ALOX5, AGO4, AGER, ADRB1, 
ADAM22, ACHE, ABHD1

1.3E-21

poly(A) RNA binding 103 YTHDC2, XPO5, SYNCRIP, SAMD4B, RPL31, PURB, OASL, 
LGALS3, KRR1, KIF1C, FNDC3B, FBRSL1, CELF1 6.8E-21

ATP binding 82

YTHDC2, YME1L1, WRNIP1, UBE2Z, TRIB2, STK16, SRC, 
SPG7, SCYL1, RYK, RPS6KA6, RECQL5, PKDCC, PFKP, 
PDXK, PDK4, PCCB, PAPOLA, OASL, NEK8, MAST4, 
MAPK1, KRAS, KIF1C, KALRN, HSPA1L, HIPK2, HIPK1, 
FLT1, FANCM, EPHA8, EIF2AK4, EARS2, DYRK1A, 
DTYMK, DNAH1, DGKZ, CUL9, CDK15, CDC34, CASK, 
CARS, ATP9B, ABCC1

8.8E-6

RNA binding 71 XPO5, SYNCRIP, SNRPN, SAMD4B, RPL31, PAPOLA, 
EARS2, CELF1, BAZ2A 1.3E-22

structural constituent of ribosome 48

IKZF3, IFIT3, EDC3, CASP8, SEPT7, IL12B, CASP2, 
AKT1, ABCD1, EPHA4, APAF1, EED, ACTN2, APLP2, 
DYRK1A, WRNIP1, CREB1, PRPF3, FKBP8, VWA1, RAF1, 
SNRNP200, TP53, KMT2A, XIAP, THBS1, AGER, MAPK1, 
CSK, FYN, BAK1, AMELX, PLK4, JUN, STAT1, sSTAT2, 
STAT3, FN1, BRAF, S100B, VEGFA, RAD52, BCL6, BCL2, 
MDM2, BAX, FAS, GRB2, BCL2L1

9.9E-25

Cellular component

Nucleus 252

ZNF782, ZNF703, ZNF684, ZNF24, ZKSCAN3, ZFHX3, 
YTHDC2, XPO5, WWOX, WRNIP1, WIZ, UBE3B, 
TXNDC2, TRIB2, TOPORS, TOB2, TMEM57, TBX5, 
SYNE2, SYNCRIP, STC1, STAT2, STAT1, SRGAP2, SRC, 
SOX2, SOX13, SMYD2, SETDB1, SCYL1, SBF1, SAMD4B, 
RYK, RPS6KA6, RECQL5, RAB3IP, PURB, PTPN22, 
POU2F1, POGK, PKD1, PHF1, PFKP, PERM1, PDXK, 
PDE4DIP, PBXIP1, PBX2, PAPOLA, NR4A1, NFATC3, 
NFATC1, NF2, MTF2, MOB2, MKL1, MAPK1, MAGEC2, 
LMO7, LGALS3, KRR1, KMT2A, KLF16, KDM4B, KANSL3, 
JRK, IKZF3, HIVEP2, HIPK2, HIPK1, HEXIM1, HES2, 
GPRC5B, GNAS, GADD45B, FOXN3, FOXK1, FANCC, 
FAM71B, FAF1, ETV6, ETS2, EFCAB13, DYRK1A, DTYMK, 
DOT1L, DGKZ, DCAF8, CRTC2, CNOT2, CELF1, CDC34, 
CASP2, CAMTA1, BTBD7, BCL6, BAZ2A, ATF6B, ARID4B, 
ARHGAP22, ARG1, APLP2, AP5Z1, AGO4, ACHE

2.2E-12

Cytoplasm 230

ZNF703, ZKSCAN3, ZFHX3, XPO5, WWOX, VPS37B, 
UBE3B, UBE2Z, TXNDC2, TRIB2, TOB2, TBX5, TBC1D32, 
SYNE2, STMN2, STK16, STC1, STAT2, STAT1, SRGAP2, 
SRC, SOX2, SOCS3, SNRPN, SMYD2, SETDB1, SCYL1, 
SAMD4B, RYK, RPS6KA6, RPH3AL, RNF213, RGS5, 
RECQL5, PXN, PTPN22, PPP6R2, POSTN, PKHD1, PKD1, 
PHF1, PFKP, PERM1, PDXK, PDLIM5, PDE4DIP, PAPOLA, 
OASL, NR4A1, NFATC3, NFATC1, NF2, NEK8, MYADML2, 
MTF2, MOB2, MMP28, MKL1, MAST4, MAPT, MAPK1, 
MAGEC2, MAFIP, LST1, LMO7, LGALS3, KRR1, KRAS, 
KMT2A, KDM4B, JRK, ITPR3, IL1R2, IKZF3, HIPK2, 
HIPK1, HEXIM1, GOPC, GNB1L, GNAS, GADD45B, 
FGD6, FANCC, FAM161A, ETV6, ETS2, EML4, EFCAB13, 
EARS2, DTNA, DNAH1, DGKZ, DCAF8, CUL9, CRTC2, 
CNTLN, CNOT2, CELF1, CDH3, CDC34, CD96, CASP2, 
CASK, CARS, CAMTA1, BCL2L1, BAZ2A, ARID4B, ARG1, 
AQP4, AP5Z1, ANKRD13D, AKAP10, AGO4

1.1E-8

Continued
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signature genes of RM and T2DM in TS along with their interacting partners in the TS network. These genes 
are THBS1 (MIM: 188,060), NFATC1 (MIM: 600,489), GPRC5B (MIM: 605,948), FANCL (MIM: 608,111), 
WIZ (GenBank: NM_021241.2), JRK (MIM: 603,210), XAB2 (MIM: 610,850), CSHL1 (MIM: 603,515), LSM5 
(MIM: 607,285), COX11 (MIM: 603,648), RPL3L (MIM: 617,416), ADAM22 (MIM: 603,709), LGI1 (MIM: 
604,619), SLC29A2 (MIM: 602,110), IGHM (MIM: 147,020), IGHD (MIM: 147,170), ATXN7L1 (GenBank: 
NM_020725.1), SF3B3 (MIM: 605,592), UBE3B (MIM: 608,047), SLC9A9 (MIM: 608,396), FANCM (MIM: 
609,644), SMARCAL1 (MIM: 606,622), MUS81 (MIM: 606,591), TIPIN (MIM: 610,716), RECQL5 (MIM: 
603,781), MLH1 (MIM: 120,436), RMI1 (MIM: 610,404), RMI2 (MIM: 612,426), ERCC4 (MIM: 133,520), and 
RAD52 (MIM: 600,392). The highlighted genes in bold are signature genes. It was found that ten of these genes 
(ERCC4, RMI1, FANCM, FANCL, RAD52, XAB2, MUS81, TIPIN, RMI2, and MLH1) are involved in DNA 
repair of which four of them i.e., ERCC4, FANCM, FANCL, and MUS81 are specifically involved in Fanconi 
anemia pathway which is also a type of DNA repair pathway. We expect that these two pathways are important 
as they have common genes of RM and T2DM predicted in the study.

Table 3.   The gene ontology and pathway enrichment of DEGs of TS, signature genes of T2DM and RM and 
their interacting partners. Key genes are bold and italicised and signature genes are bold.

Go term Total no. of genes involved from the list Seed genes present P-value

Cytosol 211

XPO5, WWOX, TPM1, THY1, TAT, STAT2, STAT1, 
SRGAP2, SRC, SOX2, SOCS3, SMYD2, SFI1, RPS6KA6, 
RPL31, RNF213, RGS1, RAB3IP, PXN, PFKP, PEX3, PDXK, 
PDLIM5, PCCB, PBXIP1, OASL, NFATC3, NFATC1, 
MTHFR, MKL1, MAPT, MAPK1, LCP2, KRAS, KALRN, 
HSPA1L, HBG2, HBG1, HBB, HAL, GNAS, FGFR1OP2, 
FERMT1, FBLIM1, FANCC, FAF1, ENO2, EDC3, DTYMK, 
DENND1C, CNOT2, CNBD2, CEP152, CASP2, CASK, 
CARS, BICD1, BET1L, BCL2L1, ARHGAP22, ARG1, 
ALOX5, AKAP10, AGO4

1.1E-25

Nucleoplasm 186

ZFHX3, ZBTB17, ZBTB10, YME1L1, XPO5, UBE2Z, 
TBX5, TAF1C, SYNE2, SYNCRIP, STAT2, STAT1, SRGAP2, 
SOX2, SOX13, SMYD2, SETDB1, RPS6KA6, RECQL5, 
PXN, POU2F1, PMEPA1, PHF1, PEX3, PDXK, PAPOLA, 
NR4A1, NFATC3, NFATC1, MTF2, MKL1, MAPK1, KRR1, 
KMT2A, KDM4B, KANSL3, ITPR3, HSPA1L, HIVEP2, 
HIPK2, HIPK1, HEXIM1, FANCM, FANCC, EZH1, ETS2, 
EFCAB13, DYRK1A, DOT1L, DGKZ, CRTC2, CEP152, 
CELF1, CDC34, BOD1L1, BCL6, BAZ2A, ARID4B, AP5Z1

1.5E-24

Membrane 139

YME1L1, WRNIP1, TM7SF2, SYNCRIP, STMN2, STK16, 
SLC1A6, SLC12A9, SCYL1, RYK, RPL31, RNF213, PRSS12, 
PFKP, PEX3, PDLIM5, PCSK6, PCDHGC3, OCIAD1, OASL, 
NPC1, NNT, NF2, MUC4, LST1, LGALS3, LAPTM4B, 
KRR1, KRAS, KIAA2013, KCNJ15, ITPR3, GOPC, GNAS, 
GGCX, GALNT1, FKBP8, EML4, EDC3, CNOT2, CELF1, 
CEACAM1, CDH3, CASP2, BICD1, BET1L, BCL2L1, 
B4GALT1, AQP4, APLP2, ALG12, AGO4, ACHE, ABCC1

1.6E-15

Biological process

rRNA processing 62 RPL31, KRR1 1.4E-39

positive regulation of transcription from RNA polymerase II 
promoter 54

WWOX, WBP2, TBX5, STK16, STAT1, SOX2, PKD1, PBX2, 
NR4A1, NFATC3, NFATC1, MTF2, MKL1, KMT2A, IL23A, 
IKZF3, HIPK2, EZH1, ETV6, ETS2, DOT1L, CRTC2, CASK, 
CAMTA1, ASXL1, ARID4B

5.0E-4

Translational 51 RPL31 1.4E-24

translational initiation 49 RPL31 5.1E-36

nuclear-transcribed mRNA catabolic process, nonsense-
mediated decay 47 RPL31 8.1E-37

Reactome pathway

Formation of a pool of free 40S subunits 53 RPL31 1.11E-16

Nonsense Mediated Decay (NMD) independent of the Exon 
Junction Complex (EJC) 49 RPL31 1.11E-16

GTP hydrolysis and joining of the 60S ribosomal subunit 53 RPL31 1.11E-16

L13a-mediated translational silencing of Ceruloplasmin 
expression 53 RPL31 1.11E-16

SRP-dependent co-translational protein targeting to mem-
brane 52 SEC11C, RPL31 1.11E-16

KEGG pathway

hsa03010: Ribosome 48 RPL31 2.7E-27

hsa03040: Spliceosome 32 HSPA1L 6.2E-13

hsa05161: Hepatitis B 32 STAT2, STAT1, SRC, NFATC3, NFATC1, MAPK1, KRAS, 
ATF6B 7.1E-12

hsa03460: Fanconi anemia pathway 20 FANCM, FANCC 5.7E-12

hsa04360: Axon guidance 28 SRGAP2, NFATC3, MAPK1, KRAS, EPHA8, EFNB3 2.0E-10
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Chromosomal contribution of DEGs.  To study the genomic imbalance, we studied the percentage con-
tribution of the DEGs of TS across the chromosomes. It was observed that all the chromosomes had altered gene 
expression except chromosomes 23 and Y. It ranged from 1.17% (chromosome 13) to 11.17% (chromosome 1) 
(Fig. 2b). Chromosome X contributes to 1.76% of DEGs. Chromosome 1 had the highest proportion of signifi-
cantly altered genes in the study. Thus, it was observed that TS phenotype is the result of global genomic imbal-
ance, rather than the genes of individual X chromosome alone27. One could therefore explain the TS phenotype 
only by the additive effect of genes based on different loci.

Change in expression of genes in TS fetus and TS adult.  Genes identified as expressed in fetal tis-
sues may provide clues to developmental processes and are a candidate set for further analysis in disease studies. 
There are few genes whose expression changes on transformation from fetus to adult contributing to different 
developmental processes of that individual. As mentioned in Table 1, GSE58435 signifies the expression of genes 
in TS fetus while GSE46687 signifies the expression of genes in TS adult. We represented the transformation 
from TS fetus to TS adult in the form of a heat map (Fig. 2c) which was constructed using Morpheus online tool. 
In a comparison of genes expressed in fetal vs. adult turner patients, we identified 72 genes whose expressions are 
altered from fetus to adult in TS (P-value < 0.05 and |logFC|≥ 1). Of these 72 genes, 24 genes are downregulated 
in fetal turner patients and upregulated in adult turner patients while 48 genes are upregulated in fetal turner 
patients and downregulated in adult turner patients. These genes are of interest as candidate genes because 
their expression levels are just the opposite in TS individuals (fetus vs adult) in comparison to healthy controls. 
Therefore, it is expected that when these genes are activated in adult or fetal tissues in an altered fashion, this 
may hinder the developmental processes. The names of these genes are listed in Supplementary Table S4. These 
fluctuations of gene expressions from fetus to adult may contribute to the phenotypic features of the TS. The 
study presented here is only a subset of the types of information that these data sets can yield. Although the role 
of these 72 genes in TS is still unclear, our results elucidate a new aspect of TS which is also crucial for under-
standing its etiology which requires additional future analyses to provide further insights.

Turner Syndrome network follows hierarchical scale‑free features.  The PPI network of TS was 
constructed with the DEGs of TS including the DEGs of T2DM and RM that were common with TS (signature 
genes). So, a total of 355 genes that were differentially expressed were used to construct the PPI network of TS. 
Our goal was to get a network that carries most of the signature genes in the same network with a condition that 
our network’s clustering coefficient must be greater than 0.5. The clustering coefficient being greater than 0.5 
signifies that the network and its genes are finely clustered together. In our study, we tried different scenarios by 
changing the number of nodes in the first shell and second shell as mentioned below in Table 4.

We found that most numbers of signature genes are incorporated in the 2nd, 3rd, and 5th cases. We, however, 
selected the 5th case i.e., 400 nodes in the 1st shell and 100 nodes in the 2nd shell as we get the best clustering 
coefficient here. Therefore, we proceeded with this case.

Of 355 DEGs, only 271 genes made it to the main network. We call these genes seed genes. The main con-
structed network consisted of 775 nodes and 20,357 edges. The nodes here are the proteins and the edges are 
the interaction between these proteins. Protein–protein interactions (PPIs) can be conveniently represented as 
networks, allowing the use of graph theory for their study. Studying the topological properties of the TS network 
may reveal patterns associated with TS in humans. The topological properties used here are the probability of 
degree distribution P(k), clustering coefficient C(k), and neighborhood connectivity CN(k). They characterize 
the structural and organizational features of the TS network. It was observed that these topological properties 
obey power-law behavior as a function of degree k (Fig. 3a). The power law of the datasets of the topological 
variables of the TS network is fitted and verified following a standard statistical fitting procedure proposed by 
Clauset et al.28. The values of the exponents are attained from the power-law fittings. The summarised results for 
the complete network are as follows,

These values suggest that the TS network follows a weak hierarchy. The value of γ signifies that the number of 
nodes increases with the advancement of disease as a power of 0.581, thus, giving us the idea of the TS network 
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Table 4.   Parameters of network construction (confidence level 0.4).

S. no No of nodes in 1st shell No of nodes in 2nd shell
Total no of nodes and edges in final 
network (n,e) Clustering coefficient

No of signature genes present in final 
network

1 250 50 (561, 11,230) 0.523 8 out of 12

2 300 100 (672, 16,353) 0.532 9 out of 12

3 500 100 (887, 24,388) 0.534 9 out of 12

4 400 50 (723, 17,556) 0.539 8 out of 12

5 400 100 (775, 20,357) 0.544 9 out of 12



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10662  | https://doi.org/10.1038/s41598-021-90171-0

www.nature.com/scientificreports/

being hierarchical as it shows the presence of modules in our clustering experiment. The graphical representa-
tion of degree distribution P(k) shows that the network is dominated by lower degree hubs than that of higher 
degree hubs. This signifies that the network follows the power law and thus the hierarchical, scale-free, and has 
fractal attributes. The positive value of β suggests that the network carries the assortive mixing specifying that a 
large cluster of degree nodes (formation of the rich club) regulates the TS network.

The centrality measurements correspond to the flow of information in the network and predict the influential 
candidates in the network that play important role in the flow of information in the network. Two such measures 
are betweenness centrality CB(k) and closeness centrality CC(k). The eigenvector centrality CE(k) depicts the 
efficacy of the spreading (receiving) power of information of nodes from the network. These properties obey 
power-law behaviors as follows,

Following the procedure of Clauset et al. (2009), these three centrality measurements are again verified and 
confirmed for their statistical power-law fits. We found that only a few higher degree nodes have large centrality 
values which means that most of the influencing hubs that can control the network are few. Thus, the TS network 
is predominated by the low degree nodes (genes/proteins). It is these low-degree nodes that control the working 
and organization of the network. However, some of the leading hubs that are scarcely distributed might show 
significant involvement in regulating as well as stabilizing the network. Here, the positive values of these centrality 
measurements show that the network exhibits hierarchical scale-free or fractal features.

Thus, the overall topological properties of the TS network show that it self-organizes into a scale-free fractal 
state and is composed of successive interconnected communities which means the network has hierarchical 
organization.

Validation of the biological significance of TS network.  A network that differs significantly from a 
random network could be viewed as containing relevant information, assuming that the comparison with the 
random network is meaningful. Construction of the null model will allow us to assess the significance of the TS 
network features. A null model consists of one network (or a set of networks) that matches a graph under study 
in some structural aspects while being random in all other characteristics. In our study, we constructed two dif-
ferent null random networks of the same size and did the comparative analysis (Table 5).

We can see that the clustering coefficient and the diameter of the random networks drastically decrease in 
comparison to the TS network. The exponents of other topological properties are also different and do not fol-
low the scale-free fractal attributes. The graphical representation of topological properties of TS network and 
random networks as null models is illustrated in Supplementary Figure S6.

Through this comparative analysis, we found that the TS network constructed from the differentially expressed 
genes of TS is exclusively associated with TS and is not by chance and is biologically significant.

Identification of key regulators and properties.  To identify the systematic arrangements and modular 
structure of the TS network at their various levels of the organization, we followed Newman and Girvan’s stand-
ard community finding algorithm29. It was found that the TS network is hierarchically organized through six dif-
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Figure 3.   (a) The behaviours of degree distributions (P(k)), clustering coefficient (C(k)), neighborhood 
connectivity (CN(k)), betweenness (CB(k)), closeness (CC(k)) and eigen-vector (CE(k)) measurements as a 
function of degree k for TS network. (b) Corresponding Hamiltonian Energy (HE) as a function of levels of 
organization. (c) Corresponding modularity QN as a function of levels of organization (d) Variation in the 
calculated average LCP-corr for TS network as a function of network-level. (e) Characterization of top fifty 
leading hubs of the network by degrees. EFNB3 and LCP2 are the key regulators denoted by yellow color and 
THBS1 are the signature gene of T2DM denoted by green color.
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ferent levels. As one moves from top to down level of organization, the corresponding Hamiltonian Energy (HE) 
and modularity QN as a function of levels of the organization are found to be decreased (Fig. 3b,c, respectively).

The proteins that are deeply rooted from top to bottom of the network where the network cannot be further 
divided into sub-community and form motif are said to be the key regulators of the network which serve as the 
backbone of the network organization30. We identified nine key regulators LCP2, PTPN22, CCL22, CXCL5, 
S1PR4, POU2F1, FAM20A, ENAM, and EFNB3 (Fig. 4a) in the TS network. Surprisingly, none of these KR 
genes fall among the categories of the top ten leading hubs. However, two of the key regulators LCP2 and EFNB3 
were among the top 50 high degree hubs (Fig. 3e). Thus, we can say that it is not necessary for these KRs to be 
the large leading hubs in the network, however, their popularities are randomly changed at various levels of 
organization (Fig. 4a,b). Since the network qualifies hierarchical characteristics, the elimination of the leading 
hubs will not cause its breakdown. But it is expected that these KRs, if eliminated, may cause maximum local 
and global perturbations, especially at a deeper level of organization. These perturbations may reach out to the 
deeper levels of organization causing the topological change in the network30.

Few more proteins of the seed genes i.e., CD96, CXCR5, IKZF3, SPON1, KALRN, and BTBD7 reached the 
sixth level but did not form the motif. Thus, they cannot be considered as the KRs. All the KRs maintained a low 
profile/popularity thereby regulating the network till the bottom level of the organization. None of the signature 
genes of T2DM and RM in TS reached the motif level, however, THBS1 and ADAM22 supported the network 
reached till the 5th level. THBS1 was among the top 50 high-degree hub genes. These KRs may propagate signals 
from top to bottom levels and vice versa of the network to maintain network stability and inherent properties. 
These key regulators are deeply rooted in the network, they serve as the backbone of the network for any network 
activities and regulations and could be a possible target gene for this disease control mechanisms.

Since these identified key regulators and the signature genes of TS are expected to play an important role 
in TS, we further explored them by searching the possible microRNAs that could regulate them. We used 
MIENTURNET tool31 which is an interactive web-based tool for microRNA-target enrichment analysis. The 
Supplementary Table S5 presents the MIENTURNET enrichment results of miRTarBase which gives the most 
up-to-date results for validated interactions. We used the p-value cut-off of < 0.05 to get the list of significant 
microRNAs responsible for the regulation of these key regulators and signature genes of TS.

The graphical representation of probability Px
(

yl
)

 of all the key regulatory genes show an increase in Px from 
level 0 till 6th level (Fig. 5). This means the regulating ability of each key gene becomes more important and 
significant at the deeper level of organization.

Evidence of self‑organization: local‑community‑paradigm (LCP) approach.  The TS network was 
analyzed to assess the maintenance of its self-organization at different levels of its organization using the LCP 
technique. We calculated the LCP-correlation of all the communities/sub-communities through six different lev-
els of its organization. The modules/communities having zero LCP-correlation were excluded in average. It was 
found that the average values of LCP-correlation at each level are greater than 0.95 and the values do not change 
with the error bar (Fig. 3d). The LCP-decomposition-plot (LCP-DP) for the main TS network (Level 0) and its 
sub-modules (4 sub-modules at Level 1) are shown in Fig. 6. Based on the nodes and their links of each network 
and its sub-modules we can conclude that the TS network and its sub-modules are more strongly characterized 
by small-local communities and are compact. This shows that the network is self-organized and compact with 
efficient information processing. The TS network represents a strong LCP network which lets us conclude that 
the network is dynamic and heterogeneous which enables network evolution and reorganization. Such architec-
ture assists quick delivery of information across networks both locally and globally.

Status of essential interactions of TS in non‑human systems by integrating the Orthology 
with PPI.  We examined the top hundred genes in each category i.e., degree distribution, betweenness cen-

Table 5.   Comparative analysis of TS PPI network with random networks of the same size.

Properties Main turner syndrome network
Degree preserved random 
network of TS

Random network (Erdos 
Renyi algorithm)

Nodes 775 775 775

Edges 20,357 20,357 20,357

Clustering co-efficient 0.544 0.294 0.068

Network diameter 7 5 3

Network radius 4 3 3

Exponent of average clustering 
co-efficient 0.092 − 0.091 − 0.0645

Exponent of degree distribution − 0.581 − 0.581 0.125

Exponent of neighbourhood 
connectivity 0.346 − 0.0463 − 0.00934

Exponent of betweenness 
centrality 0.436 2.1 2.029

Exponent of closeness centrality 0.0979 0.092 0.084

Exponent of Eigen vector 
centrality 1.357 0.915 1.016
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Figure 4.   (a) Network/modules/sub-modules at different levels which accommodate leading hubs and key 
regulators. (b) Organization of the modules/sub-modules of the TS network.
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Figure 5.   The probability distribution of the KRs as a function of the level.
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trality, closeness centrality, and eigenvector centrality. Eight such genes were identified which were common to 
these categories of Degree distribution and centralities and were also found to be the interacting partners of the 
seed genes in the TS network.

Besides, we identified 9 key regulators in the present study. Based on the assumption that the genes coding 
for the interacting proteins of disease-causing genes are putative, we also included the interacting partners of 
the key regulators of TS in the list (Supplementary Table S6).

Monosomy X, commonly called Turner Syndrome is not only limited to humans but such cases have also been 
reported in many other animal species32. In view of the facts that essential proteins evolve much slower than non-
essential proteins33, we identified the orthologous counterparts of the proteins (Supplementary Table S6) in seven 
different organisms namely, Mus musculus (mice), Rattus norvegicus (Rat), Felis catus (domestic cat), Ovis aries 
(sheep), Macaca mulatta (rhesus macaque), Gorilla Gorilla (Gorilla), and Homo sapiens (Human) in our study.

Animal models are important in generating gain- and loss-of-function mutations of a syndrome/disease 
and have produced significant insights. In the case of TS, however, no animal models have been generated that 
exactly models it. In this study, we analyzed the status of essential interactions of TS in non-human systems by 
integrating the orthology with PPI. If two proteins physically interact in one species and they have orthologous 
counterparts in another species, it is likely that their orthologs interact in that species too. Such conserved inter-
actions are called interologs which are of significant value in comparative genomics.

So, the conserved interactions (interologs) were analyzed in these organisms (mentioned above). It was 
observed that only 18 protein–protein interactions involving 3 motifs (Table 6, seed genes highlighted in bold, 
Fig. 7) remained conserved in all organisms. Of these 18 interologs, 10 of them include the interaction of seed 
genes or key regulators with their neighbor which emphasizes their essential role in a living system. Their loss or 
gain of function may somehow affect the physiology of an individual which may result in the loss of an essential 
function. Therefore, apart from the identified key regulatory genes, we expect that these predicted interologs too 
might play a major role in the pathophysiology of TS. It is a matter of research for further insights. The animal 
models studied here might prove to be useful in illuminating the biological functions of these genes and the 
pathophysiology of TS associated with these genes. Clearly, this study does not conclude that these non-human 
animals are complete models for Turner syndrome as TS involves many genes. However, this is a powerful 
approach that can be used to select an appropriate model to study human disease.

Thus, such types of studies may identify gene targets for drug therapy of these individual pathologies in the 
general population and the animal models generated may prove useful in the validation of such targets.

Discussion
TS is a consequence of a partial or total loss of the X chromosome which results in the onset of highly variable 
clinical features. Surprisingly, our knowledge of genotype–phenotype relations in TS is rather inadequate where 
very few specific candidate genes are linked to its clinical features. In this study, we used an integrative network-
based approach to extract the information from the microarray datasets of TS. The study presented here is only 
a subset of the types of information that these data sets can yield, which requires additional future analyses to 
provide further insights.

It is expected that the causative factors of T2DM and RM in TS are different from that of traditional risk 
factors in the general population. We found out nine genes of T2DM namely, SLC29A2, THBS1, GPRC5B, 
CSHL1, ADAM22, IGHM, WIZ, IGHD, and COX11, and three genes of RM namely, ATXN7L1, UBE3B, and 

Table 6.   Essential PPI interactions in TS network.

S. no Conserved interactions (interologs) Genes forming motifs (conserved motifs)

1 ITK-GRAP2

ITK, GRAP2, LCP22 ITK-LCP2

3 GRAP2-LCP2

4 LCP2-FYB

RPL12, RPS27A, GNB2L15 EFNB3-EPHB1

6 EFNB3-EPHA4

7 ENAM-FAM20A

RPS23, RPS27A, GNB2L18 ENAM-AMELX

9 KRR1-FBL

10 FBL-RPS23

RPS23, RPL31, GNB2L111 RPS23-GNB2L1

12 RPS23-RPL31

13 GNB2L1-RPL31

14 RPS23-RPS27A

15 RPS27A-GNB2L1

16 RPL12-GNB2L1

17 RPL12-RPS27A

18 JUN-CREB
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FANCM in TS. We call these genes as “signature” genes of T2DM and RM in TS. Previously reported studies 
were found to show the involvement of these genes in these conditions. The SLC29A2 gene which encodes the 
protein ENT2 (Equilibrative Nucleoside Transporter 2) has been proved sensitive to dysregulation in diabetes 
and acts as a target of insulin signaling34. It is known that dysfunction of pancreatic β-cell plays a critical role 
in the development of T2DM. In one of the studies, thrombospondin 1 (THBS1) has been found to play a 
crucial role in β-cell survival during lipotoxic stress in rat, mouse, and human models which suggests this to be 
an interesting therapeutic target to prevent oxidative stress in T2DM35. In another study, it was proposed that 
with the increase in expression of GPRC5B (G Protein-Coupled Receptor Class C Group 5 Member B) there 
is a reduction in insulin secretion and β-cell viability in T2DM36. Thus, GPRC5B too might prove to be a novel 
target for the prevention of T2DM. The human GH/CSH genes (CSHL1 being one of them) regulates growth 
and are involved in fetal and adult glucose metabolism. This could act as a good target for gestational diabetes 
and diseases related to insulin resistance37,38. ADAM22 (ADAM metallopeptidase domain 22) was found to be 
a potential target in insulin-resistant (IR) subjects, identified through an integrative miRNA–mRNA microarray 
and network approach in adipose tissue of IR and insulin-sensitive (IS) individuals39. A decreased expression of 
OXPHOS (oxidative phosphorylation) genes which included COX11 (Cytochrome c oxidase assembly protein 
COX11) from pancreatic islets of T2DM patients was found in one of the studies which may lead to impaired 
insulin secretion40. Similarly, FANCM, identified to be the signature gene of RM in the present study is a DNA-
damage response gene. FANCM protein was better expressed in pachytene cells where meiotic recombination 
occurs41. Therefore, any mutation or structural change in FANCM is expected to provoke meiotic defects result-
ing in DNA damage. The accumulation of such errors may ultimately lead to cell death. Thus, a change in the 
expression level of FANCM may result in pregnancy loss. While many of these identified signature genes already 
have a background for the respective co-morbidity that we are studying here, some of them still are bereft of 
literature. Thus, they could further be studied to get a better insight into their role in TS.

As of now, in the turner population, the relationship between T2DM and RM has not been thoroughly iden-
tified. In the context of interacting genes coding for disease-causing putative proteins, we found that FANCM 
and its interacting partner participate in the DNA repair pathway and Fanconi anemia pathways (also involved 
in DNA repair). The Fanconi anemia pathway repairs DNA interstrand crosslinks in the genome. Interestingly, 
one of the interacting partners of FANCM (signature gene of RM) is FANCL which is the interacting partner 
of GPRC5B (signature gene of T2DM) in the TS PPI network. The association between DM (Type 1 and 2) and 
DNA damage is well recognized42,43 but very little is known about DNA damage in pregnancy, particularly when 
pregnancy is complicated by pre-gestational or gestational diabetes mellitus44.

By analyzing the proportions of chromosomes involved, it was observed that it is not just the genomic 
imbalance of the genes lying on the deleted pseudoautosomal regions of the X chromosome, but the additive 
influences of the associated genes located on autosomal chromosomes as well, that may be responsible for TS 

G. gorilla

H. sapiens

M. mulatta

 O. aries

F. catus

R. norvegicus

M. musculus

Conserved Protein-Protein Interactions (Interologs)

RPL31

ITK

POU2F1

AMELX FAM20A

ENAM

CARS

RPS23

EARS2

CREB1

JUN

CXCL13

S1PR4

EFNB3

EPHB1

EPHA4

EFTUD2

RPL12

NHP2L1

FBL

RPS27A

KRR1

FYB

LCP2

GRAP2

GNB2L1

PTPN22

RPS27A

RPL12JUN

RPL31

NHP2L1

GNB2L1

RPS23

AMELX

ENAM

CARS

CREB1

EARS2

EFNB3

EPHB1EPHA4

EFTUD2

FAM20A

FBL

KRR1

FYB

LCP2

GRAP2

ITK

AMELX

ENAM

CREB1

JUN

EFNB3

EPHB1EPHA4

EFTUD2

RPS23

GNB2L1

FAM20A

FBL

KRR1

FYB

LCP2

RPL12

RPL31 RPS27A

GRAP2

ITK

FYB

LCP2
RPS23

GRAP2

GNB2L1

CREB1

JUN

RPL31

EFNB3

ITK

EPHB1EPHA4

RPL12

FBL RPS27A

KRR1

AMELX FAM20A

ENAM

LCP2

GRAP2

ITKPTPN22

AMELX

ENAM

C-JUN

RPS27A

CREB1

EARS2

RPL31

EFNB3

EPHB1EPHA4

EFTUD2

GNB2L1

RPL12

RPS23

NHP2L1

FAM20A

FBL

KRR1

FYB

RPS27A

RPS23

KRR1

FYB

LCP2

GNB2L1RPL12

RPL31

GRAP2

ITK

OASL

AMELX

ENAM

CARS

EARS2

CREB1

JUN

EFNB3

EPHB1EPHA4

EFTUD2

NHP2L1

FAM20A

FBL

Epha4

Eftud2

Gnb2l1

Rps23

Nhp2l1

Fbl

Krr1

Fyb Grap2

Lcp2

Rpl12

Rps27a

Rpl31

Itk

Ptpn22

Pou2f1

Amelx Fam20a

Enam

Creb1

Jun

Cxcl13

S1pr4Efnb3 Ephb1

Amelx Fam20a

Enam

Cars

Rpl31

Rps23
Creb1

Jun

Cxcl13

S1pr4

Ears2

Efnb3 Ephb1

Epha4

Eftud2

Nhp2l1

Fbl

Rps27a

Krr1

Fyb Grap2

Lcp2

Gnb2l1

Rpl12

Itk

Pou2f1

Figure 7.   Interologs in the network from lower to higher organisms. Nodes in yellow are seed genes and nodes 
in red are seed genes that are the key regulators. Nodes in green are the interacting partners of seed genes.
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phenotype. The developmental transition from fetus to adult requires gene expression changes that help in this 
transition. When a fetus carries a partial or a total loss of the X chromosome, there is a disturbance in the gene 
expression as compared to a normal fetus. We identified a list of genes that changed their expression pattern in 
transition from TS fetus to TS adult. It is expected that when these genes are activated in adult or fetal tissues 
in an altered fashion, this may hinder the developmental processes. While it cannot be explained what causes 
these fluctuations and how these fluctuations affect the phenotype of Turner patient, this would shed light on a 
new aspect which requires future insights.

Though the TS network shows a weak hierarchy, it exhibits system-level organization involving modules/com-
munities which are interrelated. Being hierarchical means that there is no significance of individual gene activities 
rather they work in synchronization to regulate the network. The leading hubs (high degree genes) present in the 
network play important functions by integrating the lower degree nodes for organizing and regulating activities 
like inter and intra crosstalk among various other essential genes and thereby maintains network stability and 
adjusts its signal processing. Of all the seed genes, we identified nine key regulators, namely LCP2, PTPN22, 
CCL22, CXCL5, S1PR4, POU2F1, FAM20A, ENAM, and EFNB3 which influences network/module regulation 
and maintains the network stability working as its backbone till the last level. These key regulators could be a pos-
sible therapeutic target gene for TS. Earlier it has already been established that PTPN22 polymorphism is related 
to autoimmune disease risk in patients with Turner syndrome45. Surprisingly, only two of the key regulators i.e., 
LCP2 and EFNB3 were among the top 50 high degree hubs. Thus, it is not necessary for the leading hubs to be 
the key regulators in the network, their popularity can change randomly at different levels of an organization. All 
the KRs maintained a low profile/popularity thereby regulating the network till the last level of organization. The 
regulating ability of KRs is more significant at the deeper level of the organization. The network exhibits fractal 
nature because its topological properties obey a power law, and a strong LCP is also maintained which means 
that networks are dynamic and heterogeneous. This indicates that the network maintains self-organization and 
is compact and has effectual processing information.

Essential evolutionary proteins being more conserved are expected to frequently interact with each other. 
Based on this fact, we found 10 important interologs (evolutionarily conserved protein–protein interactions) 
involving the interaction of seed/key genes and their neighbor in TS and 3 motifs in 7 different organisms from 
lower to a higher level. We considered these non-human systems because the cases of monosomy X have already 
been reported in these organisms46–51. However, in the case of TS, no animal models have been generated that 
exactly models it. Therefore, as there is a great lack of non-human models to study TS, our findings through 
orthologous study update current models of TS, thereby giving a bit clear picture of the interologs which are 
functional in other lower to a higher level of animal models.

Taken together, these results offer few key regulators and essential genes that may act as therapeutic targets 
for TS in the future. Although this study uncovers many aspects of TS, there are many limitations such as limited 
sample size and heterogeneity of the datasets used in this study. As no two turner patients are identical, every 
Turner is unique with respect to its genotype-phenotype. The currently available datasets do not allow a more 
elaborated study at this moment. Thus, a larger sample size would provide a more elaborate result. Another 
limitation of our study is that we did not use the adjusted p-value for multiple comparisons, rather we used the 
p-value cut-off < 0.05 (nominal testing) to select maximum number of DEGs of Turner Syndrome. Also, the 
co-morbidities studied here are heterogeneous in nature and there may be other factors too that may contribute 
to their occurrence. Despite these biological limitations, our computational approach and the results offer a 
comprehensive picture, elucidating the KRs of TS using network biology and demonstrating the importance of 
animal models in TS, which helps explore and understand different aspects of this syndrome.

Methodology
Retrieval of microarray data (TS, T2DM, and RM).  Widely accessible gene expression datasets related 
to Turner Syndrome (TS), Type 2 Diabetes Mellitus (T2DM), and Recurrent Miscarriage (RM) of Homo sapiens 
were obtained from the Gene Expression Omnibus (GEO) database of NCBI52. Studies evaluated on Affymetrix 
human gene expression dataset containing samples from both normal and diseased tissues of women were taken. 
For TS, we retrieved GSE46687 deposited by Bondy et al. and GSE5843553. For T2DM, we retrieved GSE2334354 
and GSE2572455. And in the case of RM, we retrieved GSE2249056 and GSE2678757. Before finding the differ-
entially expressed genes, these datasets were pre-processed to remove the noise of obscure variations of these 
data to make them cross-comparable. Normalization is a key step in the process of pre-processing to remove 
such variations in the data. In this study, we used MAS5 algorithm58 which is sensitive and selective for identi-
fying differentially expressed genes. MAS5.0 combines the signals from the multiple Perfect-Match (PM) and 
Mismatch (MM) probes that target each transcript into a single value that sensitively and accurately represents 
its concentration by calculating a robust average of the (logged) PM-MM values. After normalizing the datasets, 
the differentially expressed genes were identified through GEO2r by filtering the genes based on Log2FC and 
P-value.

Differentially expressed genes of TS, T2DM, and RM.  We performed the comparison on normal vs. 
disease samples in each GEO dataset to identify differentially expressed genes (DEGs). We identified these DEGs 
through the online program, GEO2R59, which is based on limma R package60. We chose the “P value < 0.05” and 
“|logFC|≥ 0.5” as the primary cut-off criteria to interpret the results. In each category (i.e., TS, T2DM, and RM), 
only those DEGs that satisfied the cut-off criteria in both its datasets were considered as the significant DEGs. To 
obtain the list of overlapping DEGs, we used Venny 2.1.0, an online tool that can calculate the intersection(s) of 
listed elements. The enriched functions and biological pathways involved with these DEGs were identified using 
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DAVID (The Database for Annotation, Visualization and Integrated Discovery) online server61 and REAC-
TOME pathway browser62.

Protein–protein interaction network construction of TS and their topological properties.  To 
analyze the interactive associations among the DEGs at the protein level, genes obtained from the TS were 
mapped on protein–protein interaction (PPI) data using STRING database63 to construct the TS PPI network 
with a medium confidence score with 400 nodes in 1st shell interactors and 100 nodes in 2nd shell interactors so 
that more number of seed genes make into the network. The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database aims to integrate comprehensive PPI data available from different databases for a 
large number of organisms from published literature with experimental information. The network was visual-
ized in Cytoscape 3.464. These DEGs are said to be the seed genes. The structural properties of complex networks 
are characterized through the behaviors of their topological parameters. The topological properties of the TS 
network were calculated by Network Analyzer and CytoNCA65 in Cytoscape. The topological properties ana-
lyzed in the present study are described below.

Degree distribution.  In a PPI network, the number of contacts a node/protein has with other nodes/proteins 
are said to be its degree and the probability distribution of these degrees over the entire network is the degree 
distribution. The networks whose degree distributions approximately follow a power law: P(k) ~ k−γ, where γ is a 
constant are termed as scale-free networks and appear linear in a log–log plot. Depending on the value of γ the 
networks are said to be hierarchical which further specifies the importance of hubs or modules in the network66. 
The concept of a scale-free network is used to separate biological networks from random networks, which fol-
low a Poisson distribution. For a PPI network defined by a graph G = (N, E), where N and E are the number of 
nodes and edges respectively, the probability of degree distribution (P(k)) is the ratio of the number of nodes 
with degree k to the network size.

where nk is the number of nodes having degree k and N is the total number of nodes in the network. P(k) indi-
cates the importance of hubs or modules in the network.

Neighborhood connectivity.  In a PPI network, when a node/protein ‘n’ forms an association with its neighbor 
nodes/proteins, the average number of neighbors of all the nearest neighbors of this node ‘n’ is said to be its 
Neighborhood connectivity67. In the network (CN(k)) Neighborhood connectivity is given by,

where, P(qk ) is the conditional probability that a connection belonging to a node with connectivity k points to a 
node with connectivity q. The positive power dependence of CN(k) indicates assortivity in the network topology.

Clustering co‑efficient.  In a PPI network, the clustering coefficient represents the measure and strength of how 
connected the neighbors of a given node are in that network. It measures the tendency of a node to form a clus-
ter. Identifying these modules/communities is significant because they can ultimately reflect functional modules 
and protein complexes. When applied to an entire network, the clustering coefficient is its average over all the 
nodes in the network. It is calculated by the ratio of the number of its nearest neighborhood edges ei to the total 
likely number of edges of degree ki. For an undirected network, the clustering co-efficient (C(ki)) of ith node can 
be calculated by,

Betweenness centrality.  Betweenness centrality (CB) of a node in a PPI network measures the degree of infor-
mation flow in the network. It is the capacity of a protein/node to monitor communication between other pro-
teins/nodes in a network68,69. If dij (v) indicates the number of geodesic paths from node i to node j passing 
through node v, and dij indicates the number of geodesic paths from node i to j, then betweenness centrality 
(CB(v)) of a node v can be calculated by,

Closeness centrality.  Closeness centrality (CC) measures how fast the flow of information is from a node to 
other nodes reachable from it in the network70. Therefore, it shows how close a node ‘n’ is to all other nodes in 
a network. CC of a node i is the reciprocal of the mean geodesic distance between the node and all other nodes 
connected to it in the network and is given by,
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where dij represents the geodesic path length from nodes i to j, and n is the total number of vertices in the graph 
reachable from node i.

Eigenvector centrality.  In a PPI network, eigenvector centrality is a tendency of a node to enable the informa-
tion to spread in a network. It measures the significance of a node while considering the significance of its 
neighbors. The main idea behind eigenvector centrality is that connections from significant nodes are more 
important than connections from unimportant nodes. Eigenvector centrality of a node i (CE(i)) in a network is 
proportional to the sum of i’s neighbor centralities71, and it is given by,

where nn(i) indicates the nearest neighbors of nodes i in the network. λ is eigen value of the eigenvector vi is 
given by, Avi = λvi where A is the adjacency matrix of the network (graph).

Validation of the biological significance of TS network.  It is said that scale-free networks are robust 
against random removals of nodes because most nodes are poorly connected, and they play relatively unim-
portant roles in organizing the global network structure. The TS PPI network constructed in this study follows 
scale-free features and consists of 775 nodes and 20,357 edges. To check whether a similar network would arise 
if a random set of genes of the same size as the TS DEG-set are used as "seeds," or whether the topology of the 
resulting network would be obtained by randomly sampling the STRING-db, we constructed the null random 
networks of the same size and did the comparative analysis. In our study, we constructed the random networks 
through Network Randomizer App72 in Cytoscape considering two different scenarios:

•	 randomization of the constructed TS network by Preserving the Degree.

Through Network Randomizer, we first randomized the TS network by preserving the degree of each node. 
The degree preserving shuffling algorithm permits to randomize the current network considering the degree 
of each node. This means that in the randomized network, a node will have the same number of neighbors, but 
they can be different.

•	 construction of a random network of the same size through the Erdős and Rényi algorithm.

Next, we generated a random network with 775 nodes and 20,357 edges using an Erdös–Rényi model73 in 
which for each pair of nodes, a link was inserted with independent probability. We used the G (n, M) model to 
construct the uniform random graph where n is the number of nodes and M is the number of edges.

We then did the comparative analysis of these random networks with the main TS network.

Community detection: leading eigen‑vector method and tracing of the genes.  The constructed 
PPI network is divided into discrete layers of hierarchy. Each layer or tier describes its activity which altogether 
defines the modular nature, properties, and organizing principle of the hierarchical network. We used the Lead-
ing Eigen Vector method (LEV)74,75 to detect the communities of the network in R from package ‘igraph’76 in this 
study. The LEV method calculates the eigen value for each connection, demonstrating the importance of each 
connection, not nodes. The modules were detected from the main network, then from the sub-modules of the 
modules, at each level of hierarchy to finally obtain the motif. The seed genes were then traced at each level of 
organization in various modules/sub-modules obtained from clustering. The genes reaching the motif level (last 
level) are the main drivers of the TS network that helps in its regulation. We consider these genes as the most sig-
nificant and influential ones within the network and call them the key regulators of the network. The Probability 
Px
(

yl
)

 of KR was then calculated to recognise the regulating ability of each of these KRs in the TS network,

where x is the number of edges y[l] at level l and E[l] is the total number of edges of the network/ modules/
sub-modules.

Distribution of energy in the network: Hamiltonian energy calculation.  Each level of the network 
is organized and maintained due to a certain level of energy. This energy is measured at each level using Hamil-
tonian Energy (HE) within the formalism of Constant Potts Model77,78. HE calculates the energy distribution at 
the global level as well as at the modular level. HE of a network or module or sub-module can be calculated by,
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where ec and nc are the number of edges and nodes in a community ‘c’ and γ is the resolution parameter acting 
as an edge density threshold which is set to be 0.5.

Local‑community‑paradigm (LCP) approach: compactness of the network.  LCP-Decomposi-
tion Plot (LCP-DP) is a method to characterize the topological self-organization of a network as a local-commu-
nity-paradigm (LCP). It is used to study the effect of LCP on network topology. It is a function of the common 
neighbors (CN) index and local community links (LCL) of each pair of interacting nodes in the network. This 
approach gives information on the number, size, and compactness of the communities in a network79. The CN 
index between two nodes x and y is the measure of overlapping between their sets of first node neighbors S(x) 
and S(y) given by, CN = S(x) ∩ S

(

y
)

 . A significant amount of overlapping indicates a possible likelihood of 
interaction of these two nodes. Therefore, an increase in CN represents the increase in compactness of the net-
work representing its faster information processing abilities. Further, the LCLs between the two nodes x and y, 
whose upper bound is defined by, max (LCL) = 1

2
CN(CN − 1) , is the number of internal links which is strongly 

inter-linked in local-community (LC). These two nodes most probably link together if CN of these two nodes is 
members of LC79. LCP-DP has a linear dependence between CN and 

√
LCL.

The LCP correlation (LCP-corr) is the Pearson correlation co-efficient between the variables CN and LCL 
defined by

with CN > 1, where cov(CN, LCL) is the covariance between CN and LCL, σCN and σLCL are standard deviations 
of CN and LCL, respectively.

Status of essential interactions of TS in non‑human systems by integrating the Orthology 
with PPI.  A positive relationship exists between essentialities (essential proteins) and topological proper-
ties (centralities) of the proteins in PPI networks. Therefore, a series of network topological features based on 
centrality measures have been used to recognize essential proteins. The properties considered in this study are 
Degree Distribution, Betweenness Centrality, Closeness Centrality, and Eigenvector Centrality. The proteins of 
the TS network were graded in terms of these topological properties (top 100 in each category). These ranking 
scores were then used to predict whether a protein is essential or not. Further, the interacting partners of the seed 
genes/proteins were also identified in the TS network. The interacting partners of seed genes/proteins that were 
common to all these four properties were considered essential.

In this study, we predicted the essential proteins in the TS network by integrating the orthology with the 
PPI network of TS. The essential proteins are more evolutionarily conserved than non-essential proteins and 
they frequently interact with each other. To identify the conserved interaction of the TS network, the selected 
interactions were analyzed in 7 different species namely, Mus musculus (mouse), Rattus norvegicus (Rat), Ovis 
aries (sheep), Felis catus (domestic cat), Macaca mulatta (rhesus macaque), Gorilla Gorilla (Gorilla), and Homo 
sapiens (human) (lower to higher-level organisms). For this, information on orthologs of selected proteins was 
taken from Version 8 of the InParanoid database (an ortholog database)80 and Orthodb v10.181. Then the net-
works of the selected organisms were constructed considering these essential interacting proteins as seed genes 
for the analysis of the conserved interactions from the STRING database with a 0.7 confidence score to get high 
confidence interactions.
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