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Network-based analysis of key
regulatory genes implicated in Type
2 Diabetes Mellitus and Recurrent
Miscarriages in Turner Syndrome

Anam Farooqui', Alaa Alhazmi?, Shafiul Haque?, Naaila Tamkeen®,
Mahboubeh Mehmankhah?, Safia Tazyeen?, Sher Ali* & Romana Ishrat*™

The information on the genotype—phenotype relationship in Turner Syndrome (TS) is inadequate
because very few specific candidate genes are linked to its clinical features. We used the microarray
data of TS to identify the key regulatory genes implicated with TS through a network approach. The
causative factors of two common co-morbidities, Type 2 Diabetes Mellitus (T2DM) and Recurrent
Miscarriages (RM), in the Turner population, are expected to be different from that of the general
population. Through microarray analysis, we identified nine signature genes of T2DM and three
signature genes of RM in TS. The power-law distribution analysis showed that the TS network carries
scale-free hierarchical fractal attributes. Through local-community-paradigm (LCP) estimation we find
that a strong LCP is also maintained which means that networks are dynamic and heterogeneous.

We identified nine key regulators which serve as the backbone of the TS network. Furthermore,

we recognized eight interologs functional in seven different organisms from lower to higher levels.
Overall, these results offer few key regulators and essential genes that we envisage have potential as
therapeutic targets for the TS in the future and the animal models studied here may prove useful in the
validation of such targets.

The medical systems and scientists throughout the world are under an unprecedented challenge to meet the
medical needs of much of the world’s population that are suffering from chromosomal anomalies. As there is no
cure for such anomalies, early detection and specific interventions are likely to be the key aspect of economically
efficient and high-quality healthcare systems. Turner Syndrome (TS), also known as monosomy of X, is one
such chromosomal disorder where there is a complete or partial deletion of an X chromosome in all or some
of the somatic cells"?, usually due to sporadic chromosomal non-disjunction. TS is the only chromosome that
represents haploinsufficiency compatible with life in less than 1% surviving pregnancy®. The reason why some
TS fetuses are miscarried while others make it through pregnancy without many complications is still unknown.
The most likely reason for the TS fetus’s survival may be the level of mosaicism that enables them to remain alive
and develop. It has been reported that about 50% of T'S patients have haplotype 45, X, while about 20-30% have
mosaicism where 45, X cell line is accompanied by one or more other cell lines having a complete or structurally
abnormal sex chromosome (X or Y)*°. Some of the distinctive symptoms of TS include short height, webbed
neck, low hairline at the back of the neck, low-set ears, markedly elevated levels of follicle-stimulating hormone
(FSH), chronic otitis media (OM), lymphedema of extremities, small mandible, and multiple pigmented nevi®.
TS is often accompanied by many other co-morbidities like autoimmune diseases (AD), hypothyroidism, kidney
dysfunction, loss of ovarian function or other reproductive disorders, neurological or ophthalmological abnor-
malities, osteoporosis, diabetes mellitus (DM), dyslipidemia, recurrent miscarriages (RM), hypertension, and
heart disease’"'2. Since TS is non-heritable and no good animal model is available, this further complicates its
status’. Therefore, the causal genes of TS co-morbidity are still unstated.

The prevailing theory of gene dosage imbalance due to the loss of an X chromosome is not enough to justify
this burden of co-morbidity which has worsened the living circumstances of these patients. Two such acquired
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co-morbidities of TS which is the focus of our present work are Type 2 Diabetes Mellitus (T2DM) and Recur-
rent Miscarriages (RM). Even though T2DM and RM seem to be extremely frequent, there is a void of literature
related to them.

Reports suggest that the prevalence of T2DM occurs at any age group in life. Some studies suggest that
impaired beta-cell function or reduced insulin sensitivity may be the causal factor for T2DM in TS, The latest
clinical practice guidelines for TS states that glucose intolerance and T2DM prevalence in TS is 15-50% and 10%,
respectively; nevertheless, the frequency of TIDM is yet to be determined’. It is expected that the factors that
trigger T2DM in TS are different from that of the traditional risk factors of T2DM in the general population. It
is currently believed that Xp haplotype gene deficiency may be the reason for the high incidence rate of T2DM
in the TS population which may lead to impaired p-cell function. Further, overexpression of some genes of
Xq may worsen the condition. Whilst these factors may account for T2DM in TS, the exact reason and the key
genes involved remain obscure.

Another distinctive feature of TS is ovarian failure which renders the TS women infertile in most cases.
However, in a few of the TS cases i.e. 5-10%, spontaneous puberty occurs of them only 2-5% become pregnant
spontaneously'®. These pregnancies are at high risks and must be followed up carefully. Recurrent miscarriages
are defined as two or more successive pregnancy losses before 22 weeks of gestation. It has been assessed that
RM occurs in 0.5-5% of all reproductive-age women'’, however, this rate is higher in turner’s population'®.
Despite worthy studies that have ascribed the increased risk of miscarriage in TS patients to small uterine size
and reduced endometrial thickness and receptivity'®", little is known about it at the genomic level. Therefore,
such genetic alterations leading to the enhanced risk of RM in TS women must be evaluated.

Many studies have shown that impaired glucose tolerance, diabetes mellitus and Insulin Resistance (IR)
have somehow been responsible for adverse reproductive/pregnancy outcomes, including infertility and
miscarriages®®?'. However, there is little information and data to verify this claim. Since the data claims that in
the general population, T2DM and RM may somehow be associated, we expect a similar scenario in the case of
the TS population.

The molecular components of a human cell are functionally interdependent which means that a disease or a
syndrome is a consequence of the perturbations of the complex intracellular and intercellular interactions. With
the advancement in the field of Network biology, many potential disease genes and their better drug targets have
been identified. The emerging tool of Network medicine has important applications to systematically explore
drug targets, biomarker/key genes of the network through the identification of disease modules and pathways,
thus providing improvements in the diagnosis, prognosis, and treatment of complex diseases**~%. In our study,
the proposed network protocol not only provides a global analysis of the TS proteins but also presents a detailed
view on specific proteins and their association with the specific co-morbidities i.e., T2DM and RM. The current
research also sheds light on few key genes, pathways, and some interologs which can be targeted to offer better
interventions for TS along with its associated co-morbidities.

Results
The workflow of the whole integrative network-based approach followed in this study is illustrated in Fig. 1. The
figures in this study were drawn in Adobe Illustrator CS6.

Differentially expressed genes (DEGs) of TS.  The information regarding the datasets pertaining to the
microarray series used in the study is listed in Table 1. The box plots for the normalized data sets are illustrated
in Supplementary Figures S1-S3. Only those DEGs that surpassed the cut-off criteria of “P-value <0.05” and
“|logFC|>0.5” in both the series of each category were considered as the significant DEGs. We did not use the
adjusted p-value for multiple comparisons, rather we used the p-value cut-off<0.05 to select the maximum
number of DEGs of Turner Syndrome and then proceeded with the network construction. The DEGs of each
dataset that surpassed the cut-off criteria are listed in Supplementary Table S1. A total of 355 genes were found
to be differentially expressed in TS, of them 239 genes were upregulated, and 116 genes were downregulated
(Supplementary Figure S4A). These genes were used to construct the PPI network to get the elaborated view in
terms of protein-protein interactions in TS.

Signature genes of T2DM and RM inTS.  Here, we adopted an integrative approach for the meta-anal-
ysis of multiple gene expression profiles of TS and its comorbidities i.e., T2DM and RM, specifically. Using the
same cut-off criteria, a total of 185 genes were found to be differentially expressed in T2DM, of them 138 genes
were upregulated, and 47 genes were downregulated (Supplementary Figure S4B, Supplementary Table S2). And
in the case of RM, 112 genes were found to be differentially expressed, 42 of them were upregulated, and 70 genes
were downregulated (Supplementary Figure S4C, Supplementary Table S3). On overlapping these sets of DEGs,
9 genes were found to be common with TS and T2DM and 3 genes were common with TS and RM (Fig. 2a).
We call them the “Signature Genes” that may be responsible for T2DM and RM in TS. These signature genes are
listed in Table 2. The values of the fold change and p-value of the DEGs and the signature genes of TS, T2DM,
and RM are listed in the Supplementary Tables.

Association between T2DM and RM in TS through pathway analysis. The pathway enrichment
and functional enrichment was analyzed for all the DEGs of TS along with their interacting partner. We found
that the DEGs were significantly enriched in many biological, cellular, and molecular functions as well as some
pathways (Table 3). Most of these genes are enriched in protein binding, ATP binding, RNA binding, and trans-
lational processes. Supplementary Figure S5 illustrates the involvement of different pathways in TS. Further-
more, in the current study, we evaluated the association between RM and T2DM in TS. For this, we selected the
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Figure 1. Illustration of the workflow of the integrative network-based approach of our study.

Geo accession | Platform | No. of probes | No. of samples (control/disease) | Sample type Organism
(A) Turner Syndrome

GSE46687 GPL570 54,675 36 samples (10/26) peripheral blood mononuclear cells | Homo sapiens
GSE58435 GPL570 54,675 10 samples (5/5) Second trimester amniotic fluid Homo sapiens
(B) Type 2 Diabetes Mellitus

GSE23343 GPL570 54,675 17 samples (7/10) Liver tissue Homo sapiens
GSE25724 GPL96 22,283 13 samples (7/6) Pancreatic islets Homo sapiens
(C) Recurrent Miscarriage

GSE22490 GPL570 | 54,675 10 samples (6/4) Placenta Homo sapiens
GSE26787 GPL570 54,675 15 samples (5/10) Endometrium Homo sapiens

Table 1. Microarray datasets of (A) Turner Syndrome (B) Type 2 Diabetes Mellitus (C) Recurrent Miscarriage.

Scientific Reports |

(2021) 11:10662 |

https://doi.org/10.1038/s41598-021-90171-0

nature portfolio




www.nature.com/scientificreports/

P<0.05 min row expression mm JWEE max row expression

[log2(FC)| > 0.5

GENE NAME
TREML1

3 DEGs 2 DEGs

RM
107 DEGs

Percentage of DEGs
I
Y

A Y
AN

Ao iroo Ry
AN

AN

]
=)
©
N
S
N
=R
N
N
N
@
x
<

1234567289101

11213141

3

1

o

1
Chromosome No.

[b] [c]

Figure 2. (a) Signature genes of T2DM and RM in TS. (b) The percentage of genes on each chromosome that
was differentially expressed in TS at the significance threshold “P-value <0.05” and “|logFC|=0.5”. (c) The heat
map showing the change in expression of the DEGs from TS fetus (GSE58435) to TS adult (GSE46687).

1 SLC29A2 11q13.2 Upregulated Upregulated
2 THBS1 15q14 Upregulated Upregulated
3 GPRC5B 16p12.3 Upregulated Upregulated
4 CSHL1 17q23.3 Upregulated Upregulated
5 ADAM?22 7q21.12 Upregulated Upregulated
6 IGHM 14932.33 Upregulated Upregulated
7 WIZ 19p13.12 Upregulated Upregulated
8 IGHD 14932.33 Upregulated Upregulated
9 COX11 17q22 Downregulated | Downregulated
(S0 e el [ il Grmid |
1 ATXN7L1 7q22.3 Upregulated Upregulated
2 UBE3B 12q24.11 Upregulated Upregulated
3 FANCM 14q21.2 Downregulated | Downregulated

Table 2. List of signature genes of T2DM and RM in TS.
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Go term

‘ Total no. of genes involved from the list | Seed genes present

P-value

Molecular function

Protein binding

403

ZNF703, ZNF24, ZKSCAN3, ZFYVE27, ZFHX3, ZBTB17,
ZBTB10, YTHDC2, XPO5, WWOX, WRNIP1, WIZ, WBP2,
VPS37B, USP22, UBE2Z, TYRP1, TTC23, TSPAN2, TPM1,
TOPORS, TOB2, TNXB, TMEM8A, TMEM67, THY1,
THBS1, TBX5, TAF1C, SYNE2, SYNCRIP, STMN2, STK16,
STAT2, STAT1, SRGAP2, SRC, SPON1, SPG7, SOX2, SOX13,
SOCS3, SNRPN, SMYD2, SLC9A9, SFI1, SETDBI1, SEPT6,
RYK, RPL31, RPH3AL, RAB3IP, PXN, PTPN22, PPP6R2,
POU2F1, POSTN, POGK, PMEPA1, PKHD1, PKD1,

PHF1, PEX3, PDLIM5, PDE4DIP, PCNX4, PBXIP1, PBX2,
PAPOLA, OLFM1, OCIAD1, NR4A1, NPC1, NIPSNAPI,
NFATC3, NFATCI1, NF2, NEK8, MKL1, MAPT, MAPK1,
MAGEC2, LRR1, LIFR, LGALS3, LCP2, LAPTM4B, KRR1,
KRAS, KMT2A, KIF1C, KCNJ15, JRK, ITPR3, ITIH4, IL23A,
IL1R2, IKZF3, IGHM, IFT27, HSPA1L, HIPK2, HIPK1,
HFE, HEXIM1, HBB, GUCY1A3, GSE1, GOPC, GNAS,
GADD45B, FOXN3, FOXKI1, FLT1, FKBP8, FGFR10P2,
FBLIM1, FANCM, FANCC, FAM20A, FAM161A, FAF1,
ETVe6, ETS2, ENO2, ENAM, EDC3, DYRK1A, DTNA,
DOTIL, DGKZ, DCAF8, CXCR5, CUL9, CRTC2, CNOT2,
CEP152, CELF1, CEACAM1, CDK15, CDC34, CASP2,
CASK, CARS, CACNG2, BICD1, BCL6, BCL2L1, BAZ2A,
ATXN7L1, ATF6B, ASXL1, ARID4B, ARHGAP22, APLP2,
AP5Z1, ANKRD44, ALOX5, AGO4, AGER, ADRBI,
ADAM22, ACHE, ABHD1

1.3E-21

poly(A) RNA binding

103

YTHDC2, XPO5, SYNCRIP, SAMD4B, RPL31, PURB, OASL,
LGALS3, KRR1, KIF1C, ENDC3B, FBRSL1, CELF1

6.8E-21

ATP binding

82

YTHDC2, YMEI1L1, WRNIP1, UBE2Z, TRIB2, STK16, SRC,
SPG7, SCYL1, RYK, RPS6KA6, RECQLS5, PKDCC, PFKP,
PDXK, PDK4, PCCB, PAPOLA, OASL, NEK8, MAST4,
MAPKI, KRAS, KIF1C, KALRN, HSPA1L, HIPK2, HIPK1,
FLT1, FANCM, EPHAS, EIF2AK4, EARS2, DYRKIA,
DTYMK, DNAH1, DGKZ, CUL9, CDK15, CDC34, CASK,
CARS, ATP9B, ABCC1

8.8E-6

RNA binding

71

XPOS5, SYNCRIP, SNRPN, SAMD4B, RPL31, PAPOLA,
EARS2, CELF1, BAZ2A

1.3E-22

structural constituent of ribosome

48

IKZF3, IFIT3, EDC3, CASP8, SEPT7, IL12B, CASP2,
AKT1, ABCD1, EPHA4, APAF1, EED, ACTN2, APLP2,
DYRKI1A, WRNIP1, CREBI1, PRPF3, FKBP8, VWAI, RAF1,
SNRNP200, TP53, KMT2A, XIAP, THBS1, AGER, MAPK1,
CSK, FYN, BAK1, AMELX, PLK4, JUN, STAT1, sSTAT2,
STAT3, FN1, BRAF, S100B, VEGFA, RAD52, BCL6, BCL2,
MDM2, BAX, FAS, GRB2, BCL2L1

9.9E-25

Cellular component

Nucleus

252

ZNF782, ZNF703, ZNF684, ZNF24, ZKSCAN3, ZFHX3,
YTHDC2, XPO5, WWOX, WRNIP1, WIZ, UBE3B,
TXNDC2, TRIB2, TOPORS, TOB2, TMEM57, TBX5,
SYNE2, SYNCRIP, STC1, STAT2, STAT1, SRGAP2, SRC,
SOX2, SOX13, SMYD2, SETDBI, SCYL1, SBF1, SAMD4B,
RYK, RPS6KA6, RECQLS, RAB3IP, PURB, PTPN22,
POU2F1, POGK, PKD1, PHF1, PFKP, PERM1, PDXK,
PDE4DIP, PBXIP1, PBX2, PAPOLA, NR4A1, NFATC3,
NFATCI, NF2, MTF2, MOB2, MKL1, MAPK1, MAGEC2,
LMO7, LGALS3, KRR1, KMT2A, KLF16, KDM4B, KANSL3,
JRK, IKZF3, HIVEP2, HIPK2, HIPK1, HEXIM1, HES2,
GPRC5B, GNAS, GADD45B, FOXN3, FOXK1, FANCC,
FAMY71B, FAF1, ETV6, ETS2, EFCAB13, DYRKIA, DTYMK,
DOT1L, DGKZ, DCAFS8, CRTC2, CNOT2, CELF1, CDC34,
CASP2, CAMTAL, BTBD7, BCL6, BAZ2A, ATF6B, ARID4B,
ARHGAP22, ARG1, APLP2, AP5Z1, AGO4, ACHE

2.2E-12

Cytoplasm

230

ZNF703, ZKSCAN3, ZFHX3, XPO5, WWOX, VPS37B,
UBE3B, UBE2Z, TXNDC2, TRIB2, TOB2, TBX5, TBC1D32,
SYNE2, STMN?2, STK16, STC1, STAT2, STAT1, SRGAP2,
SRC, SOX2, SOCS3, SNRPN, SMYD2, SETDBI1, SCYL1,
SAMD4B, RYK, RPS6KA6, RPH3AL, RNF213, RGS5,
RECQLS5, PXN, PTPN22, PPP6R2, POSTN, PKHD1, PKD1,
PHF1, PFKP, PERM1, PDXK, PDLIM5, PDE4DIP, PAPOLA,
OASL, NR4A1, NFATC3, NFATCI1, NF2, NEK8, MYADML2,
MTEF2, MOB2, MMP28, MKL1, MAST4, MAPT, MAPK1,
MAGEC2, MAFIP, LST1, LMO7, LGALS3, KRR1, KRAS,
KMT2A, KDM4B, JRK, ITPR3, ILIR2, IKZF3, HIPK2,
HIPK1, HEXIM1, GOPC, GNBIL, GNAS, GADD45B,
FGD6, FANCC, FAM161A, ETV6, ETS2, EML4, EFCAB13,
EARS2, DTNA, DNAH1, DGKZ, DCAF8, CUL9, CRTC2,
CNTLN, CNOT?2, CELF1, CDH3, CDC34, CD96, CASP2,
CASK, CARS, CAMTAL, BCL2L1, BAZ2A, ARID4B, ARG,
AQP4, AP5Z1, ANKRD13D, AKAP10, AGO4

1.1E-8

Continued
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Go term Total no. of genes involved from the list | Seed genes present P-value
XPO5, WWOX, TPM1, THY1, TAT, STAT2, STAT1,
SRGAP2, SRC, SOX2, SOCS3, SMYD2, SFI1, RPS6KAS6,
RPL31, RNF213, RGS1, RAB3IP, PXN, PFKP, PEX3, PDXK,
PDLIMS5, PCCB, PBXIP1, OASL, NFATC3, NFATC1,
Crytosol 211 MTHEFR, MKL1, MAPT, MAPK1, LCP2, KRAS, KALRN, L1E-25
¥t HSPA1L, HBG2, HBG1, HBB, HAL, GNAS, FGFR10P2, ’
FERMT]1, FBLIM1, FANCC, FAF1, ENO2, EDC3, DTYMK,
DENNDI1C, CNOT?2, CNBD2, CEP152, CASP2, CASK,
CARS, BICD1, BET1L, BCL2L1, ARHGAP22, ARG,
ALOX5, AKAP10, AGO4
ZFHX3, ZBTB17, ZBTB10, YMEI1L1, XPO5, UBE2Z,
TBXS5, TAF1C, SYNE2, SYNCRIP, STAT2, STAT1, SRGAP2,
SOX2, SOX13, SMYD2, SETDBI1, RPS6KA6, RECQLS5,
PXN, POU2F1, PMEPAL1, PHF1, PEX3, PDXK, PAPOLA,
Nucleoplasm 186 NR4A1, NFATC3, NFATC1, MTF2, MKL1, MAPK1, KRR1, | 1.5E-24
KMT2A, KDM4B, KANSL3, ITPR3, HSPA1L, HIVEP2,
HIPK?2, HIPK1, HEXIM1, FANCM, FANCC, EZH1, ETS2,
EFCABI13, DYRK1A, DOTI1L, DGKZ, CRTC2, CEP152,
CELF1, CDC34, BOD1L1, BCL6, BAZ2A, ARID4B, AP5Z1
YMEIL1, WRNIP1, TM7SF2, SYNCRIP, STMN2, STK16,
SLC1A6, SLC12A9, SCYLI, RYK, RPL31, RNF213, PRSS12,
PFKP, PEX3, PDLIM5, PCSK6, PCDHGC3, OCIAD1, OASL,
Membrane 139 NPCI, NNT, NF2, MUC4, LST1, LGALS3, LAPTM4B, 1L6E-15
KRR1, KRAS, KIAA2013, KCNJ15, ITPR3, GOPC, GNAS, !
GGCX, GALNTI, FKBP8, EML4, EDC3, CNOT2, CELF1,
CEACAM1, CDH3, CASP2, BICD1, BET1L, BCL2L1,
B4GALT1, AQP4, APLP2, ALG12, AGO4, ACHE, ABCC1
Biological process
rRNA processing 62 RPL31, KRR1 1.4E-39
WWOX, WBP2, TBXS5, STK16, STAT1, SOX2, PKD1, PBX2,
positive regulation of transcription from RNA polymerase IT 54 NR4A1, NFATC3, NFATC1, MTF2, MKL1, KMT2A, IL23A, 5.0E-4
promoter IKZF3, HIPK2, EZH1, ETV6, ETS2, DOT1L, CRTC2, CASK, | ™
CAMTAL, ASXL1, ARID4B
Translational 51 RPL31 1.4E-24
translational initiation 49 RPL31 5.1E-36
nuclgar-transcribed mRNA catabolic process, nonsense- 47 RPL31 $.1E-37
mediated decay
Reactome pathway
Formation of a pool of free 40S subunits 53 RPL31 1.11E-16
Nonsense Mediated Decay (NMD) independent of the Exon 49 RPL31 L11E-16
Junction Complex (EJC)
GTP hydrolysis and joining of the 60S ribosomal subunit 53 RPL31 1.11E-16
Ll3a-mediated translational silencing of Ceruloplasmin 53 RPL31 L11E-16
expression
1lSnl’{al;-‘;iependent co-translational protein targeting to mem- 52 SEC11C, RPL31 L11E-16
KEGG pathway
hsa03010: Ribosome 48 RPL31 2.7E-27
hsa03040: Spliceosome 32 HSPAIL 6.2E-13
hsa05161: Hepatitis B 3 STAT?2, STAT1, SRC, NFATC3, NFATC1, MAPK1, KRAS, 7 1E-12
ATF6B
hsa03460: Fanconi anemia pathway 20 FANCM, FANCC 5.7E-12
hsa04360: Axon guidance 28 SRGAP2, NFATC3, MAPK1, KRAS, EPHAS, EFNB3 2.0E-10

Table 3. The gene ontology and pathway enrichment of DEGs of TS, signature genes of T2DM and RM and
their interacting partners. Key genes are bold and italicised and signature genes are bold.

signature genes of RM and T2DM in TS along with their interacting partners in the TS network. These genes
are THBS1 (MIM: 188,060), NFATC1 (MIM: 600,489), GPRC5B (MIM: 605,948), FANCL (MIM: 608,111),
WIZ (GenBank: NM_021241.2), JRK (MIM: 603,210), XAB2 (MIM: 610,850), CSHL1 (MIM: 603,515), LSM5
(MIM: 607,285), COX11 (MIM: 603,648), RPL3L (MIM: 617,416), ADAM22 (MIM: 603,709), LGI1 (MIM:
604,619), SLC29A2 (MIM: 602,110), IGHM (MIM: 147,020), IGHD (MIM: 147,170), ATXN7L1 (GenBank:
NM_020725.1), SE3B3 (MIM: 605,592), UBE3B (MIM: 608,047), SLC9A9 (MIM: 608,396), FANCM (MIM:
609,644), SMARCAL1 (MIM: 606,622), MUS81 (MIM: 606,591), TIPIN (MIM: 610,716), RECQL5 (MIM:
603,781), MLH1 (MIM: 120,436), RMI1 (MIM: 610,404), RMI2 (MIM: 612,426), ERCC4 (MIM: 133,520), and
RAD52 (MIM: 600,392). The highlighted genes in bold are signature genes. It was found that ten of these genes
(ERCC4, RMI1, FANCM, FANCL, RAD52, XAB2, MUS81, TIPIN, RMI2, and MLH]1) are involved in DNA
repair of which four of them i.e., ERCC4, FANCM, FANCL, and MUS81 are specifically involved in Fanconi
anemia pathway which is also a type of DNA repair pathway. We expect that these two pathways are important
as they have common genes of RM and T2DM predicted in the study.
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Total no of nodes and edges in final No of signature genes present in final
S.no No of nodes in 1st shell | No of nodes in 2nd shell | network (n,e) Clustering coefficient | network
1 250 50 (561, 11,230) 0.523 8 out of 12
2 300 100 (672, 16,353) 0.532 9 out of 12
3 500 100 (887, 24,388) 0.534 9 out of 12
4 400 50 (723, 17,556) 0.539 8 out of 12
5 400 100 (775, 20,357) 0.544 9 out of 12

Table 4. Parameters of network construction (confidence level 0.4).

Chromosomal contribution of DEGs. To study the genomic imbalance, we studied the percentage con-
tribution of the DEGs of TS across the chromosomes. It was observed that all the chromosomes had altered gene
expression except chromosomes 23 and Y. It ranged from 1.17% (chromosome 13) to 11.17% (chromosome 1)
(Fig. 2b). Chromosome X contributes to 1.76% of DEGs. Chromosome 1 had the highest proportion of signifi-
cantly altered genes in the study. Thus, it was observed that TS phenotype is the result of global genomic imbal-
ance, rather than the genes of individual X chromosome alone?. One could therefore explain the TS phenotype
only by the additive effect of genes based on different loci.

Change in expression of genes in TS fetus and TS adult. Genes identified as expressed in fetal tis-
sues may provide clues to developmental processes and are a candidate set for further analysis in disease studies.
There are few genes whose expression changes on transformation from fetus to adult contributing to different
developmental processes of that individual. As mentioned in Table 1, GSE58435 signifies the expression of genes
in TS fetus while GSE46687 signifies the expression of genes in TS adult. We represented the transformation
from TS fetus to TS adult in the form of a heat map (Fig. 2¢) which was constructed using Morpheus online tool.
In a comparison of genes expressed in fetal vs. adult turner patients, we identified 72 genes whose expressions are
altered from fetus to adult in TS (P-value <0.05 and [logFC|>1). Of these 72 genes, 24 genes are downregulated
in fetal turner patients and upregulated in adult turner patients while 48 genes are upregulated in fetal turner
patients and downregulated in adult turner patients. These genes are of interest as candidate genes because
their expression levels are just the opposite in TS individuals (fetus vs adult) in comparison to healthy controls.
Therefore, it is expected that when these genes are activated in adult or fetal tissues in an altered fashion, this
may hinder the developmental processes. The names of these genes are listed in Supplementary Table S4. These
fluctuations of gene expressions from fetus to adult may contribute to the phenotypic features of the TS. The
study presented here is only a subset of the types of information that these data sets can yield. Although the role
of these 72 genes in TS is still unclear, our results elucidate a new aspect of TS which is also crucial for under-
standing its etiology which requires additional future analyses to provide further insights.

Turner Syndrome network follows hierarchical scale-free features. The PPI network of TS was
constructed with the DEGs of TS including the DEGs of T2DM and RM that were common with TS (signature
genes). So, a total of 355 genes that were differentially expressed were used to construct the PPI network of TS.
Our goal was to get a network that carries most of the signature genes in the same network with a condition that
our network’s clustering coefficient must be greater than 0.5. The clustering coefficient being greater than 0.5
signifies that the network and its genes are finely clustered together. In our study, we tried different scenarios by
changing the number of nodes in the first shell and second shell as mentioned below in Table 4.

We found that most numbers of signature genes are incorporated in the 2nd, 3rd, and 5th cases. We, however,
selected the 5th case i.e., 400 nodes in the 1st shell and 100 nodes in the 2nd shell as we get the best clustering
coefficient here. Therefore, we proceeded with this case.

Of 355 DEGs, only 271 genes made it to the main network. We call these genes seed genes. The main con-
structed network consisted of 775 nodes and 20,357 edges. The nodes here are the proteins and the edges are
the interaction between these proteins. Protein—protein interactions (PPIs) can be conveniently represented as
networks, allowing the use of graph theory for their study. Studying the topological properties of the TS network
may reveal patterns associated with TS in humans. The topological properties used here are the probability of
degree distribution P(k), clustering coefficient C(k), and neighborhood connectivity Cy(k). They characterize
the structural and organizational features of the TS network. It was observed that these topological properties
obey power-law behavior as a function of degree k (Fig. 3a). The power law of the datasets of the topological
variables of the TS network is fitted and verified following a standard statistical fitting procedure proposed by
Clauset et al.?®. The values of the exponents are attained from the power-law fittings. The summarised results for

the complete network are as follows,
p kv 0.581
[ C } ~ |kt - [0.0929} (1)

Cn kth 0.3467

These values suggest that the TS network follows a weak hierarchy. The value of y signifies that the number of
nodes increases with the advancement of disease as a power of 0.581, thus, giving us the idea of the TS network

Scientific Reports|  (2021) 11:10662 | https://doi.org/10.1038/s41598-021-90171-0 nature portfolio



www.nature.com/scientificreports/

)

[b]

)

EIF2AKE

o)
)

)
)

£
]
] z
059 048 . . . . . . e
[
04 Los- 4 0
2 23625
. L] E
3oz grs ; ]
= 0.10572
o
oo wl ]
4592 0.0037
s e s
Level0  Levell Level2 Leveld Leveld Level5 Level6 Level0 Level1 Level2 Level3 Level4 Level5 Level6 Level0 Levell Level2 LeveB Levelt Leveb 60 80
[c] [d] [e] Degree

Figure 3. (a) The behaviours of degree distributions (P(k)), clustering coefficient (C(k)), neighborhood
connectivity (Cy(k)), betweenness (Cy(k)), closeness (Cc(k)) and eigen-vector (Cg(k)) measurements as a
function of degree k for TS network. (b) Corresponding Hamiltonian Energy (HE) as a function of levels of
organization. (c) Corresponding modularity Qy as a function of levels of organization (d) Variation in the
calculated average LCP-corr for TS network as a function of network-level. (e) Characterization of top fifty
leading hubs of the network by degrees. EFNB3 and LCP2 are the key regulators denoted by yellow color and
THBSI are the signature gene of T2DM denoted by green color.

being hierarchical as it shows the presence of modules in our clustering experiment. The graphical representa-
tion of degree distribution P(k) shows that the network is dominated by lower degree hubs than that of higher
degree hubs. This signifies that the network follows the power law and thus the hierarchical, scale-free, and has
fractal attributes. The positive value of } suggests that the network carries the assortive mixing specifying that a
large cluster of degree nodes (formation of the rich club) regulates the TS network.

The centrality measurements correspond to the flow of information in the network and predict the influential
candidates in the network that play important role in the flow of information in the network. Two such measures
are betweenness centrality Cy(k) and closeness centrality C(k). The eigenvector centrality Cg(k) depicts the
efficacy of the spreading (receiving) power of information of nodes from the network. These properties obey

power-law behaviors as follows,
Cp K+ 0.4361
Cc ] ~ K| - {0.0979 ] )

Cg K? 1.376

Following the procedure of Clauset et al. (2009), these three centrality measurements are again verified and
confirmed for their statistical power-law fits. We found that only a few higher degree nodes have large centrality
values which means that most of the influencing hubs that can control the network are few. Thus, the TS network
is predominated by the low degree nodes (genes/proteins). It is these low-degree nodes that control the working
and organization of the network. However, some of the leading hubs that are scarcely distributed might show
significant involvement in regulating as well as stabilizing the network. Here, the positive values of these centrality
measurements show that the network exhibits hierarchical scale-free or fractal features.

Thus, the overall topological properties of the TS network show that it self-organizes into a scale-free fractal
state and is composed of successive interconnected communities which means the network has hierarchical
organization.

Validation of the biological significance of TS network. A network that differs significantly from a
random network could be viewed as containing relevant information, assuming that the comparison with the
random network is meaningful. Construction of the null model will allow us to assess the significance of the TS
network features. A null model consists of one network (or a set of networks) that matches a graph under study
in some structural aspects while being random in all other characteristics. In our study, we constructed two dif-
ferent null random networks of the same size and did the comparative analysis (Table 5).

We can see that the clustering coefficient and the diameter of the random networks drastically decrease in
comparison to the TS network. The exponents of other topological properties are also different and do not fol-
low the scale-free fractal attributes. The graphical representation of topological properties of TS network and
random networks as null models is illustrated in Supplementary Figure S6.

Through this comparative analysis, we found that the TS network constructed from the differentially expressed
genes of TS is exclusively associated with TS and is not by chance and is biologically significant.

Identification of key regulators and properties. To identify the systematic arrangements and modular
structure of the TS network at their various levels of the organization, we followed Newman and Girvan’s stand-
ard community finding algorithm?. It was found that the TS network is hierarchically organized through six dif-
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Degree preserved rand Random network (Erdos
Properties Main turner syndrome network | network of TS Renyi algorithm)
Nodes 775 775 775
Edges 20,357 20,357 20,357
Clustering co-efficient 0.544 0.294 0.068
Network diameter 7 5 3
Network radius 4 3 3
Exponent of average clustering 0.092 - 0.091 0.0645
co-efficient
Exponent of degree distribution | - 0.581 -0.581 0.125
ExponerAltAof neighbourhood 0346 —0.0463 000934
connectivity
Exponent of betweenness 0.436 21 2.029
centrality
Exponent of closeness centrality | 0.0979 0.092 0.084
Expongnt of Eigen vector 1.357 0915 1.016
centrality

Table 5. Comparative analysis of TS PPI network with random networks of the same size.

ferent levels. As one moves from top to down level of organization, the corresponding Hamiltonian Energy (HE)
and modularity Qy as a function of levels of the organization are found to be decreased (Fig. 3b,c, respectively).

The proteins that are deeply rooted from top to bottom of the network where the network cannot be further
divided into sub-community and form motif are said to be the key regulators of the network which serve as the
backbone of the network organization®®. We identified nine key regulators LCP2, PTPN22, CCL22, CXCL5,
S1PR4, POU2F1, FAM20A, ENAM, and EFNB3 (Fig. 4a) in the TS network. Surprisingly, none of these KR
genes fall among the categories of the top ten leading hubs. However, two of the key regulators LCP2 and EFNB3
were among the top 50 high degree hubs (Fig. 3e). Thus, we can say that it is not necessary for these KRs to be
the large leading hubs in the network, however, their popularities are randomly changed at various levels of
organization (Fig. 4a,b). Since the network qualifies hierarchical characteristics, the elimination of the leading
hubs will not cause its breakdown. But it is expected that these KRes, if eliminated, may cause maximum local
and global perturbations, especially at a deeper level of organization. These perturbations may reach out to the
deeper levels of organization causing the topological change in the network®.

Few more proteins of the seed genes i.e., CD96, CXCR5, IKZF3, SPON1, KALRN, and BTBD7 reached the
sixth level but did not form the motif. Thus, they cannot be considered as the KRs. All the KRs maintained a low
profile/popularity thereby regulating the network till the bottom level of the organization. None of the signature
genes of T2DM and RM in TS reached the motif level, however, THBS1 and ADAM?22 supported the network
reached till the 5th level. THBS1 was among the top 50 high-degree hub genes. These KRs may propagate signals
from top to bottom levels and vice versa of the network to maintain network stability and inherent properties.
These key regulators are deeply rooted in the network, they serve as the backbone of the network for any network
activities and regulations and could be a possible target gene for this disease control mechanisms.

Since these identified key regulators and the signature genes of TS are expected to play an important role
in TS, we further explored them by searching the possible microRNAs that could regulate them. We used
MIENTURNET tool* which is an interactive web-based tool for microRNA-target enrichment analysis. The
Supplementary Table S5 presents the MIENTURNET enrichment results of miRTarBase which gives the most
up-to-date results for validated interactions. We used the p-value cut-off of <0.05 to get the list of significant
microRNAs responsible for the regulation of these key regulators and signature genes of TS.

The graphical representation of probability Py (yl) of all the key regulatory genes show an increase in P, from
level 0 till 6th level (Fig. 5). This means the regulating ability of each key gene becomes more important and
significant at the deeper level of organization.

Evidence of self-organization: local-community-paradigm (LCP) approach. The TS network was
analyzed to assess the maintenance of its self-organization at different levels of its organization using the LCP
technique. We calculated the LCP-correlation of all the communities/sub-communities through six different lev-
els of its organization. The modules/communities having zero LCP-correlation were excluded in average. It was
found that the average values of LCP-correlation at each level are greater than 0.95 and the values do not change
with the error bar (Fig. 3d). The LCP-decomposition-plot (LCP-DP) for the main TS network (Level 0) and its
sub-modules (4 sub-modules at Level 1) are shown in Fig. 6. Based on the nodes and their links of each network
and its sub-modules we can conclude that the TS network and its sub-modules are more strongly characterized
by small-local communities and are compact. This shows that the network is self-organized and compact with
efficient information processing. The TS network represents a strong LCP network which lets us conclude that
the network is dynamic and heterogeneous which enables network evolution and reorganization. Such architec-
ture assists quick delivery of information across networks both locally and globally.

Status of essential interactions of TS in non-human systems by integrating the Orthology
with PPl. We examined the top hundred genes in each category i.e., degree distribution, betweenness cen-
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S. no Conserved interactions (interologs) | Genes forming motifs (conserved motifs)
1 ITK-GRAP2

2 ITK-LCP2 ITK, GRAP2, LCP2

3 GRAP2-LCP2

4 LCP2-FYB

5 EFNB3-EPHB1 RPL12, RPS27A, GNB2L1
6 EFNB3-EPHA4

7 ENAM-FAM20A

8 ENAM-AMELX RPS23, RPS27A, GNB2L1
9 KRR1-FBL

10 FBL-RPS23

11 RPS23-GNB2L1 RPS23, RPL31, GNB2L1
12 RPS23-RPL31

13 GNB2L1-RPL31

14 RPS23-RPS27A

15 RPS27A-GNB2L1

16 RPL12-GNB2L1

17 RPL12-RPS27A

18 JUN-CREB

Table 6. Essential PPI interactions in TS network.

trality, closeness centrality, and eigenvector centrality. Eight such genes were identified which were common to
these categories of Degree distribution and centralities and were also found to be the interacting partners of the
seed genes in the TS network.

Besides, we identified 9 key regulators in the present study. Based on the assumption that the genes coding
for the interacting proteins of disease-causing genes are putative, we also included the interacting partners of
the key regulators of TS in the list (Supplementary Table S6).

Monosomy X, commonly called Turner Syndrome is not only limited to humans but such cases have also been
reported in many other animal species®. In view of the facts that essential proteins evolve much slower than non-
essential proteins®, we identified the orthologous counterparts of the proteins (Supplementary Table S6) in seven
different organisms namely, Mus musculus (mice), Rattus norvegicus (Rat), Felis catus (domestic cat), Ovis aries
(sheep), Macaca mulatta (rhesus macaque), Gorilla Gorilla (Gorilla), and Homo sapiens (Human) in our study.

Animal models are important in generating gain- and loss-of-function mutations of a syndrome/disease
and have produced significant insights. In the case of TS, however, no animal models have been generated that
exactly models it. In this study, we analyzed the status of essential interactions of TS in non-human systems by
integrating the orthology with PPI. If two proteins physically interact in one species and they have orthologous
counterparts in another species, it is likely that their orthologs interact in that species too. Such conserved inter-
actions are called interologs which are of significant value in comparative genomics.

So, the conserved interactions (interologs) were analyzed in these organisms (mentioned above). It was
observed that only 18 protein—protein interactions involving 3 motifs (Table 6, seed genes highlighted in bold,
Fig. 7) remained conserved in all organisms. Of these 18 interologs, 10 of them include the interaction of seed
genes or key regulators with their neighbor which emphasizes their essential role in a living system. Their loss or
gain of function may somehow affect the physiology of an individual which may result in the loss of an essential
function. Therefore, apart from the identified key regulatory genes, we expect that these predicted interologs too
might play a major role in the pathophysiology of TS. It is a matter of research for further insights. The animal
models studied here might prove to be useful in illuminating the biological functions of these genes and the
pathophysiology of TS associated with these genes. Clearly, this study does not conclude that these non-human
animals are complete models for Turner syndrome as TS involves many genes. However, this is a powerful
approach that can be used to select an appropriate model to study human disease.

Thus, such types of studies may identify gene targets for drug therapy of these individual pathologies in the
general population and the animal models generated may prove useful in the validation of such targets.

Discussion
TS is a consequence of a partial or total loss of the X chromosome which results in the onset of highly variable
clinical features. Surprisingly, our knowledge of genotype-phenotype relations in TS is rather inadequate where
very few specific candidate genes are linked to its clinical features. In this study, we used an integrative network-
based approach to extract the information from the microarray datasets of TS. The study presented here is only
a subset of the types of information that these data sets can yield, which requires additional future analyses to
provide further insights.

It is expected that the causative factors of T2DM and RM in TS are different from that of traditional risk
factors in the general population. We found out nine genes of T2DM namely, SLC29A2, THBS1, GPRC5B,
CSHL1, ADAM?22, IGHM, WIZ, IGHD, and COX11, and three genes of RM namely, ATXN7L1, UBE3B, and
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Figure 7. Interologs in the network from lower to higher organisms. Nodes in yellow are seed genes and nodes
in red are seed genes that are the key regulators. Nodes in green are the interacting partners of seed genes.

FANCM in TS. We call these genes as “signature” genes of T2DM and RM in TS. Previously reported studies
were found to show the involvement of these genes in these conditions. The SLC29A2 gene which encodes the
protein ENT2 (Equilibrative Nucleoside Transporter 2) has been proved sensitive to dysregulation in diabetes
and acts as a target of insulin signaling®*. It is known that dysfunction of pancreatic B-cell plays a critical role
in the development of T2DM. In one of the studies, thrombospondin 1 (THBS1) has been found to play a
crucial role in B-cell survival during lipotoxic stress in rat, mouse, and human models which suggests this to be
an interesting therapeutic target to prevent oxidative stress in T2DM?. In another study, it was proposed that
with the increase in expression of GPRC5B (G Protein-Coupled Receptor Class C Group 5 Member B) there
is a reduction in insulin secretion and p-cell viability in T2DM?. Thus, GPRC5B too might prove to be a novel
target for the prevention of T2DM. The human GH/CSH genes (CSHL1 being one of them) regulates growth
and are involved in fetal and adult glucose metabolism. This could act as a good target for gestational diabetes
and diseases related to insulin resistance®”**, ADAM22 (ADAM metallopeptidase domain 22) was found to be
a potential target in insulin-resistant (IR) subjects, identified through an integrative miRNA-mRNA microarray
and network approach in adipose tissue of IR and insulin-sensitive (IS) individuals®. A decreased expression of
OXPHOS (oxidative phosphorylation) genes which included COX11 (Cytochrome c oxidase assembly protein
COX11) from pancreatic islets of T2DM patients was found in one of the studies which may lead to impaired
insulin secretion®. Similarly, FANCM, identified to be the signature gene of RM in the present study is a DNA-
damage response gene. FANCM protein was better expressed in pachytene cells where meiotic recombination
occurs*!. Therefore, any mutation or structural change in FANCM is expected to provoke meiotic defects result-
ing in DNA damage. The accumulation of such errors may ultimately lead to cell death. Thus, a change in the
expression level of FANCM may result in pregnancy loss. While many of these identified signature genes already
have a background for the respective co-morbidity that we are studying here, some of them still are bereft of
literature. Thus, they could further be studied to get a better insight into their role in TS.

As of now, in the turner population, the relationship between T2DM and RM has not been thoroughly iden-
tified. In the context of interacting genes coding for disease-causing putative proteins, we found that FANCM
and its interacting partner participate in the DNA repair pathway and Fanconi anemia pathways (also involved
in DNA repair). The Fanconi anemia pathway repairs DNA interstrand crosslinks in the genome. Interestingly,
one of the interacting partners of FANCM (signature gene of RM) is FANCL which is the interacting partner
of GPRC5B (signature gene of T2DM) in the TS PPI network. The association between DM (Type 1 and 2) and
DNA damage is well recognized*>* but very little is known about DNA damage in pregnancy, particularly when
pregnancy is complicated by pre-gestational or gestational diabetes mellitus**.

By analyzing the proportions of chromosomes involved, it was observed that it is not just the genomic
imbalance of the genes lying on the deleted pseudoautosomal regions of the X chromosome, but the additive
influences of the associated genes located on autosomal chromosomes as well, that may be responsible for TS
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phenotype. The developmental transition from fetus to adult requires gene expression changes that help in this
transition. When a fetus carries a partial or a total loss of the X chromosome, there is a disturbance in the gene
expression as compared to a normal fetus. We identified a list of genes that changed their expression pattern in
transition from TS fetus to TS adult. It is expected that when these genes are activated in adult or fetal tissues
in an altered fashion, this may hinder the developmental processes. While it cannot be explained what causes
these fluctuations and how these fluctuations affect the phenotype of Turner patient, this would shed light on a
new aspect which requires future insights.

Though the TS network shows a weak hierarchy, it exhibits system-level organization involving modules/com-
munities which are interrelated. Being hierarchical means that there is no significance of individual gene activities
rather they work in synchronization to regulate the network. The leading hubs (high degree genes) present in the
network play important functions by integrating the lower degree nodes for organizing and regulating activities
like inter and intra crosstalk among various other essential genes and thereby maintains network stability and
adjusts its signal processing. Of all the seed genes, we identified nine key regulators, namely LCP2, PTPN22,
CCL22, CXCL5, S1PR4, POU2F1, FAM20A, ENAM, and EFNB3 which influences network/module regulation
and maintains the network stability working as its backbone till the last level. These key regulators could be a pos-
sible therapeutic target gene for TS. Earlier it has already been established that PTPN22 polymorphism is related
to autoimmune disease risk in patients with Turner syndrome*. Surprisingly, only two of the key regulators i.e.,
LCP2 and EFNB3 were among the top 50 high degree hubs. Thus, it is not necessary for the leading hubs to be
the key regulators in the network, their popularity can change randomly at different levels of an organization. All
the KRs maintained a low profile/popularity thereby regulating the network till the last level of organization. The
regulating ability of KRs is more significant at the deeper level of the organization. The network exhibits fractal
nature because its topological properties obey a power law, and a strong LCP is also maintained which means
that networks are dynamic and heterogeneous. This indicates that the network maintains self-organization and
is compact and has effectual processing information.

Essential evolutionary proteins being more conserved are expected to frequently interact with each other.
Based on this fact, we found 10 important interologs (evolutionarily conserved protein-protein interactions)
involving the interaction of seed/key genes and their neighbor in TS and 3 motifs in 7 different organisms from
lower to a higher level. We considered these non-human systems because the cases of monosomy X have already
been reported in these organisms*®=>'. However, in the case of TS, no animal models have been generated that
exactly models it. Therefore, as there is a great lack of non-human models to study TS, our findings through
orthologous study update current models of TS, thereby giving a bit clear picture of the interologs which are
functional in other lower to a higher level of animal models.

Taken together, these results offer few key regulators and essential genes that may act as therapeutic targets
for TS in the future. Although this study uncovers many aspects of TS, there are many limitations such as limited
sample size and heterogeneity of the datasets used in this study. As no two turner patients are identical, every
Turner is unique with respect to its genotype-phenotype. The currently available datasets do not allow a more
elaborated study at this moment. Thus, a larger sample size would provide a more elaborate result. Another
limitation of our study is that we did not use the adjusted p-value for multiple comparisons, rather we used the
p-value cut-off <0.05 (nominal testing) to select maximum number of DEGs of Turner Syndrome. Also, the
co-morbidities studied here are heterogeneous in nature and there may be other factors too that may contribute
to their occurrence. Despite these biological limitations, our computational approach and the results offer a
comprehensive picture, elucidating the KRs of TS using network biology and demonstrating the importance of
animal models in TS, which helps explore and understand different aspects of this syndrome.

Methodology

Retrieval of microarray data (TS, T2DM, and RM).  Widely accessible gene expression datasets related
to Turner Syndrome (TS), Type 2 Diabetes Mellitus (T2DM), and Recurrent Miscarriage (RM) of Homo sapiens
were obtained from the Gene Expression Omnibus (GEO) database of NCBI*2. Studies evaluated on Affymetrix
human gene expression dataset containing samples from both normal and diseased tissues of women were taken.
For TS, we retrieved GSE46687 deposited by Bondy et al. and GSE58435%. For T2DM, we retrieved GSE23343>
and GSE25724%. And in the case of RM, we retrieved GSE22490°° and GSE26787%". Before finding the differ-
entially expressed genes, these datasets were pre-processed to remove the noise of obscure variations of these
data to make them cross-comparable. Normalization is a key step in the process of pre-processing to remove
such variations in the data. In this study, we used MAS5 algorithm®® which is sensitive and selective for identi-
fying differentially expressed genes. MAS5.0 combines the signals from the multiple Perfect-Match (PM) and
Mismatch (MM) probes that target each transcript into a single value that sensitively and accurately represents
its concentration by calculating a robust average of the (logged) PM-MM values. After normalizing the datasets,
the differentially expressed genes were identified through GEO2r by filtering the genes based on Log,FC and
P-value.

Differentially expressed genes of TS, T2DM, and RM.  We performed the comparison on normal vs.
disease samples in each GEO dataset to identify differentially expressed genes (DEGs). We identified these DEGs
through the online program, GEO2R®, which is based on limma R package®’. We chose the “P value <0.05” and
“|logFC|=0.5” as the primary cut-off criteria to interpret the results. In each category (i.e., TS, T2DM, and RM),
only those DEGs that satisfied the cut-off criteria in both its datasets were considered as the significant DEGs. To
obtain the list of overlapping DEGs, we used Venny 2.1.0, an online tool that can calculate the intersection(s) of
listed elements. The enriched functions and biological pathways involved with these DEGs were identified using
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DAVID (The Database for Annotation, Visualization and Integrated Discovery) online server® and REAC-
TOME pathway browser®?.

Protein—protein interaction network construction of TS and their topological properties. To
analyze the interactive associations among the DEGs at the protein level, genes obtained from the TS were
mapped on protein-protein interaction (PPI) data using STRING database® to construct the TS PPI network
with a medium confidence score with 400 nodes in 1% shell interactors and 100 nodes in 2" shell interactors so
that more number of seed genes make into the network. The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database aims to integrate comprehensive PPI data available from different databases for a
large number of organisms from published literature with experimental information. The network was visual-
ized in Cytoscape 3.4%%. These DEGs are said to be the seed genes. The structural properties of complex networks
are characterized through the behaviors of their topological parameters. The topological properties of the TS
network were calculated by Network Analyzer and CytoNCA® in Cytoscape. The topological properties ana-
lyzed in the present study are described below.

Degree distribution. In a PPI network, the number of contacts a node/protein has with other nodes/proteins
are said to be its degree and the probability distribution of these degrees over the entire network is the degree
distribution. The networks whose degree distributions approximately follow a power law: P(k) ~k™Y, where y is a
constant are termed as scale-free networks and appear linear in a log-log plot. Depending on the value of y the
networks are said to be hierarchical which further specifies the importance of hubs or modules in the network®.
The concept of a scale-free network is used to separate biological networks from random networks, which fol-
low a Poisson distribution. For a PPI network defined by a graph G=(N, E), where N and E are the number of
nodes and edges respectively, the probability of degree distribution (P(k)) is the ratio of the number of nodes
with degree k to the network size.

Nk
Pk) = —
k)= ©)
where n, is the number of nodes having degree k and N is the total number of nodes in the network. P(k) indi-
cates the importance of hubs or modules in the network.

Neighborhood connectivity. In a PPI network, when a node/protein " forms an association with its neighbor
nodes/proteins, the average number of neighbors of all the nearest neighbors of this node ‘0’ is said to be its
Neighborhood connectivity®”’. In the network (Cy(k)) Neighborhood connectivity is given by,

Ot = ;‘fp () @)

where, P(}) is the conditional probability that a connection belonging to a node with connectivity k points to a
node with connectivity q. The positive power dependence of Cy(k) indicates assortivity in the network topology.

Clustering co-efficient. In a PPI network, the clustering coefficient represents the measure and strength of how
connected the neighbors of a given node are in that network. It measures the tendency of a node to form a clus-
ter. Identifying these modules/communities is significant because they can ultimately reflect functional modules
and protein complexes. When applied to an entire network, the clustering coeflicient is its average over all the
nodes in the network. It is calculated by the ratio of the number of its nearest neighborhood edges ¢; to the total
likely number of edges of degree k;. For an undirected network, the clustering co-efficient (C(k;)) of ith node can
be calculated by,
2e;

Ck) = e —1) (5)

Betweenness centrality. Betweenness centrality (Cy) of a node in a PPI network measures the degree of infor-
mation flow in the network. It is the capacity of a protein/node to monitor communication between other pro-
teins/nodes in a network®®®. If d;; (v) indicates the number of geodesic paths from node i to node j passing
through node v, and dij indicates the number of geodesic paths from node i to j, then betweenness centrality
(Cg(v)) of a node v can be calculated by,

dij
Csn = ) 7](..” 6)
igiAk Y

Closeness centrality. Closeness centrality (Cc) measures how fast the flow of information is from a node to
other nodes reachable from it in the network’. Therefore, it shows how close a node ‘n’ is to all other nodes in
a network. Cc of a node i is the reciprocal of the mean geodesic distance between the node and all other nodes
connected to it in the network and is given by,
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n
Zj dij @

where d;; represents the geodesic path length from nodes i to j, and n is the total number of vertices in the graph
reachable from node i.

Ce(i) =

Eigenvector centrality. In a PPI network, eigenvector centrality is a tendency of a node to enable the informa-
tion to spread in a network. It measures the significance of a node while considering the significance of its
neighbors. The main idea behind eigenvector centrality is that connections from significant nodes are more
important than connections from unimportant nodes. Eigenvector centrality of a node i (Cg(i)) in a network is
proportional to the sum of i’s neighbor centralities’!, and it is given by,

. 1

" j=nn(i)

where nn(i) indicates the nearest neighbors of nodes i in the network. A is eigen value of the eigenvector v; is
given by, Av;=Av; where A is the adjacency matrix of the network (graph).

Validation of the biological significance of TS network. It is said that scale-free networks are robust
against random removals of nodes because most nodes are poorly connected, and they play relatively unim-
portant roles in organizing the global network structure. The TS PPI network constructed in this study follows
scale-free features and consists of 775 nodes and 20,357 edges. To check whether a similar network would arise
if a random set of genes of the same size as the TS DEG-set are used as "seeds," or whether the topology of the
resulting network would be obtained by randomly sampling the STRING-db, we constructed the null random
networks of the same size and did the comparative analysis. In our study, we constructed the random networks
through Network Randomizer App”? in Cytoscape considering two different scenarios:

e randomization of the constructed TS network by Preserving the Degree.

Through Network Randomizer, we first randomized the TS network by preserving the degree of each node.
The degree preserving shuffling algorithm permits to randomize the current network considering the degree
of each node. This means that in the randomized network, a node will have the same number of neighbors, but
they can be different.

e construction of a random network of the same size through the Erdés and Rényi algorithm.

Next, we generated a random network with 775 nodes and 20,357 edges using an Erdés-Rényi model” in
which for each pair of nodes, a link was inserted with independent probability. We used the G (n, M) model to
construct the uniform random graph where n is the number of nodes and M is the number of edges.

We then did the comparative analysis of these random networks with the main TS network.

Community detection: leading eigen-vector method and tracing of the genes.  The constructed
PPI network is divided into discrete layers of hierarchy. Each layer or tier describes its activity which altogether
defines the modular nature, properties, and organizing principle of the hierarchical network. We used the Lead-
ing Eigen Vector method (LEV)”*7° to detect the communities of the network in R from package ‘igraph’”® in this
study. The LEV method calculates the eigen value for each connection, demonstrating the importance of each
connection, not nodes. The modules were detected from the main network, then from the sub-modules of the
modules, at each level of hierarchy to finally obtain the motif. The seed genes were then traced at each level of
organization in various modules/sub-modules obtained from clustering. The genes reaching the motif level (last
level) are the main drivers of the TS network that helps in its regulation. We consider these genes as the most sig-
nificant and influential ones within the network and call them the key regulators of the network. The Probability
Py (yl ) of KR was then calculated to recognise the regulating ability of each of these KRs in the TS network,

where x is the number of edges y at level | and E'V is the total number of edges of the network/ modules/
sub-modules.

Distribution of energy in the network: Hamiltonian energy calculation. Each level of the network
is organized and maintained due to a certain level of energy. This energy is measured at each level using Hamil-
tonian Energy (HE) within the formalism of Constant Potts Model”””%. HE calculates the energy distribution at
the global level as well as at the modular level. HE of a network or module or sub-module can be calculated by,

HIT = =3 Tlec — yn(] (10)

[
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where e. and n_ are the number of edges and nodes in a community ‘C’ and y is the resolution parameter acting
as an edge density threshold which is set to be 0.5.

Local-community-paradigm (LCP) approach: compactness of the network. LCP-Decomposi-
tion Plot (LCP-DP) is a method to characterize the topological self-organization of a network as a local-commu-
nity-paradigm (LCP). It is used to study the effect of LCP on network topology. It is a function of the common
neighbors (CN) index and local community links (LCL) of each pair of interacting nodes in the network. This
approach gives information on the number, size, and compactness of the communities in a network’. The CN
index between two nodes x and y is the measure of overlapping between their sets of first node neighbors S(x)
and S(y) given by, CN = S(x) N S(y). A significant amount of overlapping indicates a possible likelihood of
interaction of these two nodes. Therefore, an increase in CN represents the increase in compactness of the net-
work representing its faster information processing abilities. Further, the LCLs between the two nodes x and y,
whose upper bound is defined by, max (LCL) = 3 CN(CN — 1), is the number of internal links which is strongly
inter-linked in local-community (LC). These two nodes most probably link together if CN of these two nodes is
members of LC”. LCP-DP has a linear dependence between CN and +/LCL.

The LCP correlation (LCP-corr) is the Pearson correlation co-efficient between the variables CN and LCL
defined by

cov(CN, LCL)
LCP — corr = ———= (11)
OCNOLCL

with CN > 1, where cov(CN, LCL) is the covariance between CN and LCL, oy and o, are standard deviations
of CN and LCL, respectively.

Status of essential interactions of TS in non-human systems by integrating the Orthology
with PPl. A positive relationship exists between essentialities (essential proteins) and topological proper-
ties (centralities) of the proteins in PPI networks. Therefore, a series of network topological features based on
centrality measures have been used to recognize essential proteins. The properties considered in this study are
Degree Distribution, Betweenness Centrality, Closeness Centrality, and Eigenvector Centrality. The proteins of
the TS network were graded in terms of these topological properties (top 100 in each category). These ranking
scores were then used to predict whether a protein is essential or not. Further, the interacting partners of the seed
genes/proteins were also identified in the TS network. The interacting partners of seed genes/proteins that were
common to all these four properties were considered essential.

In this study, we predicted the essential proteins in the TS network by integrating the orthology with the
PPI network of TS. The essential proteins are more evolutionarily conserved than non-essential proteins and
they frequently interact with each other. To identify the conserved interaction of the TS network, the selected
interactions were analyzed in 7 different species namely, Mus musculus (mouse), Rattus norvegicus (Rat), Ovis
aries (sheep), Felis catus (domestic cat), Macaca mulatta (rhesus macaque), Gorilla Gorilla (Gorilla), and Homo
sapiens (human) (lower to higher-level organisms). For this, information on orthologs of selected proteins was
taken from Version 8 of the InParanoid database (an ortholog database)® and Orthodb v10.1*!. Then the net-
works of the selected organisms were constructed considering these essential interacting proteins as seed genes
for the analysis of the conserved interactions from the STRING database with a 0.7 confidence score to get high
confidence interactions.
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