
genes
G C A T

T A C G

G C A T

Article

NAPRT Expression Regulation Mechanisms: Novel Functions
Predicted by a Bioinformatics Approach

Sara Duarte-Pereira 1,2,* , Olga Fajarda 2 , Sérgio Matos 2,3 , José Luís Oliveira 2,3 and Raquel Monteiro Silva 1,4

����������
�������

Citation: Duarte-Pereira, S.; Fajarda,

O.; Matos, S.; Luís Oliveira, J.; Silva,

R.M. NAPRT Expression Regulation

Mechanisms: Novel Functions

Predicted by a Bioinformatics

Approach. Genes 2021, 12, 2022.

https://doi.org/10.3390/

genes12122022

Academic Editor: Anton I Petrov

Received: 15 November 2021

Accepted: 15 December 2021

Published: 20 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro,
3810-193 Aveiro, Portugal

2 IEETA—Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, 3810-193 Aveiro,
Portugal; olga.oliveira@ua.pt (O.F.); aleixomatos@ua.pt (S.M.); jlo@ua.pt (J.L.O.)

3 DETI—Department of Electronics, Telecommunications and Informatics, University of Aveiro,
3810-193 Aveiro, Portugal

4 Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in
Health (CIIS), 3504-505 Viseu, Portugal; rmsilva@ucp.pt

* Correspondence: sdp@ua.pt

Abstract: The nicotinate phosphoribosyltransferase (NAPRT) gene has gained relevance in the
research of cancer therapeutic strategies due to its main role as a NAD biosynthetic enzyme. NAD
metabolism is an attractive target for the development of anti-cancer therapies, given the high energy
requirements of proliferating cancer cells and NAD-dependent signaling. A few studies have shown
that NAPRT expression varies in different cancer types, making it imperative to assess NAPRT
expression and functionality status prior to the application of therapeutic strategies targeting NAD.
In addition, the recent finding of NAPRT extracellular form (eNAPRT) suggested the involvement
of NAPRT in inflammation and signaling. However, the mechanisms regulating NAPRT gene
expression have never been thoroughly addressed. In this study, we searched for NAPRT gene
expression regulatory mechanisms in transcription factors (TFs), RNA binding proteins (RBPs) and
microRNA (miRNAs) databases. We identified several potential regulators of NAPRT transcription
activation, downregulation and alternative splicing and performed GO and expression analyses. The
results of the functional analysis of TFs, RBPs and miRNAs suggest new, unexpected functions for
the NAPRT gene in cell differentiation, development and neuronal biology.

Keywords: NAPRT (nicotinate phosphoribosyltransferase); bioinformatics; expression regulation;
cell differentiation; neurodevelopment

1. Introduction

Nicotinate phosphoribosyltransferase (NAPRT) is an enzyme from NAD (Nicoti-
namide Adenine Dinucleotide) biosynthesis and is mostly studied as a cancer biomarker.

One of the cancer therapeutic strategies targeting NAD metabolism is the use of
nicotinamide phosphoribosyltransferase (NAMPT) inhibitors [1–4]. NAMPT is the rate-
limiting enzyme of the main NAD salvage pathway, which uses nicotinamide, while
NAPRT is responsible for NAD production via the nicotinic acid precursor, known as the
Preiss–Handler pathway [5,6]. In this context, NAPRT became an important biomarker
for the use of nicotinic acid as a co-adjuvant in NAPRT-negative tumors [1] and for co-
inhibition in the cancer types that highly express NAPRT [7].

Lack of NAPRT expression was observed in several cancer types [1,8–10] and associ-
ated with NAPRT epigenetic silencing in some cases, such as gastric and lung cancer [10–13].
On the other hand, NAPRT amplifications and overexpression were reported in ovarian,
breast and pancreatic cancer [7]. Differences in NAPRT expression between subtypes of
cancer, namely in breast, pancreatic, lung and gastric carcinomas [7,11,14,15], suggest that
individual variability should be considered in therapeutic approaches. In order to select the
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types of cancer that would better respond to NAMPT inhibition, a determination should
be made on whether NAPRT is expressed and functional.

In addition to cancer, the role of NAPRT in inflammation and signaling was recently
discovered and is brought by its extracellular form (eNAPRT) [16,17]. Thus, knowledge of
NAPRT gene expression regulatory mechanisms under non-pathological conditions is key
to understanding its biological functions and roles in disease, in addition to exploring its
potential as a biomarker or therapeutic target.

We have previously studied NAPRT methylation and mutations in cancer [10,18]. In
addition to promotor methylation, mutations in transcription factor binding sites (TFBS)
and alternative splicing have been proposed as potential regulatory mechanisms of NAPRT
gene expression [10,11,14,18]. As NAPRT gene expression variation is tissue-specific rather
than a cancer specific alteration [15], we searched several databases of transcription factors
(TFs), RNA binding proteins (RBPs) and microRNAs (miRNAs), using the NAPRT gene
as a target to identify additional transcriptional and post-transcriptional mechanisms in
normal conditions. We identified several potential regulators of NAPRT transcription
activation, downregulation and alternative splicing. The analyses of their targets suggested
unexpected functions in cell differentiation, development and neuronal biology.

2. Methods
2.1. Collection of NAPRT Potential Regulators

In order to obtain a comprehensive set of results, we searched a diverse number of
databases in our approach, which are often focused on different methodologies: some
collect data from experimental high throughput studies, others used computational algo-
rithms to predict binding and others extracted data obtained directly from the literature.
The databases used here are summarized in Supplementary Table S1.

2.1.1. Transcription Factors

In order to search for TFs that could regulate NAPRT gene expression, we surveyed
one database with experimental data from the Encyclopedia of DNA Elements (ENCODE)
Project [19]—Factorbook [20]—and four sources of computational predictions of transcrip-
tion factor binding sites (TFBS)—UniPROBE [21]—PROMO v3.0.2, which uses the TFBS
defined in the TRANSFAC database v8.3 [22,23], MotifMap [24,25] and CTCFBS v2.0 [26],
using NAPRT 5′UTR sequence as an input. All unique results were considered.

2.1.2. RNA Binding Proteins

We collected data from a total of eight databases. Four of them included experimentally
validated data—starBase v2.0, currently called The Encyclopedia of RNA Interactomes
(ENCORI) [27], miRWalk v2.0 [28], CLIPdb v1.0 [29], currently integrated in POSTAR2 [30]
and AURA v2.4 [31]. The other four had computationally predicted data—RBPDB v1.3 [32],
RBPmap v1.0 [33], catRAPID [34] and CISBP-RNA v0.6 [35]. Starbase and miRWalk also
provided information on microRNA–mRNA interactions.

In most of the queries, we searched for the entire NAPRT mRNA sequence and then
performed a specific search using only 3′UTR or 5′UTR sequences due to their regulatory
role. For some databases, such as miRWalk, the query for the gene symbol NAPRT or
NAPRT1 did not retrieve any results; thus, other identifiers were used, such as EntrezID,
Ensembl gene ID or UniProt accession.

2.1.3. microRNAs

We searched for experimentally validated data in DIANA-TarBasev7.0 [36], starBase
v2.0 [27] and mirTarBase 6.0 [37]. For computationally predicted miRNA:mRNA inter-
actions, we used DIANA-microT-CDS v5.0 [38] and TargetScan 7.0 [39]. From miRWalk
v2.0 database [28], we retrieved both experimentally validated and predicted data. The
best targets from the computational predictions were selected according to the following
criteria: the binding site should be 8 nucleotides, and the conservation of the site sequence
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among different species should be the highest (in the case of TargetScan a conserved branch
length over 0.8 for 8 nucleotides is recommended).

In addition, we obtained expression data and performed further analysis using
DASHR v2.0 [40], starBase v2.0 [27], miRTarBase 6.0 [37] and miRGator v3.0 [41].

2.2. Data Analysis

After collecting data from the various databases (Supplementary Table S1), the results
were further studied as follows (Figure 1).
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Figure 1. Data analysis. Schematic representation showing the pipeline followed to collect and
analyze nicotinate phosphoribosyltransferase (NAPRT) putative binding transcription factors (TFs),
RNA binding proteins (RBPs) and microRNAs (miRNAs). The list of databases can be found in
Supplementary Table S1.

For TFs and RBPs, we used the HUGO Gene Nomenclature Committee (HGNC) at the
European Bioinformatics Institute (www.genenames.org, accessed on 29 April 2021) and
the UniProt (www.uniprot.org, accessed on 12 July 2021 [42]) databases to map each gene
symbol to HUGO, Ensembl and UniProt IDs and retrieved information of the subcellular
location, evidence level of expression, tissue specificity and function.

The study of gene co-expression patterns, the analysis of co-regulation networks and
gene ontology enrichment analysis are commonly used methodologies to infer knowledge
on gene functions. Thus, we analyzed the correlation between NAPRT gene expression
and the expression of the TFs, RBPs and miRNAs from our set of results and expanded our
study to the analysis of the target genes of those regulators, as described below.

www.genenames.org
www.uniprot.org
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2.2.1. Correlation with NAPRT Gene Expression

Expression data were retrieved from the Human Protein Atlas (www.proteinatlas.org,
accessed on 24 January 2021, v19.3 [43]). The dataset containing the consensus normalized
expression levels summarize expression values for 62 non-pathological tissues based on
transcriptomics data from three sources (Human Protein Atlas, Gene Tissue Expression
(GTEx) and FANTOM5), and it was used to calculate the correlation between the expression
of NAPRT gene and the identified NAPRT TFs and RBPs. In order not to assume linear
relationships between co-expressed genes, Spearman’s correlation was calculated. Positive
correlation values above 0.5 and negative correlation values below −0.5 were consid-
ered [44]. For miRNAs, we assessed expression data from DASHR v2.0 [40] and obtained
the analysis of miRNA correlation with NAPRT expression using miRGator v3.0 [41].

2.2.2. Target Genes

For the TFs and RBPs that presented a significant correlation with NAPRT expression,
we used the TRRUST v.2 database (grnpedia.org/trrust/, accessed on 9 March 2021 [45])
and the RBP2GO database (rbp2go.dkfz.de/, accessed on 26 March 2021 [46]) to search for
their target genes. The gene set enrichment analysis of the target genes of the experimentally
validated miRNAs was performed with miRTarBase 6.0.

2.2.3. Functional Analysis

We performed a Gene Ontology (GO) analysis on the total lists of TFs, RBPs and the
target genes of the expression-correlated TFs, RBPs and miRNAs using a statistical overrep-
resentation test (Fisher’s exact test and False Discovery Rate correction) in the PANTHER
Classification System (pantherdb.org, accessed on 4 October 2021, v.16.0 [47]). In the case
of the TFs, we created a combined dataset to use as background in GO analysis. For that
purpose, we used three sources, namely, the Human Protein Atlas [43] annotated transcrip-
tion dataset (proteinatlas.org/search/protein_class%3Atranscription+factors, accessed on
4 January 2021); the list of TFs from the ChIP-seq Peaks from the ENCODE Project [48]
(encodeproject.org/, accessed on 4 January 2021, source data version: ENCODE 3 Novem-
ber 2018); and the human transcription factors catalogue from Lambert et al. 2018 [49]. In
the case of the RBPs, we used the dataset published on the RBP2GO database [46]. On
the remaining analysis, all genes in the genome were used as the enrichment background.
We preferably used the PANTHER slim annotation datasets for biological processes and
molecular functions, but whenever there were no statistically significant results (FDR
corrected p value < 0.05), we chose complete annotation datasets [47].

The target genes that were common to more than one mechanism, e.g., that were
targeted by at least one TF and one RBP, one TF and one miRNA or one RBP and one
miRNA, were analyzed on a network of interactions obtained by using STRING (string-
db.org, accessed on 8 December 2021, v.11 [50]). We searched for data from text-mining,
experiments, databases and co-expression, with a high confidence level of 0.7. Only
interactions between the queried proteins were considered.

3. Results
3.1. Potential Regulators of NAPRT Gene Expression
3.1.1. Transcription Factors

From a total of 93 results obtained from the four databases surveyed, 80 were mapped
to UniProt IDs (Supplementary Table S2). Thirty-seven of them had supporting experi-
mental data, which derived from the ENCODE project (Supplementary Table S3). Three
were common to two databases: Wilms tumor protein (WT1), Erythroid transcription factor
GATA-binding factor 1 (GATA1) and YY1 transcription factor (YY1), also known as Yin
and Yang 1 protein.

In order to exclude potential overrepresentation of the typical functions and biological
processes in which TFs are usually involved, we used a large dataset of human TFs as
background in the GO analysis. This reference dataset was compiled from three sources

www.proteinatlas.org
rbp2go.dkfz.de/
pantherdb.org
proteinatlas.org/search/protein_class%3Atranscription+factors
encodeproject.org/
string-db.org
string-db.org
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and resulted in 1849 known human TFs. In addition to the expected processes related to the
transcription regulation and the involvement in the RNA metabolic process, GO analysis
of the 80 TFs revealed an overall overrepresentation for genes involved in signaling and
response to stimulus (Supplementary Table S4), such as “response to UV-C” or “positive
regulation of defense response to virus by host”. Table 1 lists the most relevant biological
processes enriched (considering a fold enrichment of over 3 with 10 or more genes).

Table 1. Biological processes overrepresentation of the 80 potential NAPRT transcription factors.
Only child terms relative to 10 or more genes and with a fold enrichment of over 3 are presented, by
decreasing fold-enrichment order. Complete results are listed in Supplementary Table S4.

Transcrition Factors—BIOLOGICAL PROCESS

Immune response

Response to other organism

Regulation of epithelial cell proliferation

Positive regulation of immune system process

Negative regulation of cell population proliferation

Cellular response to growth factor stimulus

Regulation of immune response

Negative regulation of protein modification process

Considering pathway annotations (Figure 2), the highest enrichment fold was pro-
vided by three genes involved in the cadherin signaling pathway, namely, Transcription
factor 7-like 2 (TCF7L2), Lymphoid enhancer binding factor (LEF1) and Transcription factor
3 (TCF3). Curiously, the set of the same three genes was responsible also for the enrichment
of the Alzheimer disease presenilin pathway and the Wnt signaling pathway. In the latter,
we found three additional genes: Tumor protein p53 (TP53), MYC proto-oncogene and
Nuclear factor of activated T cells 1 (NFATC1). Of note, from these TFs, TCF7L2, MYC and
NFATC1 have been experimentally validated.
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Figure 2. Gene ontology results for 80 potential NAPRT transcription factors, based on pathways
annotation dataset, showing the number of genes (blue bars) and fold enrichment (orange bars) by
decreasing fold enrichment order. Detailed information on GO results can be found in Supplementary
Table S4. The genes responsible for the highest enrichment fold were retrieved (TCF7L2, TCF3 and
LEF1).

3.1.2. RNA Binding Proteins

From a total of 122 RBPs (Supplementary Table S5), we obtained 113 RBPs predicted to
bind NAPRT mRNA and 11 with experimentally supported data (Supplementary Table S6).
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Only splicing factor U2AF 65 kDa subunit (U2AF2) and the FUS RNA binding protein
(FUS) were both predicted and validated. Three RBPs, namely Heterogeneous nuclear
ribonucleoprotein L (HNRNPL), Protein quaking (QKI) and RNA-binding motif protein 3
(RBM3), were predicted to bind specifically to NAPRT 3′UTR; that is, no binding site was
found in the remaining mRNA sequence.

We retrieved information on subcellular location, evidence level of expression, tissue
specificity and function for each of the 11 experimentally validated RBPs. Several of
these are reported to be functionally involved in post-transcriptional processing, as it
was expected, and have ubiquitous expression. Some are necessary for normal splicing
events, such as Eukaryotic initiation factor 4A-III (EIF4A3) and U2AF2, and Serine/arginine
repetitive matrix protein 4 (SRRM4) is a splicing factor specifically required for neural cell
differentiation.

Despite the use of a reference dataset composed by all potential human RBPs, GO
analysis of the 122 NAPRT-binding RBPs still showed several processes related to splicing
mechanisms, regulation of alternative splicing, splice site selection, regulation of translation
and regulation of mRNA stability (Figure 3 and Supplementary Table S7). These results
reflect the well-known functions of RBPs and the previously described alternative splicing
events that regulate NAPRT expression [10]. Unexpectedly, several processes related
to dendrite development and synapse organization were also found. The highest fold
enrichment was retrieved for term regulation of dendritic spine development and axo-
dendritic transport, associated with the functions of Fragile X mental retardation syndrome-
related proteins 1 (FXR1) and 2 (FXR2) and Synaptic functional regulator (FMR1). Other
processes related to dendrite morphogenesis and synapse organization were also enriched.
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processes annotation dataset, showing the number of genes (blue bars) and fold enrichment (orange
bars) by decreasing fold enrichment order. Only child terms are presented. Detailed information on
GO results can be found in Supplementary Table S7. The genes responsible for the highest enrichment
fold were retrieved (FXR1, FXR2 and FMR1).

3.1.3. microRNAs

A total of 39 miRNAs that potentially bind NAPRT were obtained in this study
(Supplementary Table S8), from which seven have experimental data (Supplementary Table
S9). Two of them were obtained from two different databases (miR-218-5p and miR-92a-
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3p). From the 31 miRNAs based on computational predictions, miR-491-5p was the only
prediction that followed the established criteria and was selected for further analysis, along
with the seven miRNAs based on experimental data.

For eight selected miRNAs, DASHR database was used to extract data on miRNAs
expression in different tissues, which can be visualized as heatmaps (Supplementary
Figure S1). The results showed that most miRNAs appear to be tissue specific. For instance,
the brain tissue presents the highest values for miR-197-3p, miR-218-5p, miR-491-5p and
miR-92-3p (Supplementary Figure S1a–d). This is most relevant in the case of miR-491-5p
(Supplementary Figure S1d), which has an overall low expression, except for brain. Of
note, miR-218-5p is weakly expressed in tissues where NAPRT is strongly expressed, such
as liver and blood (Supplementary Figure S1c).

3.2. Expression Correlation between TFs, RBPs, miRNAs and the NAPRT Gene

Spearman correlation analysis identified 11 TFs and 9 RBPs with a significant positive
correlation, from moderate to strong, with NAPRT expression, based on the Human Protein
Atlas dataset of non-pathological human tissues (Table 2). With the exception of the zinc
finger and BTB domain containing 7A (ZBTB7A), which acts as a repressor, all these TFs
can both activate or repress their target genes. Most of the RBPs are involved in splicing or
in the general process of transcription, and many of them are a part of the hnRNP family.
The zinc finger CCHC-type containing 17 (ZCCHC17) was the only RBP that presented a
significant negative correlation with NAPRT expression.

Table 2. Transcription factors and RNA binding proteins with a significant correlation with NAPRT expression.

Gene Symbol Protein Name Spearman p Value

Tr
an

sc
ri

pt
io

n
fa

ct
or

s

BCL3 BCL3 transcription coactivator 0.725 2.64 × 10−11

CEBPB CCAAT enhancer binding protein β 0.618 8.62 × 10−8

JUN Jun proto-oncogene, AP-1 transcription factor subunit 0.532 8.46 × 10−6

MAFB MAF bZIP transcription factor B 0.569 1.42 × 10−6

PML PML nuclear body scaffold 0.568 1.44 × 10−6

RXRA retinoid X receptor α 0.628 4.67 × 10−8

STAT6 signal transducer and activator of transcription 6 0.573 1.14 × 10−6

TCF3 transcription factor 3 0.543 5.23 × 10−6

TMEM37 transmembrane protein 37 0.566 1.65 × 10−6

YY1 YY1 transcription factor 0.522 1.33 × 10−5

ZBTB7A zinc finger and BTB domain containing 7A 0.590 4.52 × 10−7

R
N

A
bi

nd
in

g
pr

ot
ei

ns

ESRP2 epithelial splicing regulatory protein 2 0.532 8.72 × 10−6

HNRNPAB heterogeneous nuclear ribonucleoprotein A/B 0.638 2.41 × 10−8

HNRNPH1 heterogeneous nuclear ribonucleoprotein H1 0.503 3.15 × 10−5

HNRNPL heterogeneous nuclear ribonucleoprotein L 0.589 4.76 × 10−7

PCBP1 poly(rC) binding protein 1 0.522 1.34 × 10−5

PTBP1 polypyrimidine tract binding protein 1 0.608 1.63 × 10−7

PTBP3 polypyrimidine tract binding protein 3 0.627 5.02 × 10−8

SRSF2 serine and arginine rich splicing factor 2 0.621 7.30 × 10−8

YBX1 Y-box binding protein 1 0.523 1.32 × 10−5

ZCCHC17 zinc finger CCHC-type containing 17 −0.636 2.82 × 10−8
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We also found a significant correlation between miR-92a-3p and miR-218-5p and
NAPRT expression in different datasets (Table 3). Interestingly, miR-92a-3p had a positive
or a negative correlation depending on tissues. The strongest correlation was positive and
was found in the dataset of differentiated embryonic stem cells.

Table 3. Significant correlations between NAPRT and miRNA expression.

Dataset Spearman
Correlation p-Value

hsa-miR-92a-3p

GSE34608 Pulmonary tuberculosis and sarcoidosis −0.797 1.3 × 10−5

GSE38974 Chronic obstructive pulmonary disease −0.626 4.1 × 10−4

GSE42095 Differentiated embryonic stem cells 0.830 4.8 × 10−7

GSE28544 Breast cancer 0.710 5.1 × 10−5

GSE15076 Monocyte-derived dendritic cells 0.600 4.4 × 10−2

hsa-miR-218-5p GSE38226 Liver fibrosis −0.726 9.7 × 10−5

3.3. Analysis of Target Genes

Next, we identified 340 known targets for the 11 TFs that correlate with NAPRT
expression (Supplementary Table S10). There were no reported targets only for the trans-
membrane protein 37 (TMEM37). Forty-three target genes were regulated by two or more
TFs. For the nine RBPs positively correlated with NAPRT expression, we obtained 148
target genes, and one more for the negatively correlated RBP (Supplementary Table S11).
Fifty-five of them were targeted by two or more RBPs. Among them, we found many
heterogeneous nuclear ribonucleoproteins (hnRNPs), small nuclear ribonucleoproteins
(snRNPs) and serine/arginine-rich splicing factors (SRSFs).

In miRTarBase, we performed Gene Set Enrichment analysis for all target genes of a
given miRNA. For each of the eight miRNAs studied, we selected the genes with at least
two validation methods, resulting in 1 gene for miR-1915-3p, 63 genes for miR-197-3p, 37
genes for miR-218-5p, 8 genes for miR-491-5p and 51 genes for miR-92a-3p. Between them,
only the TP53 gene was targeted by miR-92 and miR-491. The total list of 158 miRNA
targets is found on Supplementary Table S12).

Excluding duplicates, we obtained a total of 626 target genes.

3.3.1. Gene Ontology

We performed GO on the collection of all target genes, including the targets of the
11 TFs, the targets of the nine RBPs positively correlated with NAPRT expression and the
RBP negatively correlated with NAPRT expression and the targets of the four miRNAs for
which we found validated results in a total of 626 genes. Table 4 lists the most relevant
biological processes enriched (fold enrichment of over 3 with 10 or more genes), and the
complete results are found in Supplementary Table S13. The highest number of genes,
32, was mapped to the inflammation mediated by chemokine and cytokine signaling
pathway, but several signaling pathways appeared, including cholecystokinin receptor
(CCKR), gonadotropin-releasing hormone receptor (GnRHR), Toll receptor and interleukin
pathways. A few key cellular pathways related to both proliferation and apoptosis were
also enriched, such as p53, Ras and TGF-β signaling. In addition, we found Alzheimer’s
disease and Huntington disease pathways, blood coagulation and angiogenesis within the
most relevant results (considering a fold enrichment of above 3, with 10 or more genes).
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Table 4. Pathway overrepresentation of 626 targets of TFs and RBPs with a correlation with NAPRT
expression and miRNA targets. Only the child terms relative to 10 or more genes and with a fold
enrichment of over 3 are presented by decreasing fold enrichment order. Complete results are in
Supplementary Table S13.

Target Genes—PATHWAYS

p53 pathway

Toll receptor signaling pathway

Apoptosis signaling pathway

Interleukin signaling pathway

Transcription regulation by bZIP transcription factor

Blood coagulation

CCKR signaling map

Ras Pathway

Gonadotropin-releasing hormone receptor pathway

Alzheimer disease-presenilin pathway

Inflammation mediated by chemokine and cytokine signaling pathway

TGF-β signaling pathway

Angiogenesis

Huntington disease

For miRNAs, a separate GO analysis of each set of targets provided significant results
only for miR-218 and miR-92. The terms with the highest fold enrichment were all related to
differentiation or development. The terms with the highest number of genes were not only
mostly related to the regulation of transcription but also proliferation and differentiation
terms (Supplementary Table S14). Overall, GO analysis revealed an overrepresentation
for genes involved in developmental processes, mostly of cardiovascular and nervous
systems. Genes related to cell differentiation and proliferation, mainly of nervous system
and epithelium, were also enriched. In addition, we found several processes related to
signaling, including the Wnt pathway, cell adhesion and cell death.

3.3.2. Targets Co-Regulated

We identified 20 genes that were targeted by at least two different mechanisms within
our set of results, e.g., a pair of TF/RBP, TF/miRNA or RBP/miRNA. The unique gene
found within the target genes of the three types of regulators was cadherin 1 (CDH1).

In order to find potential associations between these 20 target genes, we used the
STRING platform to obtain an interaction network (Figure 4). For 3 out of the 20 genes, no
interactions were found (ABCC3, IL1R1 and ZNF175). We retrieved 30 interactions (edges)
between 17 genes (nodes), with an average degree of 3 and a significant protein-protein
interaction enrichment p-value (1.45 × 10−12). Eleven out of the twenty proteins were
found to have two or more interactions, TP53 being the one with the highest number of
interactions (nine).
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4. Discussion

The goal of this study was to investigate the mechanisms responsible for the regulation
of NAPRT expression. A thorough survey resulted in identifying a group of TFs, RBPs
and miRNAs that potentially bind to the NAPRT gene or mRNA, regulating its expression
at transcriptional and post-transcriptional levels. For an interaction to occur, the target
mRNA and the protein (in the case of TFs and RBPs) or the miRNA must be expressed in
the same tissue, which resulted in additional gene expression and network analyses. Based
on the rationale of co-regulatory networks of gene expression [51], co-regulated genes are
genes that are regulated by at least one common mechanism and are likely to participate
in similar biological functions. Tissue expression specificity can also provide important
insights into function. Herein, we directed the study to a normal, physiological and non-
pathological context. Surprisingly, functional analysis of NAPRT regulators uncovered a
link with developmental processes, cell differentiation and cell proliferation, which are
common to the three mechanisms (TFs, RBPs and miRNAs). In addition, we found that
the Cadherin signaling, which was previously associated to NAPRT [14], also correlated to
NAPRT expression regulators.

Among our results, we found several general regulators, such as MYC and TP53,
which are two ubiquitous TFs that are known to activate the transcription of growth-related
genes and are involved in cell proliferation/apoptotic regulation processes. In the set
of RBPs, we could find numerous heterogeneous nuclear ribonucleoproteins (hnRNPs),
serine/arginine (SR) proteins and RNA binding motif (RBM) proteins, which are major
families of splicing factors. NAPRT gene has a high number of alternatively spliced
transcripts, which are probably tissue specific, mostly in the brain [10]. This could explain
the high number of RBPs involved in splicing that were found to potentially bind NAPRT.
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Additionally, the GO analysis of TFs showed an enrichment in cadherin signaling
and in immune response, as several processes relate to viral response and interleukin pro-
duction, and the GO analysis of the RBPs suggest an association to dendrite development
and synapse organization. In more detail, the most relevant genes found in these analyses
were the TFs TCF7L2, TCF3 and LEF1; and RBPs FXR1, FXR2 and FMR1, as these were
responsible for the enrichment of the processes with the highest fold. TCF3 is involved in
lymphocyte development, and TCF7L2 has been implicated in neural development and
diseases [52], such as multiple sclerosis, where a role in demyelination and remyelination
has been suggested [53]. LEF1 is specifically expressed in lymphoid tissues, and it activates
transcription in the presence of β-catenin (CTNNB1). They participate in the Wnt signaling
pathway, which is further discussed below. FXR1, FXR2 and FMR1 belong to the Fragile X
family of RBPs. Their role in neurogenesis has been reviewed elsewhere [54]. In addition
to Fragile X Syndrome, they have been associated with other neurological disorders and
cancer [55].

Correlation analysis with NAPRT gene expression revealed eleven TFs and ten RBPs,
which would have a greater probability of exerting a regulatory mechanism in NAPRT
transcription activation and processing (Table 2). RBP ZCCHC17, which has unique
negative correlation with NAPRT expression, has been scarcely studied, but the most
relevant studies place it as a regulator in Alzheimer’s disease [56]. Of note, signaling
pathways related to Alzheimer’s and Huntington’s diseases, both degenerative brain
diseases, also appeared in the GO analysis.

Among the positively NAPRT correlated factors, only TFs BCL3, PML and YY1 were
identified in experimentally validated data. BCL3 gene encodes for a transcription co-
activator, previously known as B-Cell Lymphoma 3-Encoded Protein, due to its role in
lymphoma and leukemia. It was initially implicated in cell lineage determination [57] and
more recently associated with Wnt/β-catenin signaling in other types of cancer [58]. A
positively correlated RBP was the epithelial splicing regulatory protein 2 (ESRP2), which
particularly regulates the splicing of transcripts that undergo changes in splicing during
epithelial-to-mesenchymal transition (EMT), namely CD44 and CTNND1. Among the TFs
correlated with NAPRT expression, ZBTB7A (Zinc Finger and BTB Domain Containing 7A)
was the only TF that acts only as a repressor (and not activator), according to the TRRUST
database. It represses SLC2A3 (GLUT3), a glucose membrane transporter, which is mostly
known for its specific expression in neurons. Very recently, GLUT3’s role in glioblastoma
has been described [59].

GO analysis results of the target genes of the miRNAs miR-218-5p and miR-92a-3p are
consistent with the results for TFs and RBPs, where an enrichment in neural and cardiac
development and cell differentiation was found, and a considerable number of processes
related to signaling included the Wnt pathway.

Although most research studies on these microRNAs are related to cancer, where they
have been identified as tumor suppressors, other areas are being investigated. MiR-218 was
described as motor-neuron specific and its downregulation was associated with neurode-
generation in mice [60] and amyotrophic lateral sclerosis in humans [61]. In association
with the Wnt/b-catenin pathway, miR-218 is involved in osteogenic differentiation [62], in
neuronal differentiation of adipose stem cells [63] and, more recently, it was shown that
miR-218 is required for functional neural-like cells [64]. MiR-92 is also involved in processes
of EMT, particularly related to angiogenesis [65]. Moreover, miR-491 is associated with the
post-transcriptional regulation of dopamine transporters in neural cells [66]. In addition,
miR-491 is among the miRNAs identified as regulators of the transcription factor TCF7,
which acts in the Wnt/b-catenin pathway [67]. Considering their expression patterns, we
suggest that both miR-218 and miR-491 might have a role in NAPRT downregulation in the
brain.

Most of the mentioned TFs, RBPs and miRNAs are also associated with cancer devel-
opment. One particular pathway is the Wnt signaling pathway, mostly via the b-catenin
pathway (also known as the canonical pathway), which has functions in tissue develop-
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ment and homeostasis, and is often altered in cancer (reviewed in [68]). Cellular processes
such as proliferation, differentiation, adhesion and survival take place upon Wnt activation.

One of the cellular processes where the Wnt signaling pathway is determinant is the
epithelial to mesenchymal transition (EMT), which is a key step not only in embryonic
development but also in carcinogenesis. In the EMT, epithelial cells with strong cell–cell
adhesion are converted in mesenchymal cells, which present more motile and invasive
properties. After the discovery that NAPRT expression was lost in several EMT-subtypes of
gastric tumors, Lee et al. suggested that NAPRT is involved in the Wnt pathway and plays
a putative role in the stabilization of the β-catenin destruction complex [14]. In their study,
a positive correlation between the expression of NAPRT and E-cadherin was described. In
order to strengthen this relation, in our study, the global analysis of all targets showed that
the CDH1 protein was targeted by three types of NAPRT expression regulators, namely
by TCF3 (a TF), ESRP2 (an RBP) and the miR-92. These three potential NAPRT regulators
were found to be significantly correlated with NAPRT expression. In the canonical Wnt
signaling pathway, activation/repression of the target genes depends on the TCF/LEF
family of TFs, which comprises TCF3, TCF7L2 and LEF1, which bind to b-catenin. TCF7L2
binding to NAPRT was retrieved from experimental data and TCF3 presented a positive
correlation with NAPRT expression, further supporting NAPRT functions in this signaling
pathway.

Our GO results also suggested a role for NAPRT in immune signaling, consistent with
recent findings that the extracellular NAPRT protein (eNAPRT) triggered inflammatory
responses in macrophages, mostly from the NF-kB pathway, and enhanced macrophage
differentiation from circulating monocytes [16,17]. This is relevant, as it supports the new
NAPRT roles independent of its enzymatic function on NAD production.

5. Conclusions

Our study suggests that NAPRT is involved in differentiation and developmental pro-
cesses and showed that, beyond its application in cancer therapeutic strategies involving
NAMPT, NAPRT may participate in the process of carcinogenesis and tumor progression.
Particularly in neural development, our results are supported by the established asso-
ciation of NAPRT mutations with neurological/neurodevelopmental diseases, namely,
attention-deficit/hyperactivity disorder and schizophrenia [69,70]. Studies in zebrafish
also suggested that partial loss of function of the NAPRT gene results in abnormal brain
development [70].

As such, our results indicate NAPRT potential regulators that should be experimentally
studied. This particularly includes TFs TCF3/TCF7L2, the lesser known RBP ZCCHC17
and the miRNAs miR-218 and miR-491. The previously described link of NAPRT with the
Wnt signaling [14] was emphasized by several of our analyses. Thus, given the role of this
pathway in differentiation and developmental processes, NAPRT should also be further
explored in this context.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12122022/s1, Figure S1: Expression heatmaps for the experimentally validated miRNAs,
obtained from DASHR (http://dashr2.lisanwanglab.org/, accessed on 14 December 2021). Table S1:
Databases used for data collection on transcription factors, RNA binding proteins and microRNAs,
Table S2: Full list of potential NAPRT transcription factors (total of 80), Table S3: Transcription
factors with experimentally supporting data of NAPRT binding, Table S4: Gene ontology results
for transcription factors, Table S5: Full list of potential NAPRT RNA binding proteins (total of 122),
Table S6: RNA binding proteins with experimentally supporting data of NAPRT binding, Table S7:
Gene ontology results for RNA binding proteins, Table S8: Full list of potential NAPRT microRNAs
(total of 39), Table S9: microRNAs with experimentally supporting data of NAPRT binding, Table
S10: Target genes of the TFs significantly correlated with NAPRT expression (total of 340), Table S11:
Target genes of the RBPs significantly correlated with NAPRT expression (total of 149), Table S12:
Target genes of the miRNAs experimentally validated (total of 158), Table S13: Gene ontology results
of the target genes (total of 626) from the transcription factors and the RNA binding proteins that
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have a significant correlation with NAPRT expression and the microRNAs. Biological process (A)
and molecular function (B) from the PANTHER slim annotations datasets, PANTHER pathways (C),
by decreasing fold enrichment order. Only child terms are presented, Table S14: Top GO results for
miR-92 (A) and miR-218 (B) target genes. The processes with a fold enrichment over 100 and relative
to more than 10 genes are shown. Only child terms are presented.
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