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ABSTRACT

Coronavirus disease 2019 (COVID-19) is a pandemic of unprecedented severity affecting millions of people around the world
and causing several hundred thousands of deaths. The presentation of the disease ranges from asymptomatic
manifestations through to acute respiratory distress syndrome with the necessity of mechanical ventilation. Cytokine
storm and maladaptive responses to the viral spread in the body could be responsible for the severity of disease. Many
patients develop acute kidney injury (AKI) during the course of their disease, especially in more severe cases. Many factors
could cause kidney damage during infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
It is still unclear whether direct viral damage or the overexpression of cytokines and inflammatory factors are preeminent.
According to autoptic studies, in most of the cases, AKI is due proximal tubular damage. However, cases of collapsing focal
segmental glomerulosclerosis were reported as well in the absence of signs of direct viral infection of the kidney.
Considering that severe hypoxia is a hallmark of severe SARS-CoV-2 infection, the involvement of the hypoxia-inducible
factor (HIF) system is very likely, possibly influencing the inflammatory response and outcome in both the lungs and
kidneys. Several bodies of evidence have shown a possible role of the HIF pathway during AKI in various kidney disease
models. Similar observations were made in the setting of acute lung injury. In both organs, HIF activation by means of
inhibition of the prolyl-hydroxylases domain (PHD) could be protective. Considering these promising experimental data, we
hypothesize that PHD inhibitors could be considered as a possible new therapy against severe SARS-CoV-2 infection.
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Coronavirus disease 2019 (COVID-19) is a pandemic of unprece-
dented severity threatening people and health systems all
around the world; at mid-July 2020, it has already caused
>500 000 deaths worldwide. The presentation of the disease
ranges from asymptomatic or mild, self-limiting respiratory
tract infections to severe acute respiratory distress syndrome
(ARDS), with high requirements of intensive care and mortality.
Cytokine storm and maladaptive responses to the viral spread

in the lungs could be associated with the severity of the disease,
as a possible consequence of a dysregulated host response to in-
fection [1]. In particular, high levels of soluble interleukin (IL)-2
receptor, IL-6, IL-1, IL-10 and tumour necrosis factor-a are found
in the more severe cases [2–4]. The suspicion of an overzealous
immune response associated with excessive macrophage acti-
vation has been the starting point for the use of anti-cytokine
therapy for dampening such exaggerated immune responses [5].
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Moreover, a high percentage of patients develop thrombo-
embolic complications, underlining a link between inflamma-
tion and thrombosis.

COVID-19 AND ACUTE KIDNEY INJURY

In the recent months of the COVID-19 pandemic, progressive
evidence has accumulated that severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) hits not only the lungs, but
also other organs, including the kidney. Observational data
have shown a high occurrence of acute kidney injury (AKI) in
patients with SARS-CoV-2 infection. According to a prospective
cohort study in Wuhan, China, on admission a high percentage
of patients already had urine abnormalities and/or elevated se-
rum creatinine; during the hospitalization, AKI occurred in 5.1%
of nearly 700 patients [6]. Much higher figures were reported
from a data collection in the metropolitan area of New York,
USA [7]. In this cohort of 5449 patients, 1993 (36.6%) developed
AKI during their hospitalization (Stage 1, 46.5% ; Stage 2, 22.4%;
Stage 3, 31.1%). Nearly 300 patients (14.3% of those with AKI)
needed renal replacement therapy at some point. There are sev-
eral possible causes of AKI in patients with SARS-CoV-2 infec-
tion (Table 1).

It is well known that the viral receptor, angiotensin-convert-
ing enzyme 2 (ACE2) protein, is expressed in the kidney in tubu-
lar proximal cells and podocytes [8]. It has been then
hypothesized that AKI could be the direct consequence of the
cytopathogenic effect of SARS-CoV-2 in tubular cells.
Supporting this, autoptic studies showed tubular isometric
vacuolization of proximal tubules on light microscopy, which
correlates with double-membrane vesicles containing vacuoles
seen with electronic microscopy [9, 10]. However, virus-like par-
ticles have been previously described in kidney biopsies in the
absence of a viral infection. Of note, SARS-CoV-2 is not found in
the urine of infected patients, even with severe disease mani-
festations [11, 12], except in anecdotal cases [13]. Another possi-
ble pathogenetic mechanism could be linked to the fact that the
entry of SARS-CoV-2 into cells is followed by subsequent down-
regulation of surface ACE2 expression, causing a sharp increase
in angiotensin II levels, and by impaired conversion of Ang II
(into Ang 1–7), with a possible loss of its protective effects [14].

Complement activation and microthrombi formation may
also have a contributory role in kidney damage, possibly with
one interacting with the other [15].

Interestingly, Fanconi syndrome could precede severe AKI in
many cases [16], indirectly confirming tubular damage as a ma-
jor cause of AKI during SARS-CoV-2 infection.

The more severe is the clinical picture, the higher the likeli-
hood of developing kidney failure and of having a fatal outcome
[6, 17]. According to the data obtained in the metropolitan area
of New York, in the majority of cases, AKI occurred coincident
with severe respiratory failure requiring mechanical ventilation,
with 89.7% of patients on mechanical ventilation developing
AKI compared with 21.7% of non-ventilated patients [7]. Almost
all the patients with AKI who required renal replacement ther-
apy were on mechanical ventilation. These data suggest that se-
vere hypoxia, cytokine storm or the combination of both could
severely damage the kidney, not necessarily in the presence of
a direct attack on the organ by the virus.

In this journal, Couturier et al. [18] recently reported on the
clinical course and pathology findings for two COVID-19
patients with collapsing focal segmental glomerulosclerosis
(FSGS) and severe tubulointerstitial lesions. This specific sub-
type of glomerulonephritis is often observed in patients affected
by the human immunodeficiency virus (HIV) [19]. Other viruses,
including cytomegalovirus, parvovirus B19 and Epstein–Barr vi-
rus, have been implicated as well in causing FSGS [20]. It is
thought that the majority of these forms are caused by direct vi-
ral damage.

Both patients were submitted to kidney biopsy during the
course of their disease because of progressively increasing pro-
teinuria and worsening of kidney function concurrently with
the worsening of lung disease and hypoxia [18]. In order to bet-
ter characterize the role of SARS-CoV-2 in the development of
collapsing FSGS, the authors performed reverse transcription
polymerase chain reaction (RT-PCR) assay on the renal tissue
specimen of one of the two patients without detecting any mo-
lecular expression of the virus. The RT-PCR assay gave negative
results also in whole blood.

Interestingly, as in HIV infection, where the effect on podo-
cytes is strongest in African American individuals with apolipo-
protein L1 (APOL1) risk alleles [21], the two patients were found
either homozygous for the G1 polymorphism, or heterozygous
(G1/G2) [18].

This report supports an indirect effect of SARS-CoV-2 on the
kidney, at least in some cases. Podocyte dysregulation and/or
tubular damage might be possibly caused by the infection-
driven inflammatory response that releases cytokines or viral
products, together with the involvement of interferon path-
ways. The coexistence of hypoxia could further enhance the
process and move the inflammatory response more towards
maladaptation rather than tissue recovery.

THE HYPOXIA-INDUCIBLE FACTOR SYSTEM
AND INFLAMMATION

Hypoxia-inducible factors (HIFs) are transcription factors or-
chestrating the response of the body to hypoxia. The main
effectors of the system are HIF-a subunits; their availability is
tightly regulated by enzymes of the prolyl-hydroxylases domain
(PHD), the activity of which depends on the presence of oxygen,
iron, a-ketoglutarate and ascorbic acid. Under normal oxygen
conditions, HIF-a half-life is short as a consequence of hydroxyl-
ation by PHD, which marks HIF-a for proteasomal degradation;
under hypoxia, PHD activity decreases, HIF-a can bind to the
constitutively expressed HIF-b subunit, resulting in the activa-
tion of a large array of target hypoxia-responsive genes, promot-
ing angiogenesis, erythropoiesis, iron availability, cell growth
and migration, and a switch to a glycolytic cell metabolism. All
these orchestrated activities lead to reduced cellular oxygen

Table 1. Possible causes of AKI during SARS-CoV-2 infection

Direct viral damage to tubular cells and podocytes
Immuno-mediated damage (inflammation, cytokines and viral

particles)
Microthrombosis
Complement activation
Hypoxia
Multiorgan failure
Dehydration and hypotension
Malnutrition
Downregulation of surface ACE2 expression
Drug toxicity
Rhabdomyolysis
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consumption and increased availability of molecular oxygen in
the cellular microenvironment [22].

The HIF system is critical also for inflammation and control
of immune cell metabolism and function [23]. Indeed, hypoxia
and inflammation are unequivocally linked, since hypoxia
causes inflammation in exposed tissues and, the other way
around, inflammation induces a severe hypoxic response [24].
In persons with mountain sickness, the increase of proinflam-
matory cytokines seems to precede the vascular leakage caus-
ing pulmonary or cerebral oedema [25]. Similar data have been
obtained in animal models of low-oxygen exposure, where HIF-
1a activation attenuated neutrophil transmigration [26].
Another well-known model is the ischaemia–reperfusion injury
following transplantation. For instance, ischaemia of lung grafts
causes the production of reactive oxygen species (ROS) by the
pulmonary endothelium, which in turn induces proinflamma-
tory mediators leading to organ injury and favouring acute re-
jection [27].

Interestingly, similarly to exogenous inflammation, HIF-1a

can enhance the production of interferon-a and -b from bone
marrow-derived dendritic cells and activate T cell, linking in
this way the innate and adaptive immune system [28].

From the opposite perspective, inflamed tissues become
hypoxic, as a result of reduced oxygen delivery and increased
oxygen consumption from cells [23]. Depending on the tissue,
the determinants of pathological hypoxia are varied. In these
niches, pathological hypoxia can drive immune cell dysfunc-
tion, inflammation and a worse outcome in infection [29]. To
make it even more complex, a range of immunological niches
with distinct microenvironmental features can exist in a given
tissue [29].

THE HIF SYSTEM AND ACUTE LUNG INJURY

ARDS and its milder form acute lung injury (ALI) are character-
ized by diffuse alveolar injury, lung oedema formation,
neutrophil-derived inflammation and surfactant dysfunction.
In these conditions, hypoventilation and hypoxia result in the
activation of the HIF. Several bodies of evidence showed a possi-
ble involvement of the HIF system in the pathogenesis of ALI,
with hypoxia being a possible boosting factor for inflammation
[30]. In particular, the Toll-like receptor 4 (TLR4) plays a crucial
role in bridging the interaction between hypoxia and inflamma-
tion [30]. This pathway is a key component of the innate im-
mune system; it recognizes specific patterns of microbial
components, called pathogen-associated molecular patterns. Its
activation induces the translocation of nuclear factor-kappa B
to modulate the expression of pro-inflammatory genes encod-
ing cytokines and chemokines and co-stimulatory molecules.

According to an experimental study, either sepsis or hypoxia
alone caused a small activation of TLR4 signalling. In
contrast, the combination of the two had a synergistic effect on
macrophagic expression of TLR4 and of downstream pro-
inflammatory cytokines.

Cellular bioenergetic failure caused by mitochondrial dys-
function is another mediator of alveolar epithelial injury.

Hypoxia can also negatively affect mechanisms of recovery,
since it impairs oedema reabsorption from the alveolar spaces
by inhibiting the sodium channels [31]. The endothelial expres-
sion of HIF-1a is also required for vascular repair and resolution
of inflammatory lung injury, as shown in a mouse model with
endothelial-specific HIF-1a deletion [32].

According to recent data, HIF-1a may be also critical for viral
replication in lung epithelial cells. In a cell-specific HIF-1a

knockout mouse model infected with influenza A virus, HIF-1a

deficiency in alveolar-Type II epithelial cell developed more vi-
ral replication and severe lung inflammation [33]. The cellular
energy stress consequent to HIF-1a deficit promoted the
Adenosine monophosphate (AMP)-activated protein kinase
(AMPKa) signalling, which in turn initiated autophagy, the latter
promoting viral replication [33]. According to data obtained in
SARS-CoV infection, hypoxia can increase the capability of viral
spike proteins of SARS-CoV to trigger the conversion of B cells
to macrophages, contributing to massive macrophage infiltra-
tion observed in this disease [34].

Experimental data suggest that HIF-1a activation could alle-
viate lung injury. An in vitro study showed that moderate hyp-
oxia could down-regulate IL-6 secretion; this went together with
up-regulation of HIF-1a [35]. In a rat model of ALI induced by lip-
opolysaccharides (LPS) combined with hypoxia, the induction of
HIF-1a accumulation protected the lungs during ALI by attenu-
ating macrophage inflammatory responses [30]. In a model of
ARDS, pharmacological PHD inhibition reduced the neutrophil-
mediated alveolar epithelial injury; the protective effect was
exerted by HIF-1-dependent enhancement of glycolysis [36].
Similar findings were obtained with pharmacological HIF stabi-
lization in an in vitro model resembling mechanical ventilation
[37]. Pharmacological stabilization of HIF-1a with a PHD inhibi-
tor was also shown effective in increasing the therapeutic ca-
pacity of mesenchymal stem cells in reducing mortality,
bacterial burden, inflammation and lung injury [38]. In an endo-
thelial cell-specific inducible knockout mouse model, the endo-
thelial depletion of PHD2 prevented the formation of leaky
vessels and oedema by regulating endothelial barrier function
and protected mice from LPS-induced overwhelming inflamma-
tion and death [39].

In contrast, inappropriate activation of HIF-1a may contrib-
ute to tissue damage, promote excessive neutrophilic responses
and delay inflammation resolution. The timing of HIF activation
may be critical. At disease onset, it could induce a pro-
inflammatory state, whereas chronic activation of the pathway
would lead to dampening of the inflammatory response.

THE HIF SYSTEM AND AKI

The involvement of the HIF pathway during AKI has been
shown in various kidney disease models; accordingly, much ex-
perimental evidence has accumulated in recent years proposing
a protective role of HIF activation obtained with PHD inhibition
on AKI.

The full understanding of all the possible pathways through
which the system plays its role in AKI are still a matter of re-
search. The known effects span from an increase in oxygen sup-
ply and adaptation to limited oxygen demand, to a regulation of
inflammatory processes, a decrease in oxidative stress, an im-
provement of mitochondrial metabolism and reduced apopto-
sis. The stimulation of erythropoietin synthesis could also have
a role since the hormone has protective effects on AKI [40].

Given its direct link with hypoxia, the ischaemia–reperfusion
model is the most studied. Accordingly, the involvement of the
HIF system has been demonstrated in several studies [41, 42].
Endothelial cells are considered important mediators of the
damage following ischaemia–reperfusion. During this process
they undergo activation with increased expression of adhesion
molecules, causing the recruitment and activation of inflamma-
tory cells. Recently, Rajendran et al. [43] investigated the effects
of endothelial-specific ablation of PHD2 in a mouse model of re-
nal ischaemia–reperfusion injury. This was found to improve
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early and late damages occurring during AKI, thanks to the sup-
pression of the expression of proinflammatory genes and re-
cruitment of inflammatory cells in a HIF-1a-dependent manner.

In another model of renal proximal tubule cells in culture, in
which ischaemia was produced by either oxygen-glucose depri-
vation or oxidative phosphorylation with rotenone/antimycin
A, HIF-1a activation by means of PHD inhibition reduced the lev-
els of ROS with an improvement of cell viability [44]. Moreover,
it improved glycogen storage and delayed Adenosine triphos-
phate (ATP) depletion [44].

Mitochondrial damage has been implicated in the pathogen-
esis of ischaemic disease, with disruption of mitochondrial dy-
namics (i.e. the balance between mitochondrial fission and
fusion) in ischaemic cell injury. In this context, Wei et al. [45]
demonstrated in human patients, mice and renal tubular cells
from ischaemic AKI that HIF-1a induces microRNA-668, a possi-
ble regulator of gene expression able to influence the activity of
mitochondrial fusion/fission proteins, protecting cells from ap-
optosis. Similar findings were obtained when investigating
other microRNAs [46].

Gentamicin induces AKI in nearly 20% of treated patients; it
is thought that its damage is mediated by the induction of apo-
ptosis in renal proximal tubule cells and mesangial cells. Dose-
and time-dependent elevation of renal HIF-1a mRNA levels were
reported in animal studies of gentamicin-induced nephrotoxi-
city [47]. In the same animal model, the activation of HIF by co-
balt or dimethyloxalylglycine, N-(methoxyoxoacetyl)-glycine
methyl ester attenuated renal dysfunction, proteinuria and
structural damage through a reduction of oxidative stress, in-
flammation and apoptosis in renal tubular epithelial cells [48].
This could be of importance in the perspective that some of the
patients with severe SARS-CoV-2 infection who are admitted to
intensive care units are treated with gentamicin to prevent
Pseudomonas aeruginosa lung colonization.

As mentioned above, in the course of SARS-CoV-2 infection,
AKI is often caused by tubular damage leading to acute tubular
necrosis. It has been shown that lipotoxicity could contribute to
the development of AKI and HIF could promote fatty acids accu-
mulation in cells. However, in an experimental model of trans-
genic mice and human primary tubular epithelial cells, differing
from cyclosporin treatment, the genetic deletion and pharma-
cological inhibition of PHDs (and thus the activation of the HIF
system) did not cause cytotoxicity [49]. On the contrary, it may
possibly protect tubular cells from toxic free fatty acids by trap-
ping them as triacylglycerides in lipid droplets [49].

Of note, not all experimental observations go in the same di-
rection. In a murine models of ischaemia–reperfusion injury and
unilateral ureteral obstruction, increased expression of HIF-1a in
tubular epithelial cells was associated with activation of macro-
phages to promote tubulointerstitial inflammation [50]. Also, in
the setting of AKI during sepsis, data are not always concordant,
with some studies suggesting that pre-conditioning with chronic
hypoxia could be protective against subsequent AKI [51] and
others showing that reduced HIF-1a expression may attenuate
sepsis-induced AKI and normalize inflammatory cytokines [52].
The opposing findings could find an explanation in the different
timing and degree of activation of the HIF system.

PHD INHIBITORS: A HYPOTHESIS FOR
POSSIBLE USE IN SEVERE COVID-19

Especially when developing AKI, patients with SARS-CoV-2 in-
fection have a high rate of anaemia, often severe. Anaemia is a

possible precipitating factor in the course of the disease, since
in the presence of respiratory insufficiency causing hypoxae-
mia, it makes worse peripheral tissue ischaemia. For this rea-
son, many patients receive blood transfusion at a given time of
their disease. The pathogenesis of anaemia during SARS-CoV-2
infection has many causes. The first and most obvious one is in-
flammation together with functional iron deficiency. In addition
to this, experimental data have shown that SARS-CoV-2 inhibits
the normal metabolic pathway of haeme [53]. Indeed, one viral
protein combines with porphyrin to form a complex, while
others coordinately attack haem to dissociate the iron to form
the porphyrin [53]. This possibly causes a decrease of function-
ing haemoglobin quote and the release of free toxic circulating
haeme [54]. Of interest also is the observation that one facilita-
tor for SARS-CoV-2 entrance, the Glucose Regulated Protein 78
receptor, is located into bone marrow cells. It has been hypothe-
sized that this could possibly negatively affect the maturation
and development of erythropoietic cell lines [54]. Interestingly,
an elevated red blood cell distribution width, which is a possible
marker of slower red blood cell production and turnover, has
been associated with increased mortality in COVID-19 patients
[55]. Moreover, as reported by Ehsani [56], there is a distant se-
quence similarity between the cytoplasmic tail of the coronavi-
rus spike protein and the hepcidin protein, possibly
contributing to dysregulated iron metabolism. This hepcidin-
like activity of SARS-CoV-2 could partially explain the very high
ferritin levels observed in patients with COVID-19.

PHD inhibitors are oral drugs that mimic the effect of hyp-
oxia on the HIF system. Several molecules of this class have just
finished or are undergoing Phase III clinical development for
the treatment of anaemia in patients with chronic kidney dis-
ease (CKD). One molecule is approved for clinical use in China
and Japan. According to preliminary data of Phase III studies,
PHD inhibitors are effective in increasing or maintaining hae-
moglobin levels in comparison to placebo or erythropoiesis-
stimulating agent (ESA) with a non-inferior safety profile [57].

Differing from currently available ESAs, PHD inhibitors in-
crease the production of endogenous erythropoietin from the
kidney or the liver; on average they correct anaemia by means
of much lower levels of erythropoietin in comparison with
ESAs, while avoiding sharp serological peaks. It is still unknown
whether this could translate into a clinical advantage in com-
parison with ESA.

In addition, they influence iron metabolism by direct and in-
direct mechanisms, leading to a decrease in serum hepcidin
and ferritin levels. Of note, similar to inflamed patients with
CKD, high ferritin levels are observed in patients with severe
COVID-19 [2].

Differing from ESA, they effectiveness on anaemia is main-
tained also in patients with signs of inflammation, indirectly
confirming the link between the HIF system and inflammation.

Given the promising experimental data on the possible ben-
eficial effect of PHD inhibition on ALI or AKI and the urge of
finding new treatment approaches for patients experiencing se-
vere lung involvement of SARS-CoV-2, we wonder whether this
class of drugs could be considered as a possible new therapy
against severe COVID-19. This could be given in association
with tocilizumab or anakinra to amplify its effects. Pilot or ran-
domized studies with PHD inhibitors should be considered.
Considering that one molecule of the class is already in clinical
use in China for the treatment of anaemia in CKD patients, it
would be interesting to collect retrospectively information on
whether the use of a PHD inhibitor according to its indication is
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associated to a better outcome in patients with SARS-CoV-2
infection.

However, caution is needed. Indeed, patients with SARS-
CoV-2 infection develop a prothrombotic state causing micro or
overt systemic thrombosis; during sepsis, HIF activation could
increase the expression of coagulant factors and promote
thrombus formation [58]. Adequate anticoagulation is now the
standard of care for SARS-CoV-2 infection; this becomes of key
importance in the case of a possible use of PHD inhibitors to

treat patients with SARS-CoV-2 infection. Moreover, given the
complexity of the HIF system, uncertainties remain as to the
right timing of PHD inhibitors to maximize their potential bene-
fits and avoid unwanted negative effects.
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