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Abstract
Thermobifidas are thermotolerant, compost inhabiting actinomycetes which have complex

polysaccharide hydrolyzing enzyme systems. The best characterized enzymes of these

hydrolases are cellulases from T. fusca, while other important enzymes especially hemi-

cellulases are not deeply explored. To fill this gap we cloned and investigated endoman-

nanases from those reference strains of the Thermobifida genus, which have published

data on other hydrolases (T. fusca TM51, T. alba CECT3323, T. cellulosilytica TB100T and
T. halotolerans YIM90462T). Our phylogenetic analyses of 16S rDNA and endomanna-

nase sequences revealed that T. alba CECT3323 is miss-classified; it belongs to the T.
fusca species. The cloned and investigated endomannanases belong to the family of gly-

cosyl hydrolases 5 (GH5), their size is around 50 kDa and they are modular enzymes.

Their catalytic domains are extended by a C-terminal carbohydrate binding module (CBM)

of type 2 with a 23–25 residues long interdomain linker region consisting of Pro, Thr and

Glu/Asp rich repetitive tetrapeptide motifs. Their polypeptide chains exhibit high homol-

ogy, interdomain sequence, which don’t show homology to each other, but all of them are

built up from 3–6 times repeated tetrapeptide motifs) (PTDP-Tc, TEEP-Tf, DPGT-Th). All
of the heterologously expressed Man5A enzymes exhibited activity only on mannan. The

pH optima of Man5A enzymes from T. halotolerans, T. cellulosilytica and T. fusca are

slightly different (7.0, 7.5 and 8.0, respectively) while their temperature optima span within

the range of 70–75°C. The three endomannanases exhibited very similar kinetic perfor-

mances on LBG-mannan substrate: 0.9–1.7mM of KM and 80–120 1/sec of turnover num-

ber. We detected great variability in heat stability at 70°C, which was influenced by the

presence of Ca2+. The investigated endomannanases might be important subjects for
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studying the structure/function relation behind the heat stability and for industrial applica-

tions to hemicellulose degradation.

Introduction
The hemicellulose fraction of plant cell walls is mainly composed of xylan and mannan, and in
case of leguminous plants high mannan content has also been found in seeds. Due to the com-
plex structure of lignocellulose, hemicellulases are necessary for efficient extraction of cellulose
from plant cell wall [1]. Biopolymers like cellulose or mannan are very promising raw materials
for many industrial applications. Recently several studies have indicated that the most promis-
ing use of these biopolymers and their derivatives will be the health and food industry [2,3],
since mannan degradation can produce a huge variety of biologically active oligosaccharides,
which can be used as prebiotics.

Mannans are heterologous biopolymers with a very versatile composition. Galactomannan
is composed of a homogenous backbone of β-1,4-linked mannose residues, that are branched
with galactosyl residues, whereas galactoglucomannan has a heterogeneous backbone of β-
1,4-linked glucose and mannose residues; in some cases (mainly in softwoods) this backbone is
acetylated. The complete degradation of mannans requires a set of different enzymes. Endo-
mannanases catalyze the random hydrolysis of the β -1,4-mannosidic backbone of the main
mannan chain, α–galactosidases cleave the terminal α-1,6-linked D-galactosyl residues, and β-
mannosidases hydrolyze β-1,4-linked mannose residues from the non-reducing ends of various
oligosaccharides [4,5].

Some Actinomyceta like Streptomyces and Cellulomonas possess a large hydrolase pool, and
several species can produce mannan degrading enzymes [6–9]. Endomannanases belong to
three different glycoside hydrolase (GH) groups, namely the GH5, GH26 and GH76 according
to the CAZY database [10] (http://www.cazy.org), and there are prokaryotic and eukaryotic
endomannanases in each group. Glycoside hydrolases usually have modular architecture con-
taining catalytic and carbohydrate binding modules (CBM), and their domain structures
exhibit huge inter and intra species diversity [11]. Endomannanases may have different sub-
strate specificity [12], and characteristic features of mannanases, such as the thermal stability
are also affected by CBMs [13].

Enzymes with high thermal stability are of great interest for industrial applications [14].
One of the most promising sources of thermostable lignocellulolytic enzymes are compost
inhabiting Thermobifida strains. These strains colonize the hot spots of the composts, and they
are among the most effective organic matter degraders. Thermobifida genus belongs to the
Actinomycetales order and four species, T. fusca, T. alba [15], T. cellulosilytica [16] and T. halo-
tolerans have been described so far [17].

The genome of two T. fusca isolates, T. fusca YX [18] and T. fusca TM51 [19] have been
sequenced. These genome sequences revealed 39 glycoside hydrolases belonging to different
GH-families. Although the cellulolytic enzyme system in T. fusca is well characterized, our cur-
rent knowledge about the hemicellulolytic enzyme system is fragmentary [20–22], and there
are only a few studies about the other three Thermobifida species and their glycoside hydro-
lases. So far there are only three glycoside hydrolases—two endoglucanases and a xylanase—
characterized from T. halotolerans [23–25]. A xylanase also has been described from T. alba
[26], but there are no data available for glycoside hydrolases from T. cellulosilytica. Not only
biochemical but also structural investigations of these enzymes are poor. The catalytic domain
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of T. fusca endomannanase has been investigated by Hilge et al. [27]. This study was the first
publishing high resolution 3D structure of a mannan degrading enzyme, and assigned this
endomannanase to the glycosyl hydrolase family 5 (GH5).

Recently, two studies have been published focusing on the thermostability of the endoman-
nanase from T. fusca and another endomannanase (StMan) from Streptomyces thermolilacinus.
The first study showed that the thermal stability of these enzymes depends on the concentra-
tion of calcium ions [28], and the authors also determined the amino acid residues responsible
for this phenomenon [29]. Formerly we had already described an intracellular mannobiose
cleaving beta-mannosidase (ManB) from T. fusca, which seems to be the terminal part of the
mannanase system [22]. Further exploring the genome sequence data, we identified two GH5
hydrolases—endomannanase (man5A) and endoglucanase (cel5A) genes—which are located
on the genome upstream of the mannosidase (Fig 1) [30]. Here we report the characterization
of the first endomannanase enzyme from T. cellulosilytica, and also a partial characterization of
endomannanase from T. halotolerans. We also compared the three endomannanases from
three different Thermobifida species namely from T. fusca, T. cellulosilytica and T. halotolerans.

Materials and Methods

Chemicals
Unless otherwise indicated, all chemicals herein used were analytical-grade and purchased
from Sigma-Aldrich Ltd. (Budapest, Hungary).

Microorganisms and culture conditions
Four Thermobifida strains were used in this study. T. fusca TM51 and T. cellulosilytica TB100
were isolated from the hot region of manure compost [31]. T. halotolerans YIM90462 and T.
alba CECT3323 (synonym: T. alba ULJB1) were purchased from Japan Collection of Microor-
ganisms (JCM) and Spanish Type Culture Collection (CECT), respectively.

Cloning of endomannanases-encoding genes according to genome
sequence data
Primers were designed using the genome sequence data of T. fusca TM51 [19]. Genomic DNA
was isolated from each Thermobifida strains by MoBio UltraClean Microbial DNA Isolation
Kit following manufacturer’s instructions. The endomannanase genesman5ATf,man5ATc
andman5ATh were PCR-amplified with primers man5ATf forward (5’-GGTGCCATCATATG
GCCACCGGGCTCC-3’), man5ATf reverse (5’- GTGCCATCTCGAGTCAGCGAGCGGTG-3’)
and the four-fold degenerate primers man5ATfd forward (5’-GGTGCCATCATATGGCCACCG
GGCTSS-3’) and man5ATfd reverse 5’-GTGCCATCTCGAGTCAGCGAGCGGWS-3’), with

Fig 1. Genomic localization of the endomannanase gene of Thermobifida fusca strain TM51 according to the genome sequence
data. Pale grey boxes without any marking represent conserved hypothetical protein encoding genes with unknown function and elements
of peptide ABC transport system and transcriptional regulator genes, pep1: uncharacterized peptidase gene,man5A: endomannanase
gene, cel5A: endoglucanase gene [30], β-man: beta-mannosidase gene [22]. On T. fusca genome the formerly published intracellular β-
mannosidase is located in 13 kb proximity to the extracellular endomannanase.

doi:10.1371/journal.pone.0155769.g001
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underlined sequences harboring NdeI and XhoI restriction sites. PCR reactions were carried
out by using Pfu DNA polymerase (Thermo Fisher Scientific Inc.) for 32 cycles of 30 s at 94°C,
30 s at 60°C, and 3 min at 72°C, preceded by incubation for 5 min at 96°C. PCR-amplified frag-
ments were digested with NdeI and XhoI enzymes (Thermo Fisher Scientific Inc.), ligated into
the pET28a plasmid vector by using T4 DNA ligase (Thermo Fisher Scientific Inc.) and used to
transform E. coli Top10 competent cells to isolate proper clones which were used for protein
expression in E. coli BL21 (DE3) cells.

Selection of endomannanase expressing S. lividans strains from an
expression library
Genomic DNA from T. halotolerans YIM90462 and T. cellulosilytica TB100 was prepared as
previously described [22] and partially digested with serial dilutions of Sau3AI (Thermo Fisher
Scientific Inc.) for 1 hour at 37°C. Optimal enzyme concentration yielding the highest propor-
tion of 10 kb DNA fragments was determined by agarose gel electrophoresis (0.6% agarose in
TAE buffer) and DNA bands of this size were purified by Qiaquick gel extraction kit (Qiagen)
according to manufacturer’s instructions. The fragments were then ligated into the Streptomy-
ces vector pIJ699 digested with BamHI restriction endonuclease and treated with alkaline phos-
phatase to avoid self-ligation. Protoplast preparation, transformation, regeneration and
selection of endomannanase-harbouring Streptomyces transformants were carried out as
described previously [32]. Transformants were screened for endomannanase activity by grow-
ing the clones in 2 ml Luria-Bertani (LB) medium containing 200 μg/ml thiostrepton at 30°C,
200 rpm for 2 days, then culture supernatants were tested on agar plates containing 0.5% (w/v)
LBG-mannan. Endomannanase activity was detected by Congo red staining after 30 min incu-
bation at 50°C according to Posta et al. [33].

Plasmids from endomannanase-positive clones were purified and inserts were subcloned in
E. coli TOP10 cells using pUC19 vector for sequencing purposes. Transformation and subse-
quent plasmid DNA purification were carried out as previously described [22]. Finally, full
length endomannanase sequences were PCR-amplified and ligated into pET28 vector as
described above by using the following primers: man5ATc forward, (5’-GGTGCCATCATATG
GCGACCGGGATCCAC-3’), man5ATc reverse, (5’–GTGCCATCTCGAGTCAGTCGACGGAGC
AGGTC-3’), man5ATh forward (5’–GGTGCCATCATATGGCCACCGGCTTC-3’) and
man5ATh reverse (5’-GTGCCATCTCGAGTCAGTCGGTGGTG–3’).

Phylogenetic analysis of Thermobifida strains and their
endomannanases
For the molecular identification of investigated Thermobifida strains PCR amplification of 16S
rDNAs were performed as described by Rainey et al. [34]. Partial sequences of the first 500 bp
of the 16S rDNA were initiated with the 531r conservative eubacterial primer, almost-complete
16S rDNA sequences were determined by using primers 27f, 531r, 803f and 1492r [35]. 16S
rDNA sequence reads and amino acid sequences of the cloned endomannanases were assem-
bled in MEGA6 [36] then aligned by using the ClustalW algorithm. Neighbor-joining trees
were constructed in MEGA5, performing 1000 bootstrap replicates.

DNA sequencing and computer analysis
16SrDNA sequences and DNA fragments up- and downstream of endomannanases subcloned
into pUC19 were determined with a DNA sequencer (ABI Prism 310, Perkin Elmer Co., USA).
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DNA and protein endomannanase sequences were analyzed by using the BLAST server [37]
and the MEGA6 software package [36]. Amino acid sequence and domain structure of ManB
were determined by Swiss-Prot, EMBL and NCBI database queries and by using the Pfam [38]
and InterPro [39] bioinformatics servers. Phylogenetic trees were reconstructed by the maxi-
mum likelihood method [40] by using the MEGA6 software package.

Expression and purification of endomannanases
Recombinant His-tagged endomannanases were over-expressed in E.coli BL21 (DE3) cells.
Transformants were grown at 37°C with 200 rpm aeration in 500 ml of LB medium containing
50 μg/ml kanamycin until optical density measured at 600 nm (OD600) reached 0.6–1.0. Pro-
tein expression was induced by adding isopropyl β-D-1-thiogalactopyranoside (IPTG, 1 mM
final concentration), followed by overnight agitation at 20°C. Cells were harvested and dis-
rupted by sonication and the lysate was centrifuged at 2,360 x g for 20 min at 4°C and superna-
tant was loaded on a 5 ml Hi Trap column (GE Healthcare) for immobilized metal ion affinity
chromatography (IMAC) purification. Protein elution was performed with a 0–500 mM imid-
azole gradient in 300 mMNaCl, 20 mM sodium phosphate buffer, pH 7.2 and protein concen-
tration of pooled fractions was determined by Bradford method using BSA as protein standard
[41].

The molecular mass of the enzymes was estimated by SDS-PAGE analysis. Endomannanase
zymography was done according to Posta et al. [33], with minor modification: instead of car-
boxymethyl-cellulose 0,1% LBG mannan was added to the gel.

Biochemical characterization of endomannanases
Substrate specificity was assayed using different substrates, such as low viscosity carboxy-
methyl-cellulose (CMC), crystalline and micro-crystalline cellulose (MN300, Avicel), beech
wood xylan and locust bean gum (LBG-mannan) as polysaccharides and 4-nitrophenyl β-D-
mannopyranoside (pNP-βM) as an artificial aryl-mannoside substrate.

Endomannanase activities were determined on polysaccharide substrate by measuring liber-
ated reducing sugars according Somogyi-Nelson method [42]. Dilution series of mannose
stock solution were used for the determination of the reducing sugar calibration curves.
Michaelis-Menten kinetic parameters of the endomannanases were estimated for LBG-man-
nan substrate in 10 different concentrations between 0–4 mg/ml (0, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0 mg/ml) at 50°C, in 50 mM sodium phosphate buffer, pH 7.5. The final volume of
the enzyme reactions was 0.5 ml containing 1.4 μg/ml of Man5ATc, Man5ATh and of Man5-
ATf, respectively. Reactions were initiated by adding enzyme samples for the pre-incubated
LBG-mannan substrate solutions at 50°C and then the incubation continued for further 5 min-
utes. All the measurements were carried out in triplicates. The initial rate of the enzyme cataly-
sis was expressed in mM of reducing sugar liberated in one minute as it was determined from
the calibration curve. The Michaelis-Menten kinetic constants were calculated by Origin 8.0
software program (OriginLab, Northampton, MA) using the Hill equation when the number
of the occupied binding site was equal to one.

The pH dependence on endomannanase activity was measured in the presence of 2 mg/ml
LBG substrate with different buffers in the pH range of 4–10 at 50°C, when the enzyme reac-
tions contained 1.4 μg/ml of Man5ATc; Man5ATh and Man5ATf in 0.5ml reaction volumes.
The following buffers were used (pH ranges are indicated in brackets): 100 mM citrate-phos-
phate (pH 4.0–6.5), 100mM sodium phosphate (pH 6.5–7.5), 200 mM Triethanolamine/HCl
(pH 7.5–9.0) and 200 mM glycine/NaOH (pH 9.0–10.0).
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The effect of temperature on endomannanase activity was determined in 50 mM sodium
phosphate buffer, pH 7.5 at different temperature ranging from 40–90°C and using 2 mg/ml
LBG-mannan substrate in 0.5 ml reaction volume. Enzyme concentrations were the same as in
case of pH optimum determination. For both pH and temperature dependence studies the
Somogyi-Nelson method was applied for the determination of the liberated reducing sugar
concentration. Then, initial rates were calculated and converted into relative rates and plotted
against pH and temperature.

Thermal stability of the three endomannanases was assessed at 70°C in either 100 mM
Triethanolamine/HCl or 50 mMMOPS/NaOH buffer. For all the three enzymes, the effects of
Ca2+ on thermal denaturation were investigated. In case of Man5ATh (50μg/ml), the effect of
ion strength on thermal stability (NaCl at 0.2; 0.6; 1.0; 1.2; 1.6M concentrations) in MOPS/
NaOH buffer (50mM, pH 7.5) with 5 mM Ca2+ was also determined at 70°C. The pH of the
buffers was corrected by the temperature effect.

Man5ATh enzyme (50 μg/ml) in 50mMMOPS/NaOH buffer, pH 7.5, was incubated at
70°C in the presence and in the absence of Ca2+. MOPS/NaOH buffer (50 mM, pH 7.5) with
added Ca2+ (5 mM) was also used when the salt effect on thermal denaturation of Man5ATh
was studied in the presence of NaCl between 0–1.6M (0.2; 0.6; 1.0; 1.2; 1.6M) at 70°C.

Man5ATc enzyme (40 μg/ml) in 0.5 ml of 100 mM Triethanolamine/HCl buffer, pH 7.5,
was incubated at 70°C in the presence and in the absence of Ca2+. In case of Man5ATf the
same measurements in 100mM Triethanolamine/HCl buffer, pH 7.5 were performed as it was
described for the Man5ATc enzyme. For all the three enzymes the rate of thermal unfolding
was also followed when Ca2+ was replaced by 2mM EGTA at 70°C.

In all cases, from the incubated endomannanase solutions, time course aliquots (10 μl) were
withdrawn, cooled on ice for at least 30 min and then assayed for endomannanase activity at
50°C in the presence of 2 mg/ml LGB-mannan in 50 mM phosphate buffer by Somogyi-Nelson
method. The residual activity was calculated as a fraction of the initial activity and plotted
against time. The data were fitted to one-step transition mechanism between two states, the
native and the denatured ones (E!ED). The single step is assumed irreversible and to follow
first order kinetics. In this mechanism, the thermal inactivation rate constant (min-1) was
assessed from a single exponential decay curve, d[E]/t = -kD[E]. The active enzyme concentra-
tion can be expressed as the enzyme activity, At, after heat treatment for a given period of time
and the initial activity, A0. The integration of the equation then gives lnAt/A0 = kD, where At/
A0 is the residual activity. ORIGIN software was used for the data analysis and graphic repre-
sentation. Half-life t1/2 is derived by the following equation t1/2 = ln2/kD.

Nucleotide sequence accession numbers
GenBank accession numbers of determined endomannanase nucleotide sequences are as fol-
lows:man5ATf: KF684964,man5ATc: KF684965,man5ATh: KF684966,man5ATa:
KP889060. 16S rDNA sequence accession numbers are: T. alba CECT3323: KP410834, T. alba
JCM3077: AF002260, T. cellulosilytica TB100: NR_025438, T. halotolerans YIM90462:
NR_044446, T. fusca ATCC27730: AF028245, T. fusca TM51: AOSG01000000.

GenBank accession numbers of the three identified endomannanase amino acid sequences
are: Man5ATf: AHB89702, Man5ATc AHB89703 and Man5ATh AHB89704.

Results and Discussion

Endomannanase cloning based on genome sequences
PCR production of endomannanase genes from four thermobifida strains were probed by
homologous and degenerated primers. The primer design was based on the complete genome
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sequence of T. fusca TM51. 1362 bp DNA fragments were synthesized when T. fusca and T.
alba genomic DNA served as template, but in case of T. halotolerans and T. cellulosilytica no
PCR products were obtained in spite of extensive PCR optimization experiments. The obtained
PCR products were namedman5ATf andman5ATa and since they showed 99% DNA and
100% aminoacid (AA) homology investigations were limited toman5ATf which was cloned
into the pET28a expression vector.

Cloning endomannanases from expression libraries
To capture endomannanase genes of T. halotolerans YIM90462 and T. cellulosilytica TB100,
expression libraries were generated in Streptomyces lividans TK24 strain. Genomic DNAs were
partially digested with Sau3AI endonuclease and DNA fragments of 10 kb were cloned into the
pIJ699 vector. After transformation, thiostrepton resistant clones were selected. Clones of each
library were screened on LBG containing agar plates. Endomannanase over-producing colonies
were detected by Congo red staining method.

Plasmids were isolated from the mannanase positive clones and the inserts were fully
sequenced after subcloning. Sequence analyses revealed a 1368 bpman5ATh gene from T.
halotolerans and a 1320 bpman5ATc gene from T. cellulosilytica. Specific primers were
designed for the identified endomannanase genes and used in PCR reactions to obtain DNA
fragments having NdeI and XhoI cloning sites for cloning into the corresponding sites of
pET28a vector. By this method 6His tag for affinity purification was introduced on the N-ter-
minus of both genes.

Phylogenetic analysis of thermobifida endomannanases
The four investigated strains were taxonomically characterized by 16S rDNA sequence analy-
sis. The obtained phylogenetic tree indicates that T. alba CECT3323 clashes to one cluster with
type strain T. fusca ATCC27730T and T. fusca TM51, and is clearly separated from type strain
T. alba (Fig 2). When the endoxylanase of T. alba CECT3323 was published [26] the strain was
characterized by phenotypic characteristics and so far there are data on hydrolases only from
this strain. The nucleotide sequence alignment between XylA of T. alba CECT3323 (Z81013)
and T. fusca YX xylanase (AAZ56956) revealed 100% homology in the catalytic and carbohy-
drate binding module [26,43]. Accordingly, the Man5ATa enzyme of T. alba CECT3323 shows
100% identity to the Man5ATf enzyme of T. fusca TM51 (Fig 2). Based on enzyme identities
and molecular taxonomy results we concluded that the CECT3323 strain belongs to T. fusca
species therefore the Man5ATa enzyme was excluded from further biochemical analysis.

The lengths of theman5ATf,man5ATc andman5ATh genes are 1362, 1320 and 1368 bp,
respectively. We determined the signal peptides for secretion by SignalP software (http://www.
cbs.dtu.dk/services/SignalP/), and consequently we cloned the endomannanases containing
425 (Man5ATf), 424 (Man5ATc) and 423 (Man5ATh) aminoacids, without signal peptides.
The phylogenetic analysis of AA sequences revealed that endomannanases of T. halotolerans
and T. cellulosilytica are much closer to each other than to T. fusca (Fig 2). There is high simi-
larity among amino acid sequences of mature enzymes (93–96%); the identity between Man5-
ATf and Man5ATc, Man5ATf and Man5ATh, and Man5ATc and Man5ATh is 79, 81 and
82%, respectively (Fig 3). Mature proteins consist of N-terminal GH5 catalytic domain and C-
terminal carbohydrate binding module (CBM2). The identity between catalytic domain pairs is
between 84–86%, while we found lower homology values for the CBM domains 74–83%,
although the similarity is still very high (93–97%). The highly variable inter-domain 23–25 AA
linker sequences show a variation of prolin, threonine and aspartate/glutamate rich 3–6 times
repetitive tetrapeptide motives: 5xPTDP-Tc, 3xTEEP-Tf and 6xDPGT-Th (Fig 3).
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Similar linker regions also can be found in cellulases of T. fusca YX and their role has been
investigated by posttranslational modification [20]. A protease was identified cleaving the
Cel9A intact enzyme along the linker sequence producing catalytic and CBM domains [44].
The substrate specificity of the enzyme without the CBM domain was changed; its activity
increased towards shorter oligosaccharide fractions. The genome of thermobifida strains is rel-
atively small, and instead of producing a larger enzyme set this posttranslational mechanism
makes their polysaccharide degrading capability more diverse and effective. The different
linker sequences in homologous enzymes of thermobifida species (that populate same niches)
most probably provides a control over posttranslational modifications to make thermobifidas
more competitive in the race for available substrates.

Heterologous expression and purification of endomannanases
Man5ATc, Man5ATf and Man5ATh endomannanases were expressed in E. coli BL21 (DE)
and the yield from 1 L culture after IMAC affinity chromatography purification was as fol-
lows: Man5ATh 25 mg, Man5ATc 33 mg and Man5ATf 45 mg. SDS PAGE analysis of
expressed proteins indicated 48–50 kDa size that was in good agreement with theoretical
molecular weights (Fig 4). Isoelectric points were predicted using the algorithm of Kozlowski
(2013, http://isoelectric.ovh.org/). The most acidic protein is Man5ATh (pI 4.102) while
Man5ATf and Man5ATc are less acidic with almost identical values (pI 4.519 and 4.567,
respectively).

Fig 2. Phylogenetic analysis of investigated thermobifida strains and their endomannanase enzymes. The upper tree
(a) represents the phylogenetic relation of T. albaCECT3323 and T. fusca TM51 compared to other thermobifida type strains
(T. fusca, T. cellulosilytica, T. halotolerans and T. alba) of the genus using 16S rDNA sequences. The lower tree (b) represents
phylogenetic relations of Man5A enzymes of T. fusca TM51, T. halotolerans YIM90462, T. albaCECT3323 and T.
cellulosilytica TB100 based on their AA sequence. Streptosporangium roseumDSM 43021T acts as an outgroup strain in
both trees. Both phylogenetic trees indicate that T. alba CECT3323 is a T. fusca species.

doi:10.1371/journal.pone.0155769.g002
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Biochemical characterization of Man5ATc, Man5ATf and Man5ATh β-
1,4-endomannanases

Substrate specificity measurements. The GH5 endomannanase family includes several
types of hydrolases, among others endocellulases, glucosidases, xylanases and mannanases.
Substrate specificities of expressed endomannanases were tested with carboxymethyl-cellulose
(CMC), crystalline and micro-crystalline cellulose (MN300, Avicel), beech wood xylan, pNp-
mannopiranozid and locust bean gum (LBG). All the investigated Man5A were active only on

Fig 3. Representation of AA similarity and domain orientation of investigated endomannanases. AA sequences of
Man5Atc, Man5ATf and Man5ATh endomannanases from T. cellulosilytica, T. fusca and T. halotolerans, respectively, are
aligned. N-terminal GH5 catalytic and C-terminal polysaccharide binding modules (CBM2) are separated by the linker
sequences (boxed region). Symbols: * - indicates positions which have a single, fully conserved residue, : - indicates
conservation between groups of strongly similar properties, . - indicates conservation between groups of weakly similar
properties.

doi:10.1371/journal.pone.0155769.g003

Biochemical Characterization of Thermobifida Endomannanases

PLOS ONE | DOI:10.1371/journal.pone.0155769 May 25, 2016 9 / 17



LBG. This narrow substrate specificity indicates that the axial OH group at C2 on the pyranose
ring is essential in ligand binding at the active site and suggests a potential biotechnological
application of the enzymes in the production of oligomannan prebiotics [5].

Kinetic studies. Endomannanase activities of the three GH5 glycoside hydrolases were
investigated on LBG-mannan substrate. The applied substrate consists of a β-(l,4)-linked man-
nan backbone with single α-(l,6)-linked galactose side chains. The endomannanase activity of
the three GH5 glycoside hydrolases were not affected by the presence of chelating agents such
as EDTA or EGTA suggesting that the catalytic effect of the enzymes did not depend on metal
ions.

The temperature optima of the Thermobifida endomannanases are in the range of 70–75°C
(70°C for Man5ATc and Man5ATh; 75°C for Man5ATf) at given assay conditions (Fig 5) and
this value classifies them to high temperature optimum enzymes. Endomannanases from the
eubacterial Caldibacillus cellulovorans [45] and the archaeon Thermotoga neapolitana [46]
have significantly higher temperature optimum: 85°C. The CBM domain free catalytic domain
of endomannanase of T. fusca KW3 was also characterized as thermophilic enzyme (80°C) but
it can’t be compared to our values as a significant portion of the enzyme was deleted [27]. The

Fig 4. SDS-PAGE separation and activity staining of expressed endomannanases. Left panel: Coomassie-blue stained SDS-PAGE;
right panel: endomannanase zymogram. M: molecular weight marker; 1: Man5ATh; 2: Man5ATc; 3: Man5ATf. The molecular weight of the
three endomannanases almost identical, in the size range 48–50 kDa. Zymogram shows activity in the case of the highly stable
endomannanase of T. fusca.

doi:10.1371/journal.pone.0155769.g004
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recently described endomannanase from T. fusca BCRC19214 which was expressed in Yarro-
wia lipolytica has a very similar thermal optimum at the 75–80°C range [47].

The functional pH range of Man5ATc and Man5ATh endomannanases completely overlaps
in the range of 5.5–9.0 (where more than 50% of maximum activity was detected) with pH
optimum of 7.0 and 7.5 for Man5ATc and Man5ATh, respectively. Man5ATf possesses the
wildest working pH range of 5.5–9.7 with pH optimum of 8.0 (Fig 5). With these slightly basic
values thermobifida Man5A enzymes form a distinct sub-group in the microbial GH5 endo-
mannanase family. Endomannanases of bacilli have more basic values around pH 9 [48–50]
and most of the prokaryotic endomannanase enzymes from Streptomyces lividans, Clostridium
cellulovorans, Vibrio sp. and Geobacillus stearothermophilus have activity maximum at neutral
pH [6,51–53]. Fungal GH5 endomannanases are adapted to acidic environment [54–56].
Michaelis-Menten kinetic parameters determined at pH 7.5 and 50°C are listed in Table 1.
Kinetic performances expressed in catalytic constants (kcat) are similar for all the three investi-
gated mannanases with the value of 100±20 sec-1. Slight difference found in the individual
Michaelis-Menten constants, Man5ATc has the highest affinity toward the carob-mannan sub-
strate with KM value of 0.84 mg/ml (Table 1). Endomannanases from Aspergillus niger BK01

Fig 5. The effect of temperature and pH on enzyme activity of Thermobifida endomannanases. The pH and thermal optimum determination studies
were done in the presence of 2 mg/ml LBG-mannan. Symbols:●-Man5ATc,■-Man5ATh,▲-Man5ATf. A: The temperature optima of the endomannanases
are increasing in the following order Man5ATh, Man5ATc and Man5ATf with values of 70°C and 75°C, respectively. B: The functional pH range of Man5ATc
and Man5ATh endomannanases overlaps in the range of 5.5–9.0 and slightly differs fromMan5ATf. The pH optima are 7.0 (Man5ATc), 7.5 (Man5ATh) and
8.0 (Man5ATf), respectively.

doi:10.1371/journal.pone.0155769.g005

Table 1. Michaelis-Menten kinetic parameters of endomannanases for LBG-mannan substrate.

Endomannanase KM (mg/ml) kcat (s
-1) kcat/KM (ml s-1 mg-1)

Man5ATf 1.65±0.40 122±11 74

Man5ATh 1.30 ±0.30 78±9 60

Man5ATc 0.84±0.15 89±5 106

Kinetic studies were performed in 50 mM phosphate buffer, pH 7.5, using LBG-mannan as substrate in the

concentration range of 0–4 mg/ml at 50°C. Man5ATc has the highest affinity toward the carob-mannan

substrate with KM value of 0.84 mg/ml.

doi:10.1371/journal.pone.0155769.t001
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and from Bacillus sp.MG-33 have higher affinity toward locust bean galactomannan with Km
value of 0.6 mg/ml and 0.16 mg/ml, respectively [57,58]. The majority of the endomannanases
from either fungi or bacilli taxa exhibited considerable lower affinity for this type of mannan
like endomannanases from Bacillus licheniformis and from Penicillium oxalicum GZ-2 with
Km values of 14.9 mg/ml and 7.6 mg/ml, respectively [59,60].

Thermostability studies. Denaturation kinetics of the three mannanases were studied at
70°C in the presence and in the absence of Ca2+ in order to investigate the thermostability of
the enzymes and the influence of this metal ion on thermal unfolding. For all the three endo-
mannanases the unfolding kinetics obeys a single step exponential decay. The heat inactivation
constants (kD) and the calculated half-lifes (t1/2) determined in the different conditions were
summarized in Table 2. The unfolding kinetics of T. fusca and T. halotolerans enzymes were
affected by Ca2+ as their thermal stability has increased significantly: doubled their life-times
when the enzyme solutions contained 5mM of metal ion. The stabilizing effect of Ca2+ ion
against thermal denaturation has also been detected in the case of the catalytic domain of T.
fusca endomannanase by Kumagai et al. at different temperatures with comparable results
[28]. The key residues in calcium binding have been identified in case of T. fuscamannanase
[29] and the same motif (Asp-264, Glu-265, and Asp-266) was present also in the other investi-
gated mannanases (Man5ATc and Man5ATh). Interestingly, the thermal denaturation of
Man5ATc was not influenced by Ca2+ despite the existence of the putative Ca2+ binding motive
(Table 2). The effect of salt on thermal denaturation of Man5ATh was investigated in the pres-
ence of NaCl in the concentration range of 0–1.6M. The unfolding kinetics were not affected
significantly by the presence of NaCl when its concentration was not higher than 0.8M. How-
ever, when the NaCl concentration was increased to 1.6 M, the speed of unfolding tripled com-
pared to the level when there was no salt in the system (Table 3). These results suggest that
Man5ATh is a moderately halophilic protein, which is in a good agreement with the original
habitat (a salt mine) of T. halotolerans YIM90462 strain [17].

Table 2. Heat inactivation kinetic constants and the derived half-life for the thermal unfolding process of endomannanases at 70°C.

kD (min-1) in the presence of
Ca2+

t1/2 (min) in the presence of
Ca2+

kD (min-1) in the absence of
Ca2+

t1/2 (min) in the absense of
Ca2+

Man5ATf 5.6 *10-3 ±4*10-4 123 1.29 *10-2 ±3.9*10-4 54

Man5ATc 3.3 *10-2 ±2.5*10-3 21 3.5 *10-2 ±1.7*10-3 20

Man5ATh 1.9 *10-2 ±1.8*10-3 36 4.0 *10-2 ±4.5*10-3 17

Thermal unfolding was protected by the presence of Ca2+ in the case of Man5ATf and Man5ATc.

doi:10.1371/journal.pone.0155769.t002

Table 3. Salt concentration effect on the heat inactivation constant for the thermal denaturation of T.
halotolerans endomannanase at 70°C.

NaCl (M) kD (min-1) t1/2 (min)

0.4 2.4*10-2 min-1 ±2*10-3 29

0.8 2.5*10-2 min-1 ±2*10-3 28

1.2 3.8*10-2 min-1 ±2*10-3 18

1.6 5.2*10-2 min-1 ±5*10-3 13

In thermal unfolding Man5ATh is able to tolerate the presence of NaCl as far as the level of 0.8M.

doi:10.1371/journal.pone.0155769.t003
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In our measurements, T. fusca β-(l,4)-endomannanase was proved to possess the greatest
thermostability among the investigated enzymes with a life-time of 123 min-1 at 70°C in the
presence of Ca2+ (Fig 6).

Alterations in mannanase stabilities can be explained with differences in environmental fac-
tors of niches populated by investigated thermobifida strains. T. fusca TM51 was isolated from
moderately basic (pH 8.5) compost [31] and its temperature optimum is 60°C. The other two
strains, T. halotolerans and T. cellulosilytica have considerably lower temperature optimum
(50–55°C). The half-life value of Man5ATf for 70°C (123 min) places the enzyme into an elite
group of highly stable mannanases together with robust enzymes from the archaeon Thermo-
toga thermarum (half life 120 min at 90°C) and the eubacterium Caldibacillus cellulovorans
(half life 48 min at 85°C, and no loss in activity after 24 h at 70°C) [45,61].

Fig 6. Thermostability of thermobifida endomannanases at 70°Cmeasured at optimal conditions. Symbols:■-Man5ATf in 50 mM Trietanolamin/
HCl pH7.5 in the presence of 5 mMCa2+;▲-Man5ATh in 50 mMMOPS pH 7.5 in the presence of 5mM Ca2+ and 0,4 mMNaCl;●-Man5ATc in
Trietanolamin/HCl pH7.5 in the presence of 5mMCa2+. The half life of Man5ATf, Man5ATh and Man5ATc were 123 min, 36 min and 21 min, respectively.

doi:10.1371/journal.pone.0155769.g006
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Conclusion
Endomannanase genes from thermobifida strains were isolated whose recombinantly
expressed polysaccharide degrading enzymes have been partially characterized. The molecular
taxonomy investigations carried out clearly indicated that T. alba CECT3323 strain was previ-
ously miss-classified and in the reality it is a T. fusca strain, therefore at present time there are
no data on T. alba hydrolases.

Investigated endomannanases from T. fusca, T. cellulosilytica and T. halotolerans belong to
GH5 hydrolases. They have modular architecture and have polysaccharide binding site at the
C-terminus. The AA homology between them is 82–84% and their characteristics are very sim-
ilar regarding the kinetic parameters although the pH and temperature optima are slightly dif-
ferent. The differences in thermal stability of the three enzymes are more pronounced: the life-
time of Man5ATf is four-five times higher at 70°C compared to the other two enzymes. Man5-
ATh of T. halotoleransmoderately salt tolerant, its thermal stability is preserved up to 0.8M of
NaCl concentration. These parameters coincided well with environmental parameters of niches
where these thermobifida strains were isolated from.

Despite the high sequence similarity of the investigated mannanases they exhibit different
temperature stability, and this can be a starting point for further structural-functional investi-
gations and for industrial applications to produce biologically active, oligomannan prebiotics.
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