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ABSTRACT Ventilation-induced lung injury is a common problem faced by patients with respiratory
problems who require mechanical ventilation (MV). This injury may lead to a greater chance of developing
or exacerbating the acute respiratory distress syndrome which further complicates the therapeutic use of MV.
The chain of events begins with the MV initiating an immune response that leads to inflammation induced
tissue material alteration (stiffening) and eventually the loss of lung resistance. It is clear from this sequence
of events that the phenomenon of ventilation induced injury is multi-scale by nature and, hence, requires
holistic analysis involving simulations and informatics. An effective approach to this problem is to break it
down into several major physical models. Each physical model is developed separately and can be seen as
a component in a larger system that comprises the scale of the problem being investigated. In this paper,
a multi-scale system consisting of breathing mechanics, tissue deformation, and cellular mechanics models
is developed to assess the immune response. To demonstrate the potential of the model, a fluid–solid model
is employed for breathing mechanics, a plane-strain elasticity model is applied to assess tissue deformation,
and a cellular automata (CA) model is developed to account for immune response. A case study of three
lower airways is presented. The CA model shows that this increased the immune response by five times,
which correlates with alteration in the tissue microstructure. This alteration in turn is reflected in the material
constant value obtained in the tissue mechanics model. However, the changes in strain rates in the airways
after inflammation (and hence, lung compliance) were not as significant as the rates of change in immune
response. Finally, results from the fluid–solid model demonstrate its potential for airflow characterization
caused by tissue deformation that could lead to disease identification.

INDEX TERMS Human lung, airway inflammation, multi-scale model, finite element analysis, cellular
automata.

I. INTRODUCTION
Despite on-going efforts to reduce the risk of injury asso-
ciated with Mechanical Ventilation (MV) application, it is
still a major issue that contributes to mortality in patients
with respiratory problems [1]. Positive-pressure MV devices
are commonly used by specialists and they increase pressure
inside the alveoli well above normal lung function levels.
This excess pressure leads to various injuries from different
mechanisms; some injuries are caused by failure to main-
tain elasticity criteria, while others result from biochemical
signals leading to inflammation. It is also alarming to note
that these injuries do not stop at the pulmonary airways,

but are able to spread to other organs through biochemical
signaling. Ventilation induced injury is essentially the result
of a chain of events that unfold as a side effect of excessive
pressure. It is therefore imperative that we understand the
underlying mechanisms of this multi-scale event that leads
to injury. Various in vivo, in vitro and in-silico models have
been developed to explain partial and localized aspects of the
injury and inflammation. According to previous studies, low
peak airway pressure (14 cm H2O) does not lead to histolog-
ical changes of damage in the lung, while higher ventilation
pressure (30 cm H2O) results in mild perivascular edema. In
addition, ventilation at 45 cm H2O (without PEEP) would
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lead to severe hypoxia and mortality in less than one hour
[2], [3]. Similar findings have been observed with ventilation
in small animals. A high peak inspiratory pressure for just
2 minutes is sufficient to induce pulmonary edema in small
animals while larger animals require much longer periods of
ventilation for changes to be evident [4], [5]. Prevention of
ventilator-induced lung injury initiation would be possible
by keeping transpulmonary pressure within the physiological
range. The prone position may attenuate ventilator-induced
lung injury by increasing the homogeneity of transpulmonary
pressure distribution [6].

Building upon findings from both in vivo and in vitro
studies, the in-silico model has been used to gain additional
insights into the lung injury. The lung as an organ works
essentially like that of a medieval forge blower; modulat-
ing pressure by regulating the volume of the air container
(the chest). Hence, various fluid-based models have been
developed, including lumped parameter models and fluid-
solid models. A major finding from computational models
indicates that different airflow characteristics are obtained by
altering airway properties and pressure drop characteristics
in diseased lungs with obstructed airflow. Several compu-
tational studies have been completed to date including the
following: measurement of tissue parameters with a system
of airway generation identification (Lipsett, J., 2002), airflow
patterns and airway wall stresses in the first generations of
lower airways in a real lung geometry with moving wall [7]
and rigid walls [8], influence of laminar and turbulent airflow
throughout the entire respiratory tract on air flow [9] and
link between the distribution of airflow to local parenchymal
inflation and information about local tissue strains and stress
elevations [10].

On the other hand, it is known that the tissue possesses
hyper-elasticity, and is sensitive to mechanical stimuli. Var-
ious non-linear deformation, remodeling and growth models
have been developed. Meanwhile, to gain a deeper under-
standing of microscopic dynamics, the cell population in
the tissue needs to be modeled. This model would con-
stitute a series of equations to describe cell behavior and
cytokines kinetics, which could be cumbersome if one had
to account for spatial aspects. Hence, many researchers have
turned to discrete models to study this type of system.
Brown et al. [11] created an agent-based model to examine
the role of macrophages and fibroblasts in the inflammatory
and fibrotic response to particulate exposure. They suggested
that themechanisms in this in silicomodel might be expanded
to serve as a platform for the investigation of the processes
of inflammation and fibrosis that result from particulate
exposure in the lung. Reynolds et al. [12] developed a CA
model for pulmonary inflammation. Their results showed
the influence of high inflammation on healing, persistent
infection, and resolved infection. Dutta-Moscato et al. [13],
created an agent-based model (ABM) of liver tissue in order
to computationally examine the consequence of liver inflam-
mation. They concluded that a computational model of liver
inflammation on a structural skeleton of physical forces could

recapitulate key histopathological and macroscopic proper-
ties of carbon tetrachloride-injured liver. An and Kulkarni
(2015) [14] used an inflammation and cancer agent-based
model to bridge the gap between basic mechanistic knowl-
edge and clinical/epidemiologic data. Their results showed
that increasing inflammatory environments leads to dam-
aged genomes in microtumors. Implementation of qualitative
behavior from observation into computational modeling is
one of the discrete model’s key features. Discrete methods
such as Cellular Automata (CA) generally address evolution
of the state of components (such as substance A converts into
substance B) instead of evolution of a variable with respect
to real time. Hence, the CA is a powerful tool to deal with
complex system spanning wide temporal scales.

Various pulmonary inflammation processes are phenom-
ena that span across diverse spatial and temporal scales.
An in-silico model that accounts for such diverse aspects is
therefore critically needed. A computational analysis should
not stop at a particular scale level to obtain a holistic picture
of the entire system. To achieve this, one can couple multiple
scales into one or a series of equations, or sequence several
levels of a model, as previously demonstrated [10]. Another
approach is to isolate the scale of physics by assuming that
each physical model developed works separately as part of a
larger system. This paradigm derives from the system model-
ing perspective, where each model acts as if it is a component
or ‘‘port’’. In the subsequent discussion, this paradigm is
presented to analyze a simple case of ventilation-associated
inflammation.

II. MATERIALS AND METHOD
A. MULTI-SCALE APPROACH
The inflammation occurring during mechanical ventilation
is an event that needs to be investigated holistically through
multiple spatial and temporal scales. Away to approach prob-
lems of this nature is to break down the phenomenology to
its components. Figure 1 shows the proposed components of
ventilation-induced inflammation. Each component (circle)
consists of its own analysis. In the next section, the analysis
for each component is presented and explained.

The model developed in this study is aimed toward under-
standing the cascade of events involved in inflammation that
starts with the pulmonary tissue and ends up influencing lung
resistance. There are many models developed for each com-
ponent as shown in Figure 1. Since the multi-scale approach
is presented as a system passing and receiving information,
the computational model for each component can be added
and modified. In this study, we present the computational
models developed under the multi-scale approach, along with
the rationale for choosing the models.

B. CELLULAR SCALE
The pulmonary tissue is constantly under stretch (and over-
stretch in the case of Mechanical Ventilation). Stretching tis-
sue induces mechano-biological responses. The tissue itself
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FIGURE 1. Flow chart of multi-scale simulation.

can be seen as amicroenvironment for a congregation of cells.
Immune cells are regulated in connective tissue to respond
to damage and foreign matter that threaten the tissue. The
immune cells will be activated by various stimuli to initiate
its function as an immune system. Stretch experienced by the
tissue is a mechanical stimuli that activates immune cells. The
stretch itself can be seen as an elastic field on tissue space.
Epithelial cells make the outer layer of tissue, which is the
interface between tissue and surrounding environment. In this
study, the number of death epithelial cells will be used to
estimate inflammation severity.

Since there are many interactions involved in this kind of
system, an agent-based model is an appropriate modeling
tool. The tissue constituents may exhibit a diverse array
of interactions as a result of mechano-biological responses.
In this study, we focus on innate immune response triggered
by mechanical stretch. A network of interactions is proposed
as shown in Figure 2.

Stochastic models based on interaction of agents have
been used to model liver [13] and inflammation by partic-
ulate matters [15]. Our previous study presented an agent-
based model for stretch-induced inflammation, aimed for
airway tissue [16]. The model consists of agents divided
into three categories: fixed cells (epithelium), wandering cells
(macrophages and fibroblasts) and cytokines (TNF and TGF).
The agents occupy a discrete two-dimensional space, with
fixed neighborhood. We summarized the rules as described
in [16], as below:

1) Epithelium have three state, alive, fibrosis and dead.
‘‘Heal’’ action (as in Figure 2) changes an epithelial

FIGURE 2. Based on strain from tissue scale simulation, an agent-based
model is used to simulate the inflammatory response.

TABLE 1. Cellular scale model parameters.

cell state to ‘‘alive’’, and ‘‘damage’’ action changes its
state to ‘‘dead’’. The probability of state transition to
‘‘damage’’ is determined by concentration of TNF, and
the probability of state transition to ‘‘alive’’ by ‘‘heal’’
is determined by concentration of TGF.

2) Wandering cells exhibit random walk. However,
the probability to move to adjacent location is deter-
mined by cytokines. Hence, the randomness of the walk
is not uniform. This rule represents chemotaxis.

3) Cytokines are released by wandering cells. TNF is
released by macrophages and the probability of TNF
release by macrophage is higher when TGF concentra-
tion is low.

4) Similarly, TGF is released by fibroblast and the proba-
bility of TGF release by fibroblast is higher when TNF
is higher.

5) Cytokines diffuse according to diffusion equation,

dC/dt = D∇2C − K .C (1)

where ∇2 is Laplacian, C is concentration, D is dif-
fusity, and K is a constant determining the rate of
disintegration.

6) Each location occupied by the cells above has a value
of strain. This value may fluctuate or static.

7) Each state transitions as in Fig 2 is probabilistic.

Each agent executes rules assigned on them in the two
dimensional space that represents airway tissue section.
Figure 2.1 illustrates the model in which the wandering cells
are visible. The dimension of the two-dimensional space and
related parameters of the model used in this study is shown
in Table 1.
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The stochastic model has been shown that certain strain
level leads to a typical inflammation course time, where
immune response quickly rises early, then slowly decreases,
resembling a skewed normal distribution. Themodel dynamic
is based on probability but results of each trials have been
shown to have low variance [16].

C. TISSUE SCALE
The main focus in soft tissue analysis is the deformation of
thin soft material, specifically in circular form. It has been
shown that the non-linear deformation of airway tissue leads
to non-linear buckling as a means for the tissue to accommo-
date energy from loading [17]. Of main interest in this study
is the reduction in lung airway compliance, or the ability
to inflate or dissipate energy inserted by air pressure. The
airway tissue under inflammation will alter its mechanical
properties. This alteration is caused by rearrangement of tis-
suemicrostructure during the dynamic event of inflammation,
as will be discussed in a later section. The most important
variables in tissue mechanics model are tissue thickness and
elastic properties [18].

The stress experienced by an elastic body can be modeled
by,

∇σ = ρs∂
2u/dt2 (2)

where ∇ is gradient, σ is Cauchy stress, ρs is solid density,
t is time and u is displacement. The boundary conditions for
this case are as follow. Boundary 01 (epithelium) was sub-
jected to pressure acting on normal direction of the boundary.
Boundary 02 was supported with spring, with spring constant
of 600 N/m2. Elastic support was used to model airways
tethering to alveolar sacs surrounding them. Its value was
adopted from [8].

The model as described so far is a multi-region model. The
three regions are: epithelium, connective tissue and airway
smooth muscle (ASM). This scheme of categorization can
also be found in [17]. The two inner regions (the epithelium
and connective tissue) were modeled as Neo-Hookean mate-
rial. The strain energy density of Neo-Hookean elasticity is
defined as,

W = (µ/2).(I1 − 3)+ (1/d).(J− 1)2 (3)

where I1 is deviatoric first principal invariant, J is Jacobian,
µ is incompressibility parameter and d is incompressibility
parameter. The latter two are material parameters of this
material model. The outer region (ASM) was modeled as
linear elastic. The materials parameters for the three regions
are given in Table 2. Following [19], it is assumed that the
inner layer has Neo-Hookean shear viscosity of µ = 5 MPa,
and the ratio of elastic properties between inner and middle
layer is initially 10. The model was solved through Finite
Element Method using ANSYS Workbench 2016, similar to
our previous study [20]. Based on the cited study, the mesh
with 800,000 elements is enough to reach convergence.

TABLE 2. Material constants used in tissue scale model.

TABLE 3. Airway morphological characteristics.

Each of three region has their own morphological charac-
teristics at each generation of airways. Table 3 shows mor-
phological characteristics of bronchioles based on [21].

D. ORGAN SCALE
Breathing primarily involves regulation of airflow in the
pulmonary tree. Therefore, the pulmonary tissue is being
constantly subjected to pressure swings. A number of models
based on fluid dynamics have been used. The lumped param-
eter method has been used to quantify airflow through the
principle of conservation of flow [9], [22] and to eventually
classify the type of flow dynamics for different conditions
such as obstructive lung disease. The lumped parameter
method is efficient and reveals useful insights into airway
dynamics, but it bypasses certain physical characteristics that
could be useful in analysis. To achieve this, a more elaborate
analysis is needed.

Fluid-solid interaction analysis has been established over
the years with the introduction of FEM analysis and moving
mesh method [23]. In this approach, the airway tree can be
treated as an elastic structure that is under constant oscillating
strain by airflow during breathing. There are two common
cases of breathing: normal breathing where the airflow is
allowed by regulating intrathoracic pressure, and mechanical
ventilation where air is injected into the lung. We consider
a case where air is injected via mechanical ventilation. The
airflow at the end tube of the lung (the inlet) is injected in a
specific way and can be represented by an exponential wave.

Figure 3(a) shows an illustration of the problem. The
mechanical ventilation inflow can be modeled using equa-
tions as shown in Table 3. The Navier-Stokes equation can
be used to describe the dynamics of fluid,

Continuity: ∂ρ/dt +∇.(ρ.v) = 0 (4)

Navier-Stokes: ρ(∂v/dt + v.∇v) = −∇p+∇.τ (5)

where∇. Is divergence , v is fluid velocity, p is fluid pressure,
ρ is the fluid density, and τ is a constitutive relationship that
relates fluid’s dynamic viscosity (material constant) and fluid
velocity. In this case, the fluid is air and hence air viscosity
of 1.79× 10−5 kg/(m.s) was used.
Equation (2) describes the dynamics of an elastic solid.

To model the fluid-solid interaction during breathing, a three-
dimensional organ model was constructed and this model
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FIGURE 3. At tissue scale, structural analysis was employed. The radial
strain of airway tissue is of interest hence a cross section model of airway
tissue was considered. The boundaries of the model are denoted as 01
and 02. The elastic supports on 02 are shown as a series of spring
attached along 02.

FIGURE 4. Organ scale model and its inlet boundary condition. The
location of pressure outlet boundary conditions are also shown
here.

was imported into the computational fluid-solid package in
ANSYS Workbench 2016.

Figure 4 shows the completed model up to generation 7.
Following our previous study [24], the mesh was determined
to be 1,034,392 elements for the fluid model, and 444,462
elements for the solid model. The meshes were found to be
sufficient to reach convergence [24].

The organ model’s boundary condition was an in-flow at
the inlet (as shown in Fig 4). It was modeled using two
equations as shown in Table 4. The equations represent inspi-
ration and expiration, where Q is flow rate, GN is generation
number, Tin is inspiration time, TEX is expiration time, and S
is airway cross-sectional area. Inspiration and expiration time
were chosen to be 0.4 s and 2.0 s, respectively. Flow rate is
equal to the proportion of tidal volume to the inhalation time.
Tidal volume is the lung volume that represents the normal
volume of air displaced between inhalation and exhalation

TABLE 4. Organ Model’s In-Flow boundary conditions.

FIGURE 5. Pressure on various location of airways based on organ-scale
simulation.

when extra effort is not applied. The tidal volume here is set
to be 420 ml.

The boundary conditions for structural analysis are as
follow. The pressure outlets (Fig 4) were assigned as fixed
support. The lumen of the airways was subjected to pressure
computed from the FSI. The material model at the organ
model was determined to be elastic with Young’s modulus
of 99 MPa, a typical linear elastic Young’s modulus for
tissue [8].

III. RESULTS AND DISCUSSION
Organ scale model is used to compute the pressure acting
on airway tissue by breathing. The tissue model then com-
putes strain experienced by tissue. Lastly, agent-based model
was used to simulate inflammatory response by tissue con-
stituents.

From the organ scale model, pressures acting on tissue
were presented in Figure 5 for several airways. As can
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FIGURE 6. Strain at three selected airways for cell-scale simulation,
(a) locations, (b) strains caused by pressure.

be seen, the pressure acting on G2 and G4-1 airways are
the highest: pressure drops over generation can clearly be
observed here [25]. We present an example case to analyze
the effect of pressure down to cellular level.

Figure 6 shows three selected airways, namely G4-1,
G6 and G7. The strains experienced by airway tissue are
shown in Figure 6(b). As can be seen, airway G4-1 experi-
enced the highest strain.

Figure 7 shows inflammatory response as simulated by
agent-based model at cellular scale. As can be seen, there is
no inflammatory response in G7, with since it experienced
low strain. The tissue constituents exhibit random walks in
this case. G4-1 exhibited the highest inflammatory response,
however it consistently decreased after 2000 time steps. After
10000 simulation time, inflammatory response vanished
away. However, inflammatory response took different history
for tissue at G6, which has strain lower than G4-1. As can
be seen, the inflammatory response was lower compared to
G4-1 (as expected). It decreased after 2000 simulation time,
but increased afterward. This occurred several times as the
whole system was trying to reach equilibrium. In the case of
G4-1, the inflammatory responsewas consistently suppressed
since high strain caused rapid reactions from immune cells in
the model, hence the signaling cytokines (TNF and TGF) can
be rapidly spread on the tissue space. This is not the case in
G6 as the cytokines were not fully spread, and immune cells
could not work as efficiently as the in G4-1.

FIGURE 7. Various inflammatory responses are obtained from cellular
scale simulation. The count of dead epithelial cells has been taken as the
level of inflammatory response. The figure also shows captures of tissue
constituents (fibroblasts and macrophages) locations at several time
step.

Each of the developed models at organ, tissue and cellular
levels has been qualitatively assessed from the results, and
found to follow the correct trends and behavior. The organ
model demonstrated pressure drops as expected in airway
system [25]. The cellular model results of inflammation are
comparable to typical inflammation course times [26]. It will
be challenging to compare or validate quantitatively the inte-
grated multi-scale model as the environment and developed
models are very specific than those used in the literature for
this study. Overall the results from the multi-scale models are
representative and provide information that is observed in this
specific application.

The model presented has certain limitations. These include
the model only considers fluid mechanics until generation
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TABLE 5. Summary of the multi-scale model.

7 of airways; the influence of lower airways was ignored. The
tissue scale analysis was aimed to obtain strain value in each
airway under consideration. The non-linear deformation of
tissue was ignored in this study. In the cellular scale analysis,
we simplified the inflammation process by considering a pro-
and anti-inflammatory cytokines. There are more cytokines
involved that may be influence the inflammation process.
These needs be considered for accurate inflammation model.
Table 5 summarized the model used in this study.

IV. CONCLUSION
This study analyzed inflammation during mechanical venti-
lation by modeling it as a multi-scale system as inflammatory
responses are complex processes that involve multiple scales
ranging from cellular level to organ levels. The inflammatory
responses from the cellular-level model, in turn, modulate
changes in material properties at tissue and organ levels.
Multiple models were developed at organ, tissue and cellular
levels and integrated in a multiscale modeling framework.
The CA model represented the cellular dynamics compo-
nent while the plane-strain elasticity model was employed
to account for tissue mechanics. The fluid-solid model effec-
tively demonstrated the effect of inflammation from the lower
scales to the pulmonary tree. A limitation of this study is
that it used localized models for each component in mod-
eling inflammation as a multiscale system. However, future
research is planned to fully integrate the dynamics of each
component in a multi-scale system.
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