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Abstract: Despite tremendous efforts in genomics, transcriptomics, and proteomics communities,
there is still no comprehensive data about the exact number of protein-coding genes, translated
proteoforms, and their function. In addition, by now, we lack functional annotation for 1193 genes,
where expression was confirmed at the proteomic level (uPE1 proteins). We re-analyzed results of
AP-MS experiments from the BioPlex 2.0 database to predict functions of uPE1 proteins and their
splice forms. By building a protein–protein interaction network for 12 ths. identified proteins encoded
by 11 ths. genes, we were able to predict Gene Ontology categories for a total of 387 uPE1 genes.
We predicted different functions for canonical and alternatively spliced forms for four uPE1 genes.
In total, functional differences were revealed for 62 proteoforms encoded by 31 genes. Based on these
results, it can be carefully concluded that the dynamics and versatility of the interactome is ensured
by changing the dominant splice form. Overall, we propose that analysis of large-scale AP-MS
experiments performed for various cell lines and under various conditions is a key to understanding
the full potential of genes role in cellular processes.

Keywords: protein coding genes; function annotation; Gene Ontology; protein–protein interaction;
splice form; proteoform; uPE1 proteins; human interactome; AP-MS; BioPlex

1. Introduction

Prior to the start of the “Human Genome” international project, it was assumed that our genome
contains ca. 100 thousand protein-coding genes (PCGs, [1]), which determine the complexity of the
human body. In 2004, the draft of the human genome decreased the catalog of genes 5-fold compared
to previous estimates [2]. The diversity of living systems is achieved by the factors of post-genome
heterogeneity—thus, up to 100 distinct protein variants can be translated from the same gene [3,4].
Despite tremendous efforts of the genomics community, the challenge of identifying all human PCGs
still confronts us: data in neXtProt and UniProt are being constantly updated [5,6]. The ongoing
project “Human Proteome” [7] is aimed to find the answer for a fundamental question: How many
protein-coding genes do we have and what are their roles in cellular processes?

Since the start of the Human Proteome Project, significant progress has been made in registering
at the proteomic level more than 90% protein-coding genes [8]. However, despite the existence of many

Genes 2020, 11, 677; doi:10.3390/genes11060677 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0003-1838-3604
http://dx.doi.org/10.3390/genes11060677
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/11/6/677?type=check_update&version=3


Genes 2020, 11, 677 2 of 17

protein function annotation methods based on various data types (sequences, protein interactions,
co-expression, and etc. [9–14]) for a reasonable fraction of detected proteins (13%), there is no evidence
of their function. To fill this gap, in 2017, C-HPP (Chromosome-Centric Human Proteome Project)
announced the neXt-CP50 challenge [15], which is aimed at functional annotation of uncharacterized
proteins that were previously detected at the proteomic level—so called uPE1 proteins [15,16]. In three
years, the number of uPE1 proteins reduced from 13% to 6%.

Proteins entangle in a dynamic web of interactions to mechanize their functions through delicate
interplay with their partners. Protein–protein interactions (PPIs) are subtle and dynamic matter,
adjusting themselves to the changing environment [17]. Interactomics provide panoramic insight into
the machinery of complex biological processes and proteins involved in disease development [18].
Thus, interactomics is one of the main suppliers of protein functions annotation, where at present,
no functional data are available for 1193 uPE1 proteins.

In the vast majority of cases, the term “protein” includes all the proteoforms encoded by a single
gene. Due to complexity of proteoform identification, they are often neglected in interactome analysis
and function annotation. However, since proteoforms can differ in their function, in the context of
postgenomic studies, the usage of the term “master form” [4,19] is more correct when it is impossible
to identify specific proteoforms.

During the last two decades, significant progress has been achieved in building human interactome
maps [20]. Such maps casted light upon fine-tuning of protein characteristics [21], evolution [22], and
disease [23,24]. Over the years, several elegant tools of PPI exploration emerged [25,26], including
affinity purification coupled to mass spectrometry (AP-MS) [27]. The idea of the latter method is
to capture proteins of interest from a solution using immobilized “bait” proteins and to identify
affinity-purified targets with LC-MS (“preys”).

The major advantage of AP-MS over other interactomic techniques is its environmental
compatibility: natural heterogenic content (including proteoforms) of purified proteins remains
stable and adequately reflects the majority of PPIs inside the cell. Unfortunately, the step of cell lysis
leads to the loss of fragile temporal and spatial interactions [28], which maintain communication
between molecules and “stick together” the whole interactome [29].

Experimental and processing imperfection results in false positive results, biases, and errors
flooding interactomic databases [30]. Although availability of omics datasets is growing [31],
labor-intensive interactomic and proteomic datasets are still sparingly cited and re-analyzed, which
hampers the estimation of their accuracy and reproducibility and nullifies their impact on landscape of
biological knowledge [32,33].

Thus, as was shown earlier [34–37], interactomics may gain novel knowledge from already
existing datasets. In this study, we re-analyzed AP-MS data obtained in the largest high-throughput
interactomics project BioPlex 2.0 [38,39] to explore co-occurrence of proteoforms (canonical and
alternatively spliced variants) for functional annotation previously uncharacterized genes and proteins.

2. Materials and Methods

2.1. Gene Sets

The list of human PCGs was obtained from neXtProt v. 11-2019 [6]. Additional information was
obtained on the number of translated splice forms, and genes, which were confirmed at the proteomic
level, but still have no functional annotation (uPE1 proteins) [15,16]. The list of baits was extracted
from Huttlin et al. [39].

2.2. Re-Analysis of MS Data

We collected raw published data from BioPlex 2.0 [39] via individual query for each human
gene. Raw MS/MS data were converted into mgf format by MSConvert and processed in a uniform
manner by three search engines (X!Tandem, MS-GF+, OMSSA) [40] being a part of SearchGUI (v. 3.3.15)
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package coupled with PeptideShaker (v. 1.16.40) [41]. Acquired LC-MS/MS data were searched
against the human neXtProt library (rel. 2019-01-11) and enriched with CRAPome contaminants [42].
Mass tolerances were set to 10 ppm and 0.5 Da for precursors and fragments, correspondingly.
Carbamidomethylation of cysteine residues was set as a fixed modification and oxidation of methionine
was allowed as a variable modification. Only highly confident peptides according to target-decoy
approach were accepted. For both peptides and proteins, FDR cut-off was set to 1%. At least two
detected peptides (and at least one of them to be unique) were required for protein identification.

2.3. Building PPI Network

We used matrix-model interpretation of protein–protein interactions where all the proteins
occurring in the same purification experiment, either bait–prey or prey–prey pairs, are recognized as
connected with each other. The Dice coefficient was utilized to measure the degree of confidence for
interaction between proteins. The Dice coefficient for two proteins, i and j, is defined as:

D(i, j) =
2q

(2q + r + s)
, (1)

where q denotes the number of times that both proteins appeared in the same purification, r denotes
the times that only protein i occurs, s denotes the times that only protein j occurs [43]. Bait-prey data
from AP-MS experiments were processed using SMAD package [44].

2.4. Determination of Optimum Threshold

Results obtained using Dice coefficient were compared with a scheme presented by Hart et al. [45].
The latter approach utilizes hypergeometric distribution to estimate the probability of interaction
between two proteins being observed at random given the total number of interactions for each
protein. As a golden standard we used the CORUM database, literature-curated set of human protein
complexes [46], which is commonly used for evaluating global interactome networks [29,35,47,48].
We utilized the Core Complexes dataset which is essentially free of redundant entries from the latest
available CORUM release 3.0. Dataset was restricted to cover only human proteins and the ‘Disease
comment’ column was filtered to contain only ‘None’. We considered 2591 proteins present both in
CORUM and our datasets and defined the following numbers:

1. TP = number of interactions observed both in CORUM and in our dataset.
2. FP = number of interactions observed in our dataset but not in CORUM.
3. FN = number of interactions observed in CORUM but not in our dataset.

The performance of both Dice and Hart methods was assessed by computing the corresponding
F1 score, a measure of test accuracy defined as a weighted average of the precision and recall:

Precision =
TP

(TP + FP)
Recall =

TP
(TP + FN)

F1 =
2× Precision×Recall
(Precision + Recall)

=
2× TP

(2× TP + FP + FN)
. (2)

The dependence between threshold quantile and F1 score for Hart and Dice indices is presented
in Supplementary Figure S1. We found that overall, Dice score performed much better and achieved
Fmax = 0.145 (F1 score providing the maximum performance, Dice threshold = 0.371), while Hart
showed Fmax equal to 0.086.

2.5. GO-Annotations for Characterized Proteins

Each protein from the PPI network and not included in the uPE1 list (total 9561 proteins including
9558 having “reviewed” status) was annotated with its GO-terms from Uniprot using ViSEAGO
package [49]. We used the “2020-03” GO release and “2020_01” UniProt release.
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In the present work, we pursue the idea of minimizing the total number of GO-terms in order
to avoid unreliable results and reduce the number of spurious protein function predictions. The
filtering procedure consisted of three steps. At first, we limited our analysis to GO-terms which
had experimental evidence codes: Experiment (EXP), Direct Assay (IDA), Physical Interaction (IPI),
Mutant Phenotype (IMP), Genetic Interaction (IGI), and Expression Pattern (IEP). Initially there were
1034 distinct GO-terms for Cellular Component sub-ontology (CC), 2180 distinct terms for Molecular
Function (MF), and 5723 distinct terms for Biological Process (BP) sub-ontology, while the total number
of terms for all proteins was 17,721, 17,419, 22,862 for CC, MF, and BP respectively.

As the second step, in order to remove too rare terms, we filtered out GO-terms which were
supported by less than 10 proteins. This allowed further reduction of the dataset to 206 CC terms,
209 MF terms, and 424 BP terms.

Finally, we filtered out high-level (i.e., too specific) GO-terms in order to predict low-level (more
general) terms more reliably. We removed GO-terms which had higher than 10-th level for CC and BP,
and 6-th level for MF. These thresholds were selected to remove approximately half of the GO-terms
from each sub-ontology. Finally, there were 101 CC terms, 107 MF terms, and 273 BP terms.

2.6. Prediction of Unknown Protein Functions

Protein function prediction was performed using COSNet [50], Hopfield-based cost sensitive
neural network algorithm for learning node labels in partially labeled graphs. Briefly, the algorithm
consists of three steps: (1) unlabeled nodes are randomly assigned with positive and negative labels in
the same proportion as labeled nodes; (2) optimal parameters of the labeled subnetwork are found
through optimizing the F-score criterion; (3) the regularized dynamics with learned parameters on
the unlabeled nodes subnetwork is simulated until an equilibrium state is reached. Details are given
in [50]. COSNet is specifically designed to work with biological networks where labelings are highly
unbalanced—in most cases, the number of proteins with specific function (positive class) is much
smaller compared to overall number of proteins which do not possess this function (negative class).
An important feature of the algorithm is that the requirement to output function prediction for each
protein is optional—if the data are insufficient for reliable answer, the function will remain unknown.

The COSNET algorithm takes as input graph weights reflecting similarity between nodes. We used
the Dice score values as graph weights. The second parameter of the algorithm is regularization
cost. We performed a grid search for different cost values in the range from 10 to 10−10, optimizing
F1 score over GO categories which had experimental evidence codes, i.e., known protein functions.
For each run, randomly selected 80% genes with annotated GO-category were used as a training set for
COSNET and the remaining 20% were used as a test set. The obtained F1 scores for all GO-categories
were averaged for each value of regularization cost and the training and test set were unrelated at each
iteration. The optimal cost value was established at the level of 10−5 for all GO categories.

2.7. Analysis of Interactome Profiles

The isolation of functional clusters for the identification of common partners was carried out
by pairwise comparison of the obtained interactomic profiles (list of interacting partners) for all
proteins within the network. The number of common partners was used to calculate the measure of
the relationship between two proteins. The proteins having more than 50% common partners were
combined into one group. Each group was used as the ‘target set’ in the GOrilla web service [51] for
GO enrichment [52] A complete set of 20,223 human proteins was used as a reference. The results with
significance level p < 10−7 were processed. The visualization of pairwise interactions was carried out
using Cytoscape software (v.3.7) [53].

2.8. Software Implementation of Algorithms

Calculations and graphics were performed in Python 3.6 and R 3.6 [54] with packages igraph [55],
ComplexHeatmap [56], graphlayouts [57], and threejs [58].
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3. Results

3.1. Identification of Proteins

Interactome database BioPlex [38,39] is a developing project on building a human interactome by
sequential annotation of human genes using the affinity purification coupled with mass spectrometry
approach (AP-MS, [59]). We downloaded and processed 11,532 MS-files from the BioPlex 2.0
database [39]. These MS data corresponded to the results of AP-MS experiments for 5766 genes
(“baits”). According to the Human Proteome Project terminology, 252 genes of this list belong to the
so-called uPE1 proteins—the expression of such genes is confirmed at the proteome level, but the
function is still unknown [15].

A total of 12,444 sequences encoded by 11,308 genes were detected, among which 550 uPE1
proteins were identified (Figure 1a). It is noteworthy that 27 genes encoding uPE1 proteins were
identified in both the canonical and splice form (Figure 1b), one gene was identified only as the splice
form, and for 179 of the 476 genes, both the canonical form and master form were identified [4,19],
or only master form—when specific amino acid sequence is uncertain. A total of 1156 splice forms were
identified for 1076 genes, with 671 genes not represented by a uniquely defined canonical form, 25 genes
represented only by splice form, and one gene—by several splice forms (Figure 1b, Supplementary
Figure S1). It should be noted that among the “baits” represented initially by canonical sequences,
for 37.6% of genes, there is no information about protein sequences resulting from alternative splicing.
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Figure 1. (a) Relations between proteins used as preys and baits in BioPlex 2.0 and corresponding uPE1
proteins (b) distribution of detected proteoforms encoded by one gene, if alternative splicing is known.
Master form is excluded.

The authors of the BioPlex project constructed HA-FLAG-tagged open reading frames (ORFs).
The description of the protein sequence is available for 5037 baits. According to the ORFEOME
database [60], 1424 sequences were represented by splice forms. Among these splice forms 70 belong
to uPE1 proteins. However, only 204 of the 252 uPE1 proteins were identified as potential preys.
In total, 3698 baits were also detected as preys: 2237 baits were presented in the original sequence,
for 1440 cases, it was impossible to determine the specific form of the amino acid sequence (i.e., the
master form), and for 22—another amino acid sequence was detected (Supplementary Figure S2a,b).
It should be noted that among the baits represented initially by the canonical sequence for 37.6% of
genes, there is no information about protein sequences resulted from alternative splicing.
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Thus, at the protein identification level, it can be noted that in half of the cases, there is a prevalence
of alternatively spliced forms. Obtained proteomic data on the total identification reflect the fact that
only 50–60% of human genes are expressed per tissue [61].

3.2. Human PPI Network

The graph of PPIs was built using the Dice scoring scheme [62]. Two proteins were considered
to interact if their Dice score was greater than the predefined threshold. In order to select optimum
cut-off value, we varied the threshold and compared predictions with the golden standard—CORUM
database, a manually curated repository of experimentally characterized protein complexes [46]. The
optimum Dice threshold for CORUM proteins according to the F1 score was determined to be equal
to 0.371 and this value was used to build the global PPI network. We also evaluated another metric
based on hypergeometric distribution presented in [45] but found that Dice scoring was performing
considerably better (see Materials and Methods, Supplementary Figure S3). When constructing the
PPI graph, we accepted master proteins as a canonical form.

The final PPI network consisted of 9967 vertices (proteins) connected by 287,474 interactions with
8686 proteins forming a single giant component. Each protein on average interacted with 5 partners
(median value). Complete network structure in graphml format is available in the Supplementary.

Among the proteins with detected PPIs, 3630 (from 5037 identified) belonged to the baits’ genes.
At the same time, 15 baits’ genes were represented by an alternative sequence, for other cases, due to
accepted master form as canonical, we cannot be sure. In total, the PPI network contained 1026 splice
forms, while only for 805 of 963 genes, there was also a canonical version, and 57 genes were represented
by several splice forms. PPIs were obtained for 406 of 550 identified uPE1 proteins (corresponding to
378 genes of 476 detected), 26 genes were represented by both canonical and splice forms, and another
352—only by canonical form.

3.3. GO Category Prediction for uPE1 Proteins—Biological Processes

The COSNet algorithm predicted at least one biological process to 256 uPE1 proteins out of 406
and the total number of distinct GO BP-terms was 204. The overall binary matrix with predictions is
available in Supplementary Table S1.

Since it is impossible to fully plot the obtained data due to their high dimensionality, we tried to
present the predicted protein functions from a bird-eye view. We resorted to data filtering by removing
both rare GO categories and proteins annotated with a small number of categories (in both cases five
or less proteins/categories). Further, for visualization purposes, the total number of GO categories was
additionally reduced. We collapsed GO categories into 15 clusters using the GOSemSim package [48].
Among GO categories that fell into one cluster, one category with the lowest level was selected, i.e.,
least specific. As a result of removing low-annotated proteins, rare and high-level GO-terms the
original binary 256 × 204 prediction matrix (proteins vs. GO-terms) was reduced to a 127 × 15 matrix.
We would like to stress that all filtering and clustering of proteins and GO categories was performed
only to give a big picture of results for visualization purposes, while all actual predictions are given in
Supplementary Table S1.

Since each protein is assigned to a set of GO BP-terms, we visualized the intersection between
these sets as an Upset plot (Figure 2), which can be viewed as a generalization of a Venn diagram to
deal with more than three sets. Each row in the plot represents a single GO-term and each column
represents proteins which were predicted to have one or more terms (shown by black dots and names
of corresponding proteins at the top).
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represented as rows with barplots on the left showing total number of proteins annotated with specific
term. Each column denotes proteins annotated with a specific set of GO-terms shown as dots (protein
names are given at the top). * denotes the following set of proteins: O00193, O15481, Q53RE8, Q5THK1,
Q68CR1, Q6P1M9, Q6P995, Q86X40, Q8IV32, Q8IW50, Q8N7X4, Q8NCJ5, Q8NCT3, Q8NCU4, Q8TBZ0,
Q8TDY8, Q8WUB2, Q96BQ5, Q96GQ5, Q9BVG4, Q9H106, Q9H5V9, Q9H910, Q9Y546.

The right side of the graph shows the number of proteins annotated with the “biological
process” according to the prediction. Five categories were predicted more frequently than others:
protein localization (GO:0008104), heart development (GO:000750), G2/M transition of mitotic cell
cycle (GO:0000086), cilium movement (GO:0003341), and microtubule cytoskeleton organization
(GO:0000226). Taken together, these categories contain 68 proteins on average, while the remaining 11
categories contain an average of 12 proteins each. Moreover, a combination of these five categories was
assigned for the largest number of proteins (24 proteins). For 10 proteins (A2RUT3, A6PVS8, Q6IPT2,
Q6IPT2-2, Q7Z5L2, Q8N3J3, Q8N3J3-3, Q8TD91, Q8TD91-2, Q9HA90), a combination of biological
processes including proteolysis (GO:0006508), cognition (GO:0050890), and regulation of cell migration
(GO:0030334) was predicted. For 19 proteins (rightmost column), other BP categories were predicted
(not shown on the plot).

Next, we checked if various biological processes for canonical protein form and for any of its
proteoforms were predicted. Two such cases were found. Compared to its canonical variant Q8IYS2,
splice form Q8IYS2-2 was assigned 14 additional BP-terms related to regulation of GTPase activity,
response to lipopolysaccharide and Golgi to plasma membrane protein transport. In addition, for the
proteoform O43149-3, participation in the biological process GO:0016485 “protein processing” was
predicted, which was not observed for the canonical form O43149.

3.4. GO Category Prediction for uPE1 Proteins—Molecular Functions

We were able to predict at least one molecular function to 380 proteins out of 406 (total number of
distinct GO MF-terms was 66), binary matrix with predictions is available in Supplementary Table S1.
At the same time, the apparent molecular function “protein binding” (GO:0005515) was predicted for
372 proteins, which was not considered in further analysis.

Similar to the processing of BP predictions, the dimensionality of the data was reduced. Rare GO
categories and proteins annotated with a small number of categories (five or less) were removed. After
this filtration, 32 GO categories were predicted for 60 proteins. Moreover, 36 proteins had functional
profiles identical to those already existing. The following biological processes were predicted for
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58 proteins: growth factor binding (GO:0019838), kinesin binding (GO:0019894), and GTP-dependent
protein binding (GO:0030742). These categories were not taken into account in further visualization.

Since the total number of proteins and MF categories was less than in the case of BP prediction,
we used a more descriptive type of plot [63] to visualize the results (Figure 3). As before, the remaining
GO categories were grouped into 10 clusters, and the category with the lowest level, i.e., the least
specific, was selected as a representative of the cluster. The top-3 most-represented categories included
SH2 domain binding (GO:0042169), ubiquitin-like protein ligase binding (GO:0044389), and ephrin
receptor binding (GO:0046875).
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Figure 3. Functional prediction of molecular functions for 60 uPE1 proteins.

Four cases of prediction of different molecular functions for canonical protein and its proteoforms
were discovered. For canonical protein O43149, ubiquitin-protein transferase activity (GO:0004842)
was predicted, while splice form O43149-3 presumably has peptidase activity (GO:0008233). Two new
molecular functions “identical protein binding” (GO:0042802) and “protein homodimerization activity”
(GO:0042803), which are absent in the canonical form, were predicted for the proteoform O60941-3.
Proteins Q8IYS2 and Q8IYS2-2 supposedly possess protein binding (GO:0005515), moreover, we
predicted phospholipid binding (GO:0005543) for the canonical form, and actin binding (GO:0003779)
for the splice variant. Finally, 13 different molecular functions were predicted for the Q96SK2 and
Q96SK2-2 proteins, but the canonical version presumably has protein-macromolecule adapter activity
(GO:0030674).
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3.5. GO Category Prediction for uPE1 Proteins—Cellular Components

The COSNet algorithm was able to predict at least one cellular component for 295 of 406 uPE1
proteins, while the total number of distinct CC-terms was 71. The binary matrix with predictions is
available in the Supplementary. The top-3 most represented predicted cellular components included
cytosol (GO:0005829, 86 proteins), plasma membrane (GO:0005886, 84 proteins), and cytoplasm
(GO:0005737, 83 proteins). After filtering rare GO categories and poorly annotated proteins, the
prediction matrix was reduced to 93 proteins and 41 CC categories. Visualization of the distribution of
proteins by cellular components is presented in Figure 4.
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Figure 4. Cellular components predicted for 93 uPE1 proteins. * denotes the following set of proteins:
A2RUT3, A6PVS8, Q2NL68, Q4KMZ1, Q6IPT2, Q6IPT2-2, Q7Z5L2, Q8N3J3, Q8N3J3-3, Q8TD91,
Q8TD91-2, Q9H741, Q9HA90, Q9NWQ9. ** denotes the following set of proteins: Q0P6D6, Q2M3V2,
Q53LP3, Q68CR1, Q6P995, Q6ZRI6-2, Q86X40, Q8IV32, Q8IW50, Q8N6V9, Q8NCJ5, Q8NCT3, Q8NCU4,
Q8NEF3, Q8TBZ0, Q8WUB2, Q96BQ5, Q96GQ5, Q96MY1, Q9H106, Q9H693.

Five cases of prediction of different cellular components for canonical protein forms and their
proteoforms were identified. While cellular localization was not predicted for the O43149 protein,
the localization in membrane raft (GO:0045121) and extracellular space (GO:0005615) are presumably
specific for its splice form O43149-3. Of note, for this protein and its proteoforms, a difference in
the predicted biological processes and molecular functions was also stated. Protein Q8IYS2 has
putative localization in lipid droplet GO:0005811, while its splice form Q8IYS2-2 is possibly localized
in cytosol (GO:0005829). As in the previous case, earlier for this pair, we noted a difference in biological
processes and molecular functions. The localization in the nucleus (GO:0005634) was predicted for
the proteoform O60941-3, distinguishing it from the canonical form. For this pair, different molecular
functions were previously predicted. For the Q96HA4 and Q96HA4-4 proteins, 13 coinciding CC terms
were predicted, and for the splice form, additional localization in cytosol (GO:0005829) was predicted.
Finally, 14 coincident localizations were predicted for the Q96SK2 and Q96SK2-2 proteins, but the
canonical version is also supposedly localized in the Golgi apparatus (GO:0005794), while the splice
form is likely to be localized in mitochondria (GO:0005739). We also predicted different molecular
functions for this protein pair.

3.6. Differences of Splice-Forms Interactomic Profiles

With the uPE1 protein example, it was shown that proteoforms (splice forms) encoded by a single
gene can significantly differ in their functions. We attempted to visualize the interactions between the
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splice-forms and corresponding canonical proteins. From the complete PPI network, we selected the
subgraph containing only canonical proteins having at least one corresponding proteoform (n = 1833).
We also included hub proteins into the subgraph to preserve the original network architecture as much
as possible. The largest connected component of the obtained subgraph containing 14 splice forms
(upper level) and 294 canonical proteins (lower level) is presented on Figure 5. The graph is visualized
in 3D with the upper level containing splice forms and lower level containing canonical forms. Hub
proteins with more than 150 interacting partners are marked with yellow. Of interest we found that
isoform 6 of Q9UM54 (myosin-VI) is predicted as a hub protein with a total 556 interactions. The PPI
differences between Q9UM54-6 and its canonical form Q9UM54 is about 10% and since this protein
is a hub, such discrepancies may be crucial for its cellular role. In total, for 8 out of 14 splice forms,
we observed the differences on PPIs with canonical form more than 50%.
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Figure 5. The largest connected component of the obtained PPI network showing canonical proteins
(lower level) and their corresponding splice forms (upper level). Hub proteins with more than 150
interacting partners are marked with yellow, including splice form Q9UM54-6 for which we report 10%
differences with its canonical form Q9UM54 in terms of PPIs.

For estimation of the total number of splice forms differing by function from canonical form, we
compared interactome profiles for a set of proteins encoded by the same gene (62) with more than
10 PPIs. It was shown that, in two thirds of the cases, there are differences in the list of PPIs by more
than 50%, and for 24 cases—by more than 90% (Table 1). At 50–70% similarity of interactome profiles
for the canonical and splice forms, we observed a similar amount of the corresponding PPIs (CV
~20–40% in comparison with 80–90% in other groups).

Table 1. The differences of interactome profiles for proteoforms encoded by the same gene.

Number of Genes <50% ≥50% ≥75% ≥90%

62 24 11 3 24
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Based on a comparison of interactomic profiles (see Materials and Methods), functional clusters
were identified to describe the roles of canonical and spliced forms in cellular processes. For the
analysis, we considered only cases where the coincidence of the interactomic profiles (consisting of at
least 10 proteins) amounted to more than 50%. A total of 157 functional components were isolated,
including one macro-component, two mid-components, 48 mini-components, 69 micro-components of
3-7 proteins, and 37 two-proteins components (Supplementary Figure S4).

Canonical proteins and splice forms encoded by 31 genes fell into various annotation functional
clusters (Supplementary Table S2 and Figure S5). Out of public interactome resources, only the IntAct
database [64] holds PPI for splice forms. There is information about different PPI for proteins pair
(the same canonical and splice form) encoded by 18 of 31 genes. However, only for 5 cases, the number
of interactions for both canonical and splice form was more than 10. Unfortunately, there are not
enough data on PPIs for GO annotation and their comparison with our data.

Among 31 genes for which we observe different functional clusters for canonical and splice form,
two genes belong to uPE1 encoding Q96HA4/Q96HA4-4 and Q96SK2/Q96SK2-2, for which different
GO categories were predicted.

3.7. Impact of Data Sources

We attempted to quantify the effect of using another type of PPI data. For this purpose, we
utilized the largest binary PPI network obtained by Y2H [26]. The characteristic features of Y2H data
include definite protein sequence as opposed to AP-MS and ignoring of the cell environment. Thus,
only canonical variants of proteins could be considered because there is no information about splice
form despite Y2H proteins being constructed on the basis of ORFEOME.

The Y2H network consisted of 51,763 interactions between 8099 proteins, and 7978 proteins formed
a single giant component. Further analysis was limited to 4156 proteins present in both Y2H and
AP-MS networks. For these proteins, we retrieved experimental GO BP terms and performed filtering
of low-annotated proteins and rare/specific GO-terms as described in the Material and Methods section.
The obtained network included 1335 proteins which were further split into train and test in the 80:20
proportion. For each protein from the test sample, we computed the average Wang similarity between
sets of predicted and true GO terms [65]. Prediction using the AP-MS network showed superior
average similarity to ground-truth GO sets compared to Y2H (0.158 ± 0.006 vs. 0.143 ± 0.005, mean ±
95% CI, Wilcoxon p < 0.001). Thus, we conclude that usage of AP-MS networks may be beneficial for
protein function prediction compared to Y2H datasets, although thorough exploration of this question
is beyond the scope of this study.

3.8. Comparison with UniProt Predictions

For 574 out of 1193 uPE1 proteins, there is data on their possible GO categories in UniProt (on
average 1.8 terms per protein). Biological processes and molecular functions are known for 30 and
43 uPE1 proteins, respectively, and for the half of uPE1 proteins (550), there are data on cellular
localization. In total, we were able to compare the data for 189 uPE1 proteins, where for half of
the proteins (92), the predictions coincided with at least one term within two levels. The obtained
assessment is rough since different sources of prediction of GO categories were used, and the data
were not found to be reliable according to neXtProt, which is the main human proteome database in
the frame of the Human Proteome Project.

4. Discussion

Accumulation of interactome data contributes to the identification of the role of proteins in cellular
processes. Large-scale experiments provide a basis for formulating hypotheses about the functioning
of the cell with minimal biological [66] and batch effects [67]. The BioPlex project is the largest database
of AP-MS experiments, containing novel experimental proofs of interaction and possible functions for
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several previously unannotated proteins. The resulting data array is an important component in the
development of bioinformatic algorithms for predicting and analyzing PPIs [35].

Through analyzing the results of AP-MS experiments from the BioPlex 2.0 project, we were able to
predict GO categories for a total 391 proteins with unknown functions. Of these proteins, we predicted
biological processes for 256 proteins, molecular functions for 380 proteins, and cellular components for
295 proteins. All types of GO sub-ontologies were predicted for 219 proteins (Figure 6).
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In the context of uPE1 proteins, annotation structure-based prediction and annotation pipeline,
combining I-TASSER and COFACTOR algorithms [68], were considered. However, the corresponding
analysis was limited to only several uPE1 proteins.

An interesting issue is the prediction of MF based on the PPI network. Indeed, it seems reasonable
that proteins with similar molecular function should rather have similar sequence and structure than
to be neighbors on the PPI network. However, there is evidence that some information about MF is
encoded in the PPI structure. For example, Kulmanov et al. [9] utilized deep learning to learn features
from both protein sequences and the PPI network to predict MF, BP, and CC terms. They reported that
the model, which relies only on protein sequences, does not achieve improved performance compared
to the reference method (BLAST). Several related papers devoted to deep learning PPI-based methods
report better or similar model performance for MF compared to BP and CC terms [69,70]. Furthermore,
the keyword analysis of CAFA3 participating methods showed that protein interaction is equally
important across all 3 GO ontologies [10]. Hence, it may be concluded that information about protein
molecular functions is also encoded in the PPI networks structure.

One of the main advantages of the AP-MS is the ability to identify proteoforms in the results of mass
spectrometric analysis, while the identified alternatively spliced proteoforms do not require additional
verification—contrary to proteoforms with point mutations or post-translational modifications.
Our interest in proteoforms is due to the fact that the functions of protein variants of the same
gene may differ dramatically, and most often functional differences are observed in splice forms [21,71].

The choice of alternatively spliced protein variant as the major—canonical—sequence is
speculative [6] and is refined constantly with an accumulation of transcriptomic and proteomic
data. When determining the function of a protein, the type of proteoform (e.g., splice variant) is often
ignored due to the methodological limitations. However, analysis of the AP-MS data allows to suggest
the functional role of specific splice forms (proteoforms).

Four genes encoding proteins with unknown function were provided with the information on
the different functions of their canonical and alternatively spliced forms. In total, differences were
revealed for 62 proteoforms encoded by 31 genes (4% of all genes provided with information on PPIs
for canonical and splice form). A modest number of alternative splice forms is due to the fact that
in most identifications, a master form was registered, which was further considered as canonical.
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At the same time, 158 genes were represented only by splice forms. Noteworthy, there is a significant
discrepancy between the protein sequences selected as a bait in the AP-MS experiment and actually
translated in the cell.

5. Conclusions

In this work, we re-analyzed thousands of large-scale AP-MS experiments to predict functions of
uPE1 proteins and their splice forms. We were able to predict Gene Ontology categories for a total
of 387 uPE1 genes. Four uPE1 genes were provided with the information on the different functions
of their canonical and alternatively spliced forms. In total, functional differences were found for 62
proteoforms encoded by 31 genes.

Based on the results, it can be carefully concluded that the dynamics and versatility of the
interactome is ensured by changing the dominant splice form. This is consistent with observations
on the relationship of specific splice forms and the development of pathologies [23,24]. A similar
mechanism can be assumed in the case of other types of proteoforms. Thus, in order to understand
the full potential of genes in cellular processes, we suggest one should focus on large-scale AP-MS
experiments performed for various cell lines and under various conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/6/677/
s1. Figure S1: Distribution of identified proteins: canonical, alternative spliced or master form. Figure S2:
(a) distribution of identified proteins which were used as baits in their canonical form in BioPlex; (b) distribution
of identified proteins which were used as baits in their alternative spliced form in BioPlex.) Figure S3: Evaluation
of optimal threshold for Dice and Hart scoring schemes. Figure S4: Identified functional clusters based on
coincidence of the interactomic profiles. Orange color highlights canonical variants of uPE1 proteins, yellow
color—splice forms of uPE1 proteins, dark and light green indicate canonical and splice forms encoded by one
uPE1 gene, correspondingly, uPE1 proteins represented only by splice forms are also marked with green. Figure S5:
Example of different functional annotation for two proteoforms. Table S1: Predicted GO categories for uPE1
proteins (confirmed at the proteomic level, but without functional annotation). Table S2: List of 31 human genes
encoded functionally distinct to proteoforms.

Author Contributions: Conceptualization, E.P.; methodology, E.P. and M.P.; resources, O.K. and A.R.;
writing—original draft preparation, E.P., M.P. and O.K.; review and editing, E.P. and M.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by RSF (grant # 18-74-00144).

Acknowledgments: The authors wish to thank Andrey Lisitsa for discussion, and anonymous reviewers for their
valuable comments which helped greatly to improve this manuscript. The authors are grateful to the “Human
Proteome” Core Facility (Institute of Biomedical Chemistry) for access to the computer cluster.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fields, C.; Adams, M.D.; White, O.; Venter, J.C. How many genes in the human genome? Nat. Genet. 1994, 7,
345–346. [CrossRef] [PubMed]

2. Salzberg, S.L. Open questions: How many genes do we have? BMC Boil. 2018, 16, 94. [CrossRef] [PubMed]
3. Aebersold, R.; Agar, J.N.; Amster, I.J.; Baker, M.S.; Bertozzi, C.R.; Boja, E.S.; Costello, C.E.; Cravatt, B.F.;

Fenselau, C.; Garcia, B.A.; et al. How many human proteoforms are there? Nat. Methods 2018, 14, 206–214.
[CrossRef]

4. Ponomarenko, E.A.; Poverennaya, E.V.; Ilgisonis, E.V.; Pyatnitskiy, M.A.; Kopylov, A.; Zgoda, V.G.;
Lisitsa, A.V.; Archakov, A. The Size of the Human Proteome: The Width and Depth. Int. J. Anal. Chem. 2016,
2016, 1–6. [CrossRef] [PubMed]

5. The UniProt Consortium UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2018, 46, 2699.
[CrossRef]

6. Gaudet, P.; Michel, P.-A.; Zahn-Zabal, M.; Britan, A.; Cusin, I.; Domagalski, M.; Duek, P.D.; Gateau, A.;
Gleizes, A.; Hinard, V.; et al. The neXtProt knowledgebase on human proteins: 2017 Update. Nucleic Acids
Res. 2016, 45, D177–D182. [CrossRef]

http://www.mdpi.com/2073-4425/11/6/677/s1
http://www.mdpi.com/2073-4425/11/6/677/s1
http://dx.doi.org/10.1038/ng0794-345
http://www.ncbi.nlm.nih.gov/pubmed/7920649
http://dx.doi.org/10.1186/s12915-018-0564-x
http://www.ncbi.nlm.nih.gov/pubmed/30124169
http://dx.doi.org/10.1038/nchembio.2576
http://dx.doi.org/10.1155/2016/7436849
http://www.ncbi.nlm.nih.gov/pubmed/27298622
http://dx.doi.org/10.1093/nar/gky092
http://dx.doi.org/10.1093/nar/gkw1062


Genes 2020, 11, 677 14 of 17

7. Legrain, P.; Aebersold, R.; Archakov, A.; Bairoch, A.; Bala, K.; Beretta, L.; Bergeron, J.; Borchers, C.H.;
Corthals, G.L.; Costello, C.E.; et al. The Human Proteome Project: Current State and Future Direction. Mol.
Cell. Proteomics 2011, 10, M111.009993. [CrossRef]

8. Paik, Y.-K.; Overall, C.M.; Corrales, F.; Deutsch, E.W.; Lane, L.; Omenn, G.S. Advances in Identifying and
Characterizing the Human Proteome. J. Proteome Res. 2019, 18, 4079–4084. [CrossRef]

9. Kulmanov, M.; Khan, M.A.; Hoehndorf, R. DeepGO: Predicting protein functions from sequence and
interactions using a deep ontology-aware classifier. Bioinformatics 2017, 34, 660–668. [CrossRef]

10. Zhou, N.; Jiang, Y.; Bergquist, T.R.; Lee, A.J.; Kacsoh, B.Z.; Crocker, A.W.; Lewis, K.A.; Georghiou, G.;
Nguyen, H.N.; Hamid, N.; et al. The CAFA challenge reports improved protein function prediction and new
functional annotations for hundreds of genes through experimental screens. Genome Boil. 2019, 20, 1–23.
[CrossRef]

11. Piovesan, D.; E Tosatto, S.C. INGA 2.0: Improving protein function prediction for the dark proteome. Nucleic
Acids Res. 2019, 47, W373–W378. [CrossRef] [PubMed]

12. Frasca, M.; Cesa-Bianchi, N.A. Multitask Protein Function Prediction through Task Dissimilarity. IEEE/ACM
Trans. Comput. Boil. Bioinform. 2019, 16, 1550–1560. [CrossRef] [PubMed]

13. Hong, J.; Luo, Y.; Zhang, Y.; Ying, J.; Xue, W.; Xie, T.; Tao, L.; Zhu, F. Protein functional annotation of
simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep
learning. Brief. Bioinform. 2019. [CrossRef] [PubMed]

14. Saha, S.; Prasad, A.; Chatterjee, P.; Basu, S.; Nasipuri, M. Protein function prediction from dynamic protein
interaction network using gene expression data. J. Bioinform. Comput. Boil. 2019, 17, 1950025. [CrossRef]

15. Paik, Y.-K.; Lane, L.; Kawamura, T.; Chen, Y.-J.; Cho, J.-Y.; LaBaer, J.; Yoo, J.S.; Domont, G.B.; Corrales, F.;
Omenn, G.S.; et al. Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified
Proteins with No Known Function. J. Proteome Res. 2018, 17, 4042–4050. [CrossRef] [PubMed]

16. Duek, P.; Gateau, A.; Bairoch, A.; Lane, L. Exploring the Uncharacterized Human Proteome Using neXtProt.
J. Proteome Res. 2018, 17, 4211–4226. [CrossRef]

17. Barabási, A.-L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease.
Nat. Rev. Genet. 2010, 12, 56–68. [CrossRef]

18. Zhao, X.; Liu, Z.-P. Analysis of Topological Parameters of Complex Disease Genes Reveals the Importance of
Location in a Biomolecular Network. Genes 2019, 10, 143. [CrossRef]

19. Ponomarenko, E.; Kopylov, A.; Lisitsa, A.V.; Radko, S.P.; Kiseleva, Y.Y.; Kurbatov, L.K.; Ptitsyn, K.G.;
Tikhonova, O.V.; Moisa, A.A.; Novikova, S.; et al. Chromosome 18 Transcriptoproteome of Liver Tissue and
HepG2 Cells and Targeted Proteome Mapping in Depleted Plasma: Update 2013. J. Proteome Res. 2013, 13,
183–190. [CrossRef]

20. Cafarelli, T.; Desbuleux, A.; Wang, Y.; Choi, S.G.; De Ridder, D.; Vidal, M. Mapping, modeling, and
characterization of protein–protein interactions on a proteomic scale. Curr. Opin. Struct. Boil. 2017, 44,
201–210. [CrossRef]

21. Yang, X.; Coulombe-Huntington, J.; Kang, S.; Sheynkman, G.M.; Hao, T.; Richardson, A.; Sun, S.; Yang, F.;
Shen, Y.A.; Murray, R.R.; et al. Widespread Expansion of Protein Interaction Capabilities by Alternative
Splicing. Cell 2016, 164, 805–817. [CrossRef] [PubMed]

22. Vo, T.V.; Das, J.; Meyer, M.J.; Cordero, N.A.; Akturk, N.; Wei, X.; Fair, B.J.; Degatano, A.G.; Fragoza, R.;
Liu, L.G.; et al. A Proteome-wide Fission Yeast Interactome Reveals Network Evolution Principles from
Yeasts to Human. Cell 2016, 164, 310–323. [CrossRef] [PubMed]

23. Menche, J.; Sharma, A.; Kitsak, M.; Ghiassian, S.D.; Vidal, M.; Loscalzo, J.; Barabási, A.-L. Uncovering
disease-disease relationships through the incomplete interactome. Science 2015, 347, 1257601. [CrossRef]
[PubMed]

24. Sahni, N.; Yi, S.; Taipale, M.; Bass, J.I.F.; Coulombe-Huntington, J.; Yang, F.; Peng, J.; Weile, J.; Karras, G.;
Wang, Y.; et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell 2015,
161, 647–660. [CrossRef]

25. Feng, S.; Zhou, L.; Huang, C.; Xie, K.; Nice, E.C. Interactomics: Toward protein function and regulation.
Expert Rev. Proteom. 2015, 12, 37–60. [CrossRef] [PubMed]

26. Luck, K.; Kim, D.-K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T.;
Campos-Laborie, F.J.; Charloteaux, B.; et al. A reference map of the human binary protein interactome.
Nature 2020, 580, 402–408. [CrossRef]

http://dx.doi.org/10.1074/mcp.M111.009993
http://dx.doi.org/10.1021/acs.jproteome.9b00745
http://dx.doi.org/10.1093/bioinformatics/btx624
http://dx.doi.org/10.1186/s13059-019-1835-8
http://dx.doi.org/10.1093/nar/gkz375
http://www.ncbi.nlm.nih.gov/pubmed/31073595
http://dx.doi.org/10.1109/TCBB.2017.2684127
http://www.ncbi.nlm.nih.gov/pubmed/28328509
http://dx.doi.org/10.1093/bib/bbz081
http://www.ncbi.nlm.nih.gov/pubmed/31504150
http://dx.doi.org/10.1142/S0219720019500252
http://dx.doi.org/10.1021/acs.jproteome.8b00383
http://www.ncbi.nlm.nih.gov/pubmed/30269496
http://dx.doi.org/10.1021/acs.jproteome.8b00537
http://dx.doi.org/10.1038/nrg2918
http://dx.doi.org/10.3390/genes10020143
http://dx.doi.org/10.1021/pr400883x
http://dx.doi.org/10.1016/j.sbi.2017.05.003
http://dx.doi.org/10.1016/j.cell.2016.01.029
http://www.ncbi.nlm.nih.gov/pubmed/26871637
http://dx.doi.org/10.1016/j.cell.2015.11.037
http://www.ncbi.nlm.nih.gov/pubmed/26771498
http://dx.doi.org/10.1126/science.1257601
http://www.ncbi.nlm.nih.gov/pubmed/25700523
http://dx.doi.org/10.1016/j.cell.2015.04.013
http://dx.doi.org/10.1586/14789450.2015.1000870
http://www.ncbi.nlm.nih.gov/pubmed/25578092
http://dx.doi.org/10.1038/s41586-020-2188-x


Genes 2020, 11, 677 15 of 17

27. Lee, C.-M.; Adamchek, C.; Feke, A.; Nusinow, D.A.; Gendron, J.M. Mapping Protein–Protein Interactions
Using Affinity Purification and Mass Spectrometry. Adv. Struct. Saf. Stud. 2017, 1610, 231–249. [CrossRef]

28. Dunham, W.H.; Mullin, M.; Gingras, A.-C. Affinity-purification coupled to mass spectrometry: Basic
principles and strategies. Proteomics 2012, 12, 1576–1590. [CrossRef]

29. Hein, M.Y.; Hubner, N.C.; Poser, I.; Cox, J.; Nagaraj, N.; Toyoda, Y.; Gak, I.A.; Weisswange, I.; Mansfeld, J.;
Buchholz, F.; et al. A Human Interactome in Three Quantitative Dimensions Organized by Stoichiometries
and Abundances. Cell 2015, 163, 712–723. [CrossRef]

30. Ghadie, M.; Xia, Y. Estimating dispensable content in the human interactome. Nat. Commun. 2019, 10, 3205.
[CrossRef]

31. Vidal, M.; Cusick, M.E.; Barabási, A.-L. Interactome Networks and Human Disease. Cell 2011, 144, 986–998.
[CrossRef] [PubMed]

32. Perez-Riverol, Y.; Zorin, A.; Dass, G.; Vu, M.-T.; Xu, P.; Glont, M.; Vizcaíno, J.A.; Jarnuczak, A.; Petryszak, R.;
Ping, P.; et al. Quantifying the impact of public omics data. Nat. Commun. 2019, 10, 3512–3610. [CrossRef]
[PubMed]

33. Luck, K.; Sheynkman, G.M.; Zhang, I.; Vidal, M. Proteome-scale human interactomics. Trends Biochem. Sci.
2017, 42, 342–354. [CrossRef] [PubMed]

34. Lapek, J.D.; Greninger, P.; Morris, R.; Amzallag, A.; Pruteanu-Malinici, I.; Benes, C.H.; Haas, W. Detection of
dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities.
Nat. Biotechnol. 2017, 35, 983–989. [CrossRef]

35. Drew, K.; Lee, C.; Huizar, R.L.; Tu, F.; Borgeson, B.; McWhite, C.D.; Ma, Y.; Wallingford, J.B.; Salemi, M.
Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes.
Mol. Syst. Boil. 2017, 13, 932. [CrossRef]

36. Zhang, Y.; Sun, Y.; Gao, X.; Qi, R. Integrated bioinformatic analysis of differentially expressed genes and
signaling pathways in plaque psoriasis. Mol. Med. Rep. 2019, 20, 225–235. [CrossRef]

37. Shatsky, M.; Allen, S.; Gold, B.L.; Liu, N.L.; Juba, T.R.; Reveco, S.A.; Elias, D.A.; Prathapam, R.; He, J.;
Yang, W.; et al. Bacterial Interactomes: Interacting Protein Partners Share Similar Function and Are Validated
in Independent Assays More Frequently Than Previously Reported. Mol. Cell. Proteom. 2016, 15, 1539–1555.
[CrossRef]

38. Huttlin, E.L.; Ting, L.; Bruckner, R.J.; Gebreab, F.; Gygi, M.P.; Szpyt, J.; Tam, S.; Zarraga, G.; Colby, G.;
Baltier, K.; et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell 2015, 162,
425–440. [CrossRef]

39. Huttlin, E.L.; Bruckner, R.J.; Paulo, J.A.; Cannon, J.R.; Ting, L.; Baltier, K.; Colby, G.; Gebreab, F.; Gygi, M.P.;
Parzen, H.; et al. Architecture of the human interactome defines protein communities and disease networks.
Nature 2017, 545, 505–509. [CrossRef]

40. Kiseleva, O.; Poverennaya, E.; Shargunov, A.; Lisitsa, A. Proteomic Cinderella: Customized analysis of bulky
MS/MS data in one night. J. Bioinform. Comput. Boil. 2018, 16, 1740011. [CrossRef] [PubMed]

41. Barsnes, H.; Vaudel, M. SearchGUI: A Highly Adaptable Common Interface for Proteomics Search and de
Novo Engines. J. Proteome Res. 2018, 17, 2552–2555. [CrossRef] [PubMed]

42. Mellacheruvu, D.; Wright, Z.; Couzens, A.L.; Lambert, J.-P.; St-Denis, N.A.; Li, T.; Miteva, Y.V.; Hauri, S.;
Sardiu, M.E.; Low, T.Y.; et al. The CRAPome: A contaminant repository for affinity purification–mass
spectrometry data. Nat. Methods 2013, 10, 730–736. [CrossRef] [PubMed]

43. He, Z. PPI network inference from AP-MS data. Data Min. Bioinform. Appl. 2015, 16, 51–59. [CrossRef]
44. Qingzhou Zhang SMAD: Statistical Modelling of AP-MS Data (SMAD), R package. Available online:

https://www.bioconductor.org/packages/SMAD (accessed on 21 June 2020).
45. Hart, T.; Lee, I.; Salemi, M. A high-accuracy consensus map of yeast protein complexes reveals modular

nature of gene essentiality. Bmc Bioinform. 2007, 8, 236. [CrossRef]
46. Giurgiu, M.; Reinhard, J.; Brauner, B.; Dunger-Kaltenbach, I.; Fobo, G.; Frishman, G.; Montrone, C.; Ruepp, A.

CORUM: The comprehensive resource of mammalian protein complexes—2019. Nucleic Acids Res. 2018, 47,
D559–D563. [CrossRef]

47. Scott, N.E.; Brown, L.M.; Kristensen, A.R.; Foster, L.J. Development of a computational framework for the
analysis of protein correlation profiling and spatial proteomics experiments. J. Proteom. 2015, 118, 112–129.
[CrossRef]

http://dx.doi.org/10.1007/978-1-4939-7003-2_15
http://dx.doi.org/10.1002/pmic.201100523
http://dx.doi.org/10.1016/j.cell.2015.09.053
http://dx.doi.org/10.1038/s41467-019-11180-2
http://dx.doi.org/10.1016/j.cell.2011.02.016
http://www.ncbi.nlm.nih.gov/pubmed/21414488
http://dx.doi.org/10.1038/s41467-019-11461-w
http://www.ncbi.nlm.nih.gov/pubmed/31383865
http://dx.doi.org/10.1016/j.tibs.2017.02.006
http://www.ncbi.nlm.nih.gov/pubmed/28284537
http://dx.doi.org/10.1038/nbt.3955
http://dx.doi.org/10.15252/msb.20167490
http://dx.doi.org/10.3892/mmr.2019.10241
http://dx.doi.org/10.1074/mcp.M115.054692
http://dx.doi.org/10.1016/j.cell.2015.06.043
http://dx.doi.org/10.1038/nature22366
http://dx.doi.org/10.1142/S021972001740011X
http://www.ncbi.nlm.nih.gov/pubmed/29216772
http://dx.doi.org/10.1021/acs.jproteome.8b00175
http://www.ncbi.nlm.nih.gov/pubmed/29774740
http://dx.doi.org/10.1038/nmeth.2557
http://www.ncbi.nlm.nih.gov/pubmed/23921808
http://dx.doi.org/10.1016/b978-0-08-100100-4.00006-5
https://www.bioconductor.org/packages/SMAD
http://dx.doi.org/10.1186/1471-2105-8-236
http://dx.doi.org/10.1093/nar/gky973
http://dx.doi.org/10.1016/j.jprot.2014.10.024


Genes 2020, 11, 677 16 of 17

48. Scott, N.E.; Rogers, L.D.; Prudova, A.; Brown, N.F.; Fortelny, N.; Overall, C.M.; Foster, L.J. Interactome
disassembly during apoptosis occurs independent of caspase cleavage. Mol. Syst. Boil. 2017, 13, 906.
[CrossRef]

49. Brionne, A.; Juanchich, A.; Hennequet-Antier, C. ViSEAGO: A Bioconductor package for clustering biological
functions using Gene Ontology and semantic similarity. Biodata Min. 2019, 12, 13–16. [CrossRef]

50. Frasca, M.; Bertoni, A.; Re, M.; Valentini, G. A neural network algorithm for semi-supervised node label
learning from unbalanced data. Neural Netw. 2013, 43, 84–98. [CrossRef]

51. Eden, E.; Navon, R.; Steinfeld, I.; Lipson, D.; Yakhini, Z. GOrilla: A tool for discovery and visualization of
enriched GO terms in ranked gene lists. Bmc Bioinform. 2009, 10, 48. [CrossRef]

52. (The Gene Ontology Consortium) The Gene Ontology Resource: 20 years and still GOing strong. Nucleic
Acids Res. 2019, 47, D330–D338. [CrossRef] [PubMed]

53. Su, G.; Morris, J.H.; Demchak, B.; Bader, G.D. Biological Network Exploration with Cytoscape 3. Curr. Protoc.
Bioinform. 2014, 47, 8.13.1–8.13.24. [CrossRef] [PubMed]

54. (R Core Team). R: A Language and Environment for Statistical Computing.
55. Csardi, G.; Nepusz, T. The igraph software package for complex network research. Int.J. Complex Syst. 2006,

1695, 1–9.
56. Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional

genomic data. Bioinform. 2016, 32, 2847–2849. [CrossRef]
57. Schoch, D. graphlayouts: Additional Layout Algorithms for Network Visualizations. In Educational Technology

Research and Development; Springer: Berlin, Germany, 2020; pp. 1–32.
58. Lewis, B.W. threejs: Interactive 3D Scatter Plots, Networks and Globes, R package. Available online:

https://CRAN.R-project.org/package=threejs (accessed on 21 June 2020).
59. Morris, J.H.; Knudsen, G.M.; Verschueren, E.; Johnson, J.R.; Cimermancic, P.; Greninger, A.L.; Pico, A.R.

Affinity purification–mass spectrometry and network analysis to understand protein-protein interactions.
Nat. Protoc. 2014, 9, 2539–2554. [CrossRef]

60. Yang, X.; Boehm, J.S.; Yang, X.; Salehi-Ashtiani, K.; Hao, T.; Shen, Y.; Lubonja, R.; Thomas, S.R.; Alkan, O.;
Bhimdi, T.; et al. A public genome-scale lentiviral expression library of human ORFs. Nat. Methods 2011, 8,
659–661. [CrossRef]

61. Wang, D.; Eraslan, B.; Wieland, T.; Hallström, B.; Hopf, T.; Zolg, D.P.; Zecha, J.; Asplund, A.; Li, L.; Meng, C.;
et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Boil.
2019, 15, e8503. [CrossRef]

62. Zhang, B.; Park, B.-H.; Karpinets, T.; Samatova, N.F. From pull-down data to protein interaction networks
and complexes with biological relevance. Bioinformatics 2008, 24, 979–986. [CrossRef]

63. Walter, W.; Sanchez-Cabo, F.; Ricote, M. GOplot: An R package for visually combining expression data with
functional analysis: Figure 1. Bioinformatics 2015, 31, 2912–2914. [CrossRef]

64. Kerrien, S.; Aranda, B.; Breuza, L.; Bridge, A.; Broackes-Carter, F.; Chen, C.; Duesbury, M.; Dumousseau, M.;
Feuermann, M.; Hinz, U.; et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 2011,
40, D841–D846. [CrossRef] [PubMed]

65. Yu, G.; Li, F.; Qin, Y.; Bo, X.; Wu, Y.; Wang, S. GOSemSim: An R package for measuring semantic similarity
among GO terms and gene products. Bioinformatics 2010, 26, 976–978. [CrossRef] [PubMed]

66. Liu, Y.; Mi, Y.; Mueller, T.; Kreibich, S.; Williams, E.G.; Van Drogen, A.; Borel, C.; Frank, M.; Germain, P.-L.;
Bludau, I.; et al. Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat. Biotechnol.
2019, 37, 314–322. [CrossRef] [PubMed]

67. Bin Goh, W.W.; Wang, W.; Wong, L. Why Batch Effects Matter in Omics Data, and How to Avoid Them.
Trends Biotechnol. 2017, 35, 498–507. [CrossRef]

68. Zhang, C.; Lane, L.; Omenn, G.S.; Zhang, Y. Blinded Testing of Function Annotation for uPE1 Proteins
by I-TASSER/COFACTOR Pipeline Using the 2018–2019 Additions to neXtProt and the CAFA3 Challenge.
J. Proteome Res. 2019, 18, 4154–4166. [CrossRef]

69. Gligorijevic, V.; Barot, M.; Bonneau, R. deepNF: Deep network fusion for protein function prediction.
Bioinformatics 2018, 34, 3873–3881. [CrossRef]

http://dx.doi.org/10.15252/msb.20167067
http://dx.doi.org/10.1186/s13040-019-0204-1
http://dx.doi.org/10.1016/j.neunet.2013.01.021
http://dx.doi.org/10.1186/1471-2105-10-48
http://dx.doi.org/10.1093/nar/gky1055
http://www.ncbi.nlm.nih.gov/pubmed/30395331
http://dx.doi.org/10.1002/0471250953.bi0813s47
http://www.ncbi.nlm.nih.gov/pubmed/25199793
http://dx.doi.org/10.1093/bioinformatics/btw313
https://CRAN.R-project.org/package=threejs
http://dx.doi.org/10.1038/nprot.2014.164
http://dx.doi.org/10.1038/nmeth.1638
http://dx.doi.org/10.15252/msb.20188503
http://dx.doi.org/10.1093/bioinformatics/btn036
http://dx.doi.org/10.1093/bioinformatics/btv300
http://dx.doi.org/10.1093/nar/gkr1088
http://www.ncbi.nlm.nih.gov/pubmed/22121220
http://dx.doi.org/10.1093/bioinformatics/btq064
http://www.ncbi.nlm.nih.gov/pubmed/20179076
http://dx.doi.org/10.1038/s41587-019-0037-y
http://www.ncbi.nlm.nih.gov/pubmed/30778230
http://dx.doi.org/10.1016/j.tibtech.2017.02.012
http://dx.doi.org/10.1021/acs.jproteome.9b00537
http://dx.doi.org/10.1093/bioinformatics/bty440


Genes 2020, 11, 677 17 of 17

70. Peng, J.; Xue, H.; Wei, Z.; Tuncali, I.; Hao, J.-Y.; Shang, X. Integrating multi-network topology for gene
function prediction using deep neural networks. Brief. Bioinform. 2020. [CrossRef]

71. Gámez-Valero, A.; Beyer, K. Alternative Splicing of α- and β-Synuclein Genes Plays Differential Roles in
Synucleinopathies. Genes 2018, 9, 63. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/bib/bbaa036
http://dx.doi.org/10.3390/genes9020063
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Gene Sets 
	Re-Analysis of MS Data 
	Building PPI Network 
	Determination of Optimum Threshold 
	GO-Annotations for Characterized Proteins 
	Prediction of Unknown Protein Functions 
	Analysis of Interactome Profiles 
	Software Implementation of Algorithms 

	Results 
	Identification of Proteins 
	Human PPI Network 
	GO Category Prediction for uPE1 Proteins—Biological Processes 
	GO Category Prediction for uPE1 Proteins—Molecular Functions 
	GO Category Prediction for uPE1 Proteins—Cellular Components 
	Differences of Splice-Forms Interactomic Profiles 
	Impact of Data Sources 
	Comparison with UniProt Predictions 

	Discussion 
	Conclusions 
	References

