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abstract

 

Oxidative stress may alter the functions of many proteins including the Slo1 large conductance
calcium-activated potassium channel (BK

 

Ca

 

). Previous results demonstrated that in the virtual absence of Ca

 

2

 

�

 

, the
oxidant chloramine-T (Ch-T), without the involvement of cysteine oxidation, increases the open probability and
slows the deactivation of BK

 

Ca

 

 channels formed by human Slo1 (

 

h

 

Slo1) 

 

�

 

 subunits alone. Because native BK

 

Ca

 

channel complexes may include the auxiliary subunit 

 

�

 

1, we investigated whether 

 

�

 

1 influences the oxidative
regulation of 

 

h

 

Slo1. Oxidation by Ch-T with 

 

�

 

1 present shifted the half-activation voltage much further in the
hyperpolarizing direction (

 

�

 

75 mV) as compared with that with 

 

�

 

 alone (

 

�

 

30 mV). This shift was eliminated in
the presence of high [Ca

 

2

 

�

 

]

 

i

 

, but the increase in open probability in the virtual absence of Ca

 

2

 

�

 

 remained signifi-
cant at physiologically relevant voltages. Furthermore, the slowing of channel deactivation after oxidation was
even more dramatic in the presence of 

 

�

 

1. Oxidation of cysteine and methionine residues within 

 

�

 

1 was not involved
in these potentiated effects because expression of mutant 

 

�

 

1 subunits lacking cysteine or methionine residues
produced results similar to those with wild-type 

 

�

 

1. Unlike the results with 

 

�

 

 alone, oxidation by Ch-T caused a
significant acceleration of channel activation only when 

 

�

 

1 was present. The 

 

�

 

1 M177 mutation disrupted normal
channel activation and prevented the Ch-T–induced acceleration of activation. Overall, the functional effects of
oxidation of the 

 

h

 

Slo1 pore-forming 

 

�

 

 subunit are greatly amplified by the presence of 

 

�

 

1, which leads to the
additional increase in channel open probability and the slowing of deactivation. Furthermore, M177 within 

 

�

 

1 is
a critical structural determinant of channel activation and oxidative sensitivity. Together, the oxidized BK

 

Ca

 

channel complex with 

 

�

 

1 has a considerable chance of being open within the physiological voltage range even at
low [Ca

 

2

 

�

 

]

 

i

 

.

 

key words:

 

BK

 

Ca

 

 • 

 

h

 

Slo • chloramine-T • methionine • cysteine

 

I N T R O D U C T I O N

 

The large conductance calcium-activated potassium chan-
nel (BK

 

Ca

 

)

 

 

 

exists in various types of cells and tissues
including smooth muscle and brain. In response
to depolarization and/or a rise in intracellular Ca

 

2

 

�

 

([Ca

 

2

 

�

 

]

 

i

 

), BK

 

Ca

 

 channels mediate net K

 

�

 

 efflux to repo-
larize the membrane potential to the resting state. This
function serves an important role in muscle contrac-
tion—during which Ca

 

2

 

�

 

 sparks activate the BK

 

Ca

 

channels leading to vasorelaxation (Nelson et al., 1995;
Jaggar et al., 2000)—and the afterhyperpolarization
phase of the action potential in select neurons (Storm,
1987). Furthermore, the impairments exhibited by
mice lacking the channel indicate that BK

 

Ca

 

 channels
influence normal urinary bladder (Meredith et al.,
2004) and cerebellar functions (Sausbier et al., 2004).

The human BK

 

Ca

 

 channel pore-forming 

 

�

 

 subunit
(

 

h

 

Slo1) contains seven putative transmembrane-spanning

regions (Dworetzky et al., 1994; Pallanck and Ganetzky,
1994; Tseng-Crank et al., 1994). The S0 transmembrane
domain, which distinguishes the 

 

Slo

 

 from the 

 

Shaker

 

family of voltage-dependent potassium channels, is
thought to be a site of interaction with auxiliary 

 

�

 

subunits (Wallner et al., 1996; Meera et al., 1997).
Multiple types of 

 

�

 

 subunits (

 

�

 

1–4) have been isolated
in mammals, each with a different tissue distribution
and function (Knaus et al., 1994; Xia et al., 1999;
Brenner et al., 2000a; Uebele et al., 2000).

The 

 

�

 

1 subunit is a 25-kD membrane protein consisting
of two transmembrane domains connected by a large
extracellular loop, such that both the NH

 

2

 

 and COOH
termini are intracellularly located (Knaus et al., 1994;
Orio et al., 2002; Patterson et al., 2002). The 

 

�

 

1 subunit
is present in the brain, particularly in the hippocampus
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and corpus callosum (Tseng-Crank et al., 1996), but is
predominantly expressed in smooth muscle (Garcia-
Calvo et al., 1994; Tanaka et al., 1997). The impaired
vasorelaxation found in 

 

�

 

1 knockout mice (Brenner
et al., 2000b; Pluger et al., 2000) and the down-regula-
tion of 

 

�

 

1 expression associated with some forms of
hypertension (Gollasch et al., 2002; Amberg et al.,
2003; Amberg and Santana, 2003) clearly underscore
the important physiological role of 

 

�

 

1 in the BK

 

Ca

 

channel regulation of vascular function. The presence
of 

 

�

 

1 modulates BK

 

Ca

 

 channel activity by enhancing
the apparent Ca

 

2

 

�

 

 sensitivity of the pore-forming sub-
unit and also by slowing the activation/deactivation
kinetics, even in the virtual absence of Ca

 

2

 

�

 

 (Mc-
Manus et al., 1995; Wallner et al., 1995; Meera et
al., 1996; Nimigean and Magleby, 1999, 2000; Cox
and Aldrich, 2000; Qian and Magleby, 2003). The
structural determinants within 

 

�

 

1 responsible for
these critical modulatory properties are just begin-
ning to be identified (Fernandez-Fernandez et al.,
2004).

Other regulatory mechanisms such as phosphoryla-
tion, pH, and the cellular redox state influence BK

 

Ca

 

channel activity (Weiger et al., 2002). During oxida-
tive stress, cellular reactive oxygen/nitrogen species
(ROS/RNS) readily modify cysteine and methionine
residues in proteins. Oxidation of cysteine typically
leads to the formation of disulfides, whereas oxidation
of methionine residues creates the polar methionine
sulfoxide (met-O). Oxidative modifications of amino
acids differentially influence BK

 

Ca

 

 channel function
depending on the ROS/RNS, the residues modified
within the channel, as well as the experimental model
system (DiChiara and Reinhart, 1997; Sobey et al.,
1997; Wang and Wu, 1997; Wang et al., 1997; Barlow et
al., 2000; Gong et al., 2000; Soh et al., 2001; Brake-
meier et al., 2003). Studies using heterologously ex-
pressed 

 

h

 

Slo1 indicate that oxidation of cysteine resi-
dues typically decreases the channel open probability
(DiChiara and Reinhart, 1997; Soto et al., 2002; Tang
et al., 2004). In contrast, methionine oxidation of the

 

h

 

Slo1 pore-forming subunit that is promoted by the
oxidant chloramine-T (Ch-T) increases the channel
open probability (Tang et al., 2001).

Oxidative stress is prominently involved in many dis-
ease states such as vascular dysfunction (Taniyama and
Griendling, 2003) and neurodegenerative diseases
(Knight, 1997; Markesbery, 1997; Butterfield et al.,
2001). These physiological systems that are affected by
oxidative stress depend on BK

 

Ca

 

 channel activity for
normal function. Therefore, determining the effect
of oxidative modification of BK

 

Ca

 

 channel complexes
that closely resemble native channels is important to
understand and possibly treat or prevent these dis-
eases. Native BK

 

Ca

 

 channels are often multi-subunit

complexes containing both Slo1 and auxiliary 

 

�

 

 sub-
units (Garcia-Calvo et al., 1994; Knaus et al., 1994; Gi-
angiacomo et al., 1995; Vogalis et al., 1996; Tanaka et
al., 1997; Wanner et al., 1999; Weiger et al., 2000).
However, the influence of 

 

�

 

 subunits on the oxidative
regulation of Slo1 function has not been thoroughly
examined.

The purpose of the present work was to determine
whether the presence of 

 

�

 

1 alters the functional ef-
fects of 

 

h

 

Slo1 oxidation. Methionine oxidation of 

 

h

 

Slo1
alone causes a shift in the macroscopic G-V curve by

 

�

 

30 mV and slows deactivation without any apprecia-
ble effect on the activation kinetics at depolarized volt-
ages (Tang et al., 2001). We show that, in the virtual ab-
sence of Ca

 

2

 

�

 

, the auxiliary subunit 

 

�

 

1 dramatically po-
tentiates the effect of methionine oxidation in the

 

h

 

Slo1 pore-forming protein. This is demonstrated by a
further increase in the open probability and even
greater slowing of the deactivation kinetics. Further-
more, 

 

�

 

1 confers novel oxidation sensitivity to the
channel activation kinetics that is mediated largely by a
single methionine residue located in the second trans-
membrane domain (TM2) of 

 

�

 

1.

 

M A T E R I A L S  A N D  M E T H O D S

 

Channel Expression and Mutagenesis

 

h

 

Slo1 (U11058, hbr1; Tseng-Crank et al., 1994) channel alone, or

 

h

 

Slo1 and 

 

�

 

1 (1:1 weight ratio) were transiently expressed in
HEK-tsA cells using FuGENE 6 (Roche Applied Science) as de-
scribed previously (Avdonin et al., 2003). The mouse Slo 

 

�

 

1
(

 

m

 

�

 

1; AF020711; Jiang et al., 1999) in pEGFP-N1 (BD Bio-
sciences) was obtained from the laboratory of R. Aldrich (Stan-
ford University, Stanford, CA). The 

 

m

 

�

 

1 mutants M7L, M23L,
M177L, and Triple (M7L:M23L:M177L) were constructed using
PCR-based mutagenesis, and the sequences were verified. “Cys-
less” 

 

b

 

�

 

1, in which every cysteine in bovine 

 

�

 

1 (

 

b

 

�

 

1; L26101;
Knaus et al., 1994) was replaced with alanine (C18A, C53A,
C76A, C103A, and C135A; Hanner et al., 1998), was obtained
from the laboratory of M.L. Garcia (Merck Research Laborato-
ries, Rahway, NJ).

 

Electrophysiology and Data Analysis

 

Currents were recorded from excised inside-out patches at room
temperature essentially as described previously (Tang et al.,
2001). Patch electrodes (Warner) had a typical initial resistance
of 2.5–3 M

 

�

 

 when filled with solutions (described in the next sec-
tion); the series resistance, 

 

�

 

90% of the input resistance, was
electronically compensated. The current signal was filtered at 10
kHz through the built-in filter of the patch-clamp amplifier
(model AxoPatch 200A; Axon Instruments). Data were acquired
and analyzed using Pulse/PulseFit (HEKA), PatchMachine (Av-
donin et al., 2003), and IgorPro (WaveMetrics) as described for
single-channel data (Avdonin and Hoshi, 2001) and macroscopic
current data (Tang et al., 2001; Avdonin et al., 2003). In brief,
normalized macroscopic conductance was estimated from single
exponential fits to the tail currents recorded at 

 

�

 

50 mV exclud-
ing the initial 180 

 

�

 

s after pulses to different voltages from the
holding voltage of 0 mV. The apparent equivalent charge move-
ment (Q

 

app

 

) was derived from the simple Boltzmann function



 

359

 

Santarelli et al.

 

used to describe the average G-V curve. Activation and deactiva-
tion time courses were fitted by single exponentials excluding the
initial 150- and 180-

 

�

 

s segments, respectively. A single exponen-
tial fit to the voltage dependence of the time constant provided
the value of the equivalent charge movement (

 

z).
In some patches, the tail currents after Ch-T treatment con-

tained a minor fast component. The fractional amplitude of this
component was typically small (�10%), and the time constant es-
timated from single-exponential fits was essentially the same as
that of the slow component estimated from two-exponential fits.
Thus, single-exponential fits were used throughout to quantify
the tail current kinetics. Because the time constant of the tail cur-
rent before modification and that of the minor fast component
after Ch-T treatment were similar, the fast component likely re-
flects the kinetics of unmodified channels.

The change in free energy associated with Ca2� binding
(�GCa) was determined based on the �GCa contribution to chan-
nel open probability (PO) as described previously (Tang et al.,
2004). The values of PO, �Go, �GV, and �GCa were estimated by
fitting the G-V curves obtained in 0 and 2.1 �M Ca2�.

Statistical comparisons were made using the paired t test. In
some cases, the t test and ANOVA followed by the Bonferroni
post hoc test were used as specifically indicated (DataDesk; Data
Description). Statistical significance was assumed at P 	 0.05.
Where appropriate, data are presented as mean 
 SEM.

Reagents and Solutions

Both the external and internal recording solutions contained the
following (mM): 140 KCl, 11 EGTA, and 10 HEPES, pH 7.2
adjusted with NMDG. The free Ca2� concentration for these
solutions was estimated at �1 nM assuming 20 �M contami-
nating Ca2� (Patcher’s Power Tools v1.0, F. Mendez; http://
www.mpibpc.gwdg.de/abteilungen/140/software/). The exter-
nal solution used to reduce the size of inward K� currents for ex-
periments involving 2.1 �M [Ca2�]i contained the following
(mM): 70 KCl, 70 NaCl, 2 MgCl2, and 10 HEPES, pH 7.2 adjusted
with NMDG. The 2.1-�M free Ca2� internal solution contained
the following (mM): 120 KCl, 20 KOH, 1 MgCl2, 2.2 CaCl2, 4
HEDTA, and 10 HEPES, pH 7.4 adjusted with NMDG. The exter-
nal solution used for experiments involving 120 �M [Ca2�]i con-
tained the following reagents (mM): 140 KCl, 2 MgCl2, and 10
HEPES, pH 7.2 adjusted with NMDG. The 120-�M free Ca2� in-
ternal solution contained the following reagents (mM): 140 KCl,
10 MgCl2, 0.1 CaCl2, and 10 HEPES, pH 7.2 adjusted with NMDG.

Chloramine-T (Ch-T; Sigma-Aldrich) was dissolved in the in-
ternal solution immediately before use. In every experiment, 2
mM Ch-T was manually applied with a pipette to ensure the addi-
tion of six times the bath volume (�150 �l). With Ch-T present,
channel current in response to a pulse to 120 mV was monitored
every 5 s for the following three features of oxidation by Ch-T: in-
creased current amplitude, slowed deactivation, and accelerated
activation. Once these characteristic changes reached steady-
state levels (	8 min), Ch-T was subsequently washed out with 1
ml of recording solution. The time courses of modification of
channels, composed of either hSlo1 alone or hSlo1 and �1 to-
gether, were indistinguishable.

R E S U L T S

Oxidation by Ch-T More Dramatically Enhances hSlo1 
Currents When �1 Is Present

To determine if the presence of �1 influences the func-
tional effects of hSlo1 oxidation by Ch-T, ionic currents
through hSlo1 or hSlo1 � m�1 channels were recorded

in the inside-out patch-clamp configuration from tran-
siently transfected HEK-tsA cells. All recordings were
initially made in the virtual absence of Ca2�, essentially
permitting the Slo channel to act as a voltage-depen-
dent channel to simplify the data analysis (Meera et al.,
1996; Horrigan and Aldrich, 1999; Horrigan et al.,
1999). Currents elicited by pulses to 120 mV in patches
containing either hSlo1 or hSlo1 � m�1 are shown in
Fig. 1 A (thin sweeps). The hSlo1 � m�1 currents dis-
played slow activation and deactivation (also see Fig. 2),
a hallmark of the functional presence of the �1 sub-
unit. After bath application of 2 mM Ch-T to the cyto-
plasmic side, hSlo1 and hSlo1 � m�1 exhibited similar
modification time courses (P � 0.08, t test) that re-
sulted in larger current amplitudes (Fig. 1 A, thick
sweeps). The current enhancement remained after
Ch-T washout, consistent with the oxidative modifica-
tion of the channel protein complex by Ch-T.

Treatment with Ch-T shifted the peak I-V curves from
both hSlo1 and hSlo1 � m�1 to more negative voltages,
such that at a given voltage, the current size was greater
(Fig. 1 B). However, the current enhancement was
drastically larger in hSlo1 � m�1 than in hSlo1 alone,
especially at moderately depolarizing voltages (50–100
mV; Fig. 1 B). The relative increase in current ampli-
tude due to oxidation became progressively smaller at
more depolarizing voltages where the channel open
probability is saturated. This voltage dependence is
consistent with Ch-T increasing the open channel prob-
ability as shown for hSlo1 (Tang et al., 2001).

The voltage dependence of the probability of the
channel being open inferred from normalized macro-
scopic G-V curves confirmed that treatment with Ch-T
enhanced the open probability of hSlo1 � m�1 more
profoundly than that of hSlo1 alone. The G-V curves es-
timated from tail current measurements were fit by a
simple Boltzmann function as a data descriptor to de-
scribe the overall voltage dependence of the Ch-T effect
(Fig. 1 C). After Ch-T treatment, the hSlo1 half-activa-
tion voltage (V0.5) shifted by �30 mV in the hyperpolar-
izing direction. However, for hSlo1 � m�1, oxidation
by Ch-T produced the strikingly greater shift of �75
mV. The mean shift in V0.5 for hSlo1 � m�1 (�V0.5 �
�74.6 
 3.5 mV, n � 14) was more than twice as great as
�V0.5 for hSlo1 alone (�V0.5 � �31.3 
 3.3 mV, n � 7)
(Fig. 1 D; P � 0.0001, t test). These results suggest that
treatment with Ch-T leads to an increase in the open
probability that is markedly potentiated with m�1 present.

The apparent equivalent charge movement (Qapp) of
hSlo1 activation, inferred from the steepness of the G-V
curve, decreased by �23% (�Qapp� �0.25 
 0.07e, P �
0.036, n � 7) after Ch-T treatment (Fig. 1 D). In con-
trast, the �Qapp for hSlo1 � m�1 demonstrated no sig-
nificant change after modification (�Qapp� 0.02 

0.02e; P � 0.65, n � 14).
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The increase in the channel open probability caused
by Ch-T was maintained at more negative, physiological
voltages. At �40 mV in the virtual absence of Ca2�,
treatment with Ch-T markedly increased the number of
hSlo1 � m�1 channel openings (Fig. 1 E). Indeed, the
mean open probability at this voltage increased by a
factor of 12.0 
 3.0 relative to control. In contrast with
the dramatic changes in the gating properties of the
hSlo1 � m�1 channel, the open channel current-con-
ductance characteristic estimated using voltage ramps
(0–250 mV) in single-channel patches remained unal-
tered by Ch-T treatment (unpublished data).

Modification by Ch-T Drastically Slows hSlo1 � 
m�1 Deactivation

To assess whether treatment with Ch-T affects hSlo1 de-
activation differently when the �1 subunit is present,
hSlo1 and hSlo1 � m�1 tail currents were recorded be-
fore and after Ch-T treatment (Fig. 2 A). After Ch-T ex-
posure, the mean deactivation time constant at �40
mV increased by �70% (from 0.26 to 0.45 ms) for
hSlo1, whereas the increase for hSlo1 � m�1 was
�180% (from 2.12 to 6.06 ms). This appreciably
greater slowing of hSlo1 � m�1 deactivation was ob-
served at every voltage examined (Fig. 2 B). Single ex-
ponential fits to the voltage dependence of the deacti-
vation time constants in the voltage range of �150 to
�50 mV indicated that oxidation by Ch-T specifically
increased the time constant values at 0 mV, �(0), for
hSlo1 and hSlo1 � m�1 (P � 0.0021 and 0.015, respec-

Figure 1. Oxidation by Ch-T enhances hSlo1 � m�1 currents to a
greater extent than hSlo1 currents. (A) Representative currents
before (thin sweep) and after (thick sweep) 2 mM Ch-T treatment.
The currents were elicited in response to pulses from 0 to 120 mV.
Mean times to reach 50% of final current amplitude in the presence
of Ch-T for hSlo1 and hSlo1 � m�1 were 5.64 
 0.34 min and
4.68 
 0.3 min, respectively (P � 0.08, n � 4). (B) Peak I-V curves
before (open symbols) and after (closed symbols) modification by
Ch-T. Continuous curves represent relative increases in current am-
plitude as a function of voltage (right axis). (C) G-V curves before
(open symbols) and after (closed symbols) modification by Ch-T.
The macroscopic currents were elicited by pulses to different
test voltages from the holding voltage of 0 mV. The hSlo1 V0.5 val-
ues for the results obtained before and after Ch-T application were
171.9 
 4.5 mV and 140.6 
 6.1 mV (�V0.5 range, �19 to �42 mV;
P � 0.0001, n � 7), respectively. The hSlo1 � m�1 V0.5 values for the
results obtained before and after Ch-T application were 163.8 
 3.8
mV and 89.2 
 4.1 mV (�V0.5 range �50 to �99 mV; P � 0.0001,
n � 14), respectively. The hSlo1 Qapp values for the results obtained
before and after Ch-T application were 1.09 
 0.16e and 0.84 

0.09e (P � 0.036, n � 7), respectively. The hSlo1 � m�1 Qapp values
for the results obtained before and after Ch-T application were
0.86 
 0.02e and 0.88 
 0.04e , respectively, (P � 0.65, n � 14). (D)
V0.5 and Qapp values before and after oxidation by Ch-T from individ-
ual experiments (open circles) and mean values (closed circles). (E)
Representative hSlo1 � m�1 channel openings at �40 mV before
and after treatment with Ch-T. Data were filtered at 10 kHz and
sampled at 83 kHz, but are shown filtered at 1 kHz for display pur-
pose. Typically, 3-min segments were analyzed in each condition.
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tively, n � 5) without significantly affecting their equiv-
alent charge movement (P � 0.17 and 0.08, respec-
tively, n � 5). In fact, the change in �(0) for hSlo1 �
m�1 is approximated by a voltage shift of �75 mV,
which is similar in value to the voltage shift of the G-V
curve after oxidation by Ch-T.

Activation Kinetics of hSlo1 � m�1 Accelerates 
after Ch-T Treatment

The activation kinetics of hSlo1 alone remained unal-
tered after modification by Ch-T (Fig. 3 A; Tang et
al., 2001). In contrast, Ch-T markedly accelerated the
mean activation kinetics of hSlo1 � m�1 by 68% at each
voltage tested (130–240 mV; Fig. 3 B). Single exponen-
tial fits to the voltage dependence of the activation time
constant within this voltage range demonstrated that
treatment with Ch-T decreased �(0) for hSlo1 � m�1
(P � 0.002, n � 7), but not for hSlo1 (P � 0.23, n � 4),
without affecting the equivalent charge movement
(hSlo1: P � 0.14, n � 4; hSlo1 � m�1: P � 0.92, n � 7).

This change in �(0) could be accounted for by a voltage
shift of more than �150 mV, which is much larger in
value than the voltage shift of the G-V curve after oxida-
tion by Ch-T.

Altogether, modification by Ch-T caused a much
greater increase in hSlo1 open probability, an en-
hanced slowing of deactivation, and a distinct acceler-
ation of activation kinetics when �1 was coexpressed.
These Ch-T–induced changes specific to hSlo1 � m�1
may involve any of the following possible mechanisms.
First, given that cysteine residues are also potential
targets of Ch-T under physiological conditions, oxida-
tion of cysteine within �1 may account for the en-
hanced oxidative regulation of hSlo1 � m�1. Second,
oxidation of methionine within �1 may synergistically
enhance the functional effects of hSlo1 oxidation.
Third, the mere presence of �1 may potentiate the
functional outcome of oxidation within the hSlo1
pore-forming subunit. These possible mechanisms are
addressed in the next sections.

Figure 2. Ch-T treatment slows deactivation of hSlo1 � m�1 to a
greater extent than hSlo1 deactivation. (A) Tail currents recorded
at �40 mV after pulses to 180 mV before (thin sweep) and after
(thick sweep) Ch-T treatment. (B) Voltage dependence of the de-
activation time constant for hSlo1 control (open circles; n � 7),
hSlo1 after Ch-T (closed circles; n � 7), hSlo1 � m�1 control
(open squares; n � 5), and hSlo1 � m�1 after Ch-T (closed
squares; n � 5). The hSlo1 �(0) and z values obtained before and
after Ch-T application were 0.35 
 0.04 ms and 0.19 
 0.01e, and
0.63 
 0.06 ms and 0.21 
 0.01e, respectively. The hSlo1 � m�1
�(0) and z values obtained before and after Ch-T application were
3.96 
 0.52 ms and 0.38 
 0.02e, and 10.9 
 2.1 ms and 0.34 

0.01e, respectively. The relative increase in the value of the deacti-
vation time constant as a function of voltage (right axis) is shown
for hSlo1 (dashed line) and hSlo1 � m�1 (continuous line).

Figure 3. Modification by Ch-T accelerates activation of hSlo1 �
m�1. (A) Normalized currents recorded at 240 mV from the
holding voltage of 0 mV before (thin sweep) and after (thick
sweep) Ch-T treatment. (B) Voltage dependence of the activation
time constant for hSlo1 control (open circles; n � 7), hSlo1 after
Ch-T (closed circles; n � 7), hSlo1 � m�1 control (open squares;
n � 14), and hSlo1 � m�1 after Ch-T (closed squares; 5 	 n 	 12).
The hSlo1 �(0) and z values obtained before and after Ch-T
application were 7.0 
 1.2 ms and 0.28 
 0.05e, and 4.4 
 1.0
ms and 0.22 
 0.02e, respectively. The hSlo1 � m�1 �(0) and z
values obtained before and after Ch-T application were 0.082 

0.01 s and 0.171 
 0.02e, and 0.026 
 0.003 s and 0.174 
 0.02e,
respectively.
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Cysless �1 Produces Results Similar to Wild-type �1

Previous results demonstrated that cysteine modifica-
tion within hSlo1 is not involved in the Ch-T–mediated
response (Tang et al., 2001). To test whether the en-
hanced effects of Ch-T on channel behavior in the
presence of �1 involve modification of cysteine resi-
dues within the �1 subunit, we used a mutant b�1 sub-
unit devoid of any cysteine named Cysless b�1 (Fig. 4 A;
Hanner et al., 1998). Because this mutant was derived
from bovine �1, we compared the results from hSlo1 �
b�1 with hSlo1 � Cysless b�1.

Expression of Cysless b�1 slowed the hSlo1 activation
and deactivation kinetics in the control condition es-
sentially as observed with wild-type b�1 (Fig. 4 B), con-
firming that Cysless b�1 functionally interacts with
hSlo1. Ch-T treatment enhanced the currents through
both hSlo1 � b�1 and hSlo1 � Cysless b�1 in a similar
manner. After modification by Ch-T, the hSlo1 � b�1
and hSlo1 � Cysless b�1 G-V curves shifted leftward
(Fig. 4 C), such that the mean �V0.5 values were indis-
tinguishable (�54.1 
 1.7 mV and �58.1 
 3.6 mV,
n � 3 and 10, respectively). Importantly, these �V0.5 val-
ues were markedly greater than those found with hSlo1
alone (�V0.5 � �30 mV; Fig. 1 D) (P � 0.05; Bonfer-
roni test). The �V0.5 values of hSlo1 � b�1 and hSlo1 �
Cysless b�1 were smaller than that of hSlo1 � m�1
(�V0.5 � �75 mV; Fig. 1 D) probably because the con-
trol V0.5 values before treatment with Ch-T for the b�1
channel complexes (�145 and 156 mV, respectively)
were already less depolarized than that of m�1 (�164
mV); yet, all V0.5 values after treatment with Ch-T were
�90 mV. Nevertheless, the removal of all cysteine
residues within the �1 subunit still permitted the en-
hanced �V0.5 after modification by Ch-T. Furthermore,
the activation and deactivation time courses of hSlo1 �
Cysless b�1 before and after treatment with the oxidant
resembled those of hSlo1 � b�1 (Fig. 4 D). Therefore,
the kinetic and G-V results for hSlo1 � m�1, hSlo1 �
b�1, and hSlo1 � Cysless b�1 are largely similar and
suggest that oxidation of cysteine residues within �1 is
not responsible for the enhanced oxidative regulation
of hSlo1 in the presence of the �1 subunit.

The Greater Increase in Open Probability Does Not Depend 
on Methionine Oxidation within �1

The Ch-T effect on hSlo1 � �1 function did not in-
volve cysteine oxidation but the oxidation of methio-
nine residues within �1 may be responsible. Each m�1
contains five methionine residues: M1, M7, M23, M89,
and M177 (Fig. 5 A); the contribution of these me-
thionines to the enhanced shift of the G-V curve and
further slowing of deactivation, as well as acceleration
of the activation kinetics was assessed in the following
manner. Because M1 is obligatory for normal �1 syn-

Figure 4. Cysless b�1 resembles wild-type b�1. (A) A schematic
representation of cysteine residues (open circles) in m�1. C26
does not exist in b�1. Closed circles represent methionine residues.
(B) Representative currents before (thin sweep) and after (thick
sweep) Ch-T treatment. The currents were elicited in response to
pulses from 0 to 140 mV. (C) G-V curves before and after modifica-
tion by Ch-T. The hSlo1 � b�1 V0.5 values for the results obtained
before (open circles) and after (closed circles) Ch-T application
were 145.5 
 8.2 mV and 91.4 
 9.6 mV (�V0.5 range, �51 to
�56 mV; P � 0.0009; n � 3), respectively. The hSlo1 � Cysless b�1
V0.5 values for the results obtained before (open squares) and after
(closed squares) Ch-T application were 156.6 
 4.5 mV and
98.5 
 7.4 mV (�V0.5 range, �39 to �77 mV; P � 0.0001, n �
10), respectively. The hSlo1 � b�1 Qapp values for the results ob-
tained before and after Ch-T application were 0.82 
 0.06e and
0.8 
 0.04e (P � 0.8, n � 3), respectively. The hSlo1 � Cysless b�1
Qapp values for the results obtained before and after Ch-T applica-
tion were 0.88 
 0.03e and 0.74 
 0.05e, respectively (P � 0.009,
n � 10). (D) Voltage dependence of the deactivation and activa-
tion time constants. Symbols are the same as in C.
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thesis, we could not readily test its role. M89 is present
in m�1 but absent in b�1. However, both m�1 and b�1
confer to hSlo1 the enhanced Ch-T sensitivity, thereby
excluding the critical involvement of M89 (Fig. 4).
Thus, M7, M23, and M177 were individually mutated
to leucine which is much less susceptible to oxidation
by Ch-T than methionine (Ciorba et al., 1997). In ad-
dition, a triple m�1 mutant (Fig. 5, Triple) in which
M7, M23, and M177 were all replaced by leucine was
constructed. When coexpressed with hSlo1, each m�1
mutant channel complex exhibited currents with wild-
type �1-like characteristics including slower activation
and deactivation compared with hSlo1 alone, thus con-
firming that these m�1 mutants functionally associated
with hSlo1.

After modification by Ch-T, each m�1 mutant channel
complex (M7L, M23L, M177L, and Triple) showed a
large leftward shift in V0.5 (Fig. 5 B). The mean V0.5 for
hSlo1 � M7L, M23L, M177L, or Triple m�1 shifted by
�68 
 5.2 mV, �50 
 4.1 mV, �59 
 5.7 mV, and
�50.6 
 2.6 mV, respectively (Fig. 5 C); these �V0.5 were
significantly larger than that found with hSlo1 alone
(�V0.5 � �30 mV; Fig. 1 D) (P � 0.05, Bonferroni test).
These results indicated that oxidation of methionine res-
idues within m�1 is not necessary to produce the en-
hanced G-V curve shift after modification by Ch-T.

Methionine Oxidation within �1 Is Not Required for the 
Greater Slowing of hSlo1 Deactivation

Treatment with Ch-T slowed the deactivation time
course of every hSlo1� mutant m�1 complex examined
(Fig. 6 A). The extent of this slowing of hSlo1 deactiva-

Figure 5. Methionine mutations within m�1 permit oxidation-
related increases in hSlo1 open probability similar to wild-type
m�1. (A) A schematic representation of methionine residues
(closed circles) in m�1. Open circles represent cysteine residues.
(B) G-V curves before and after modification by Ch-T. The hSlo1 �
M7L, M23L, M177L, or Triple V0.5 values for the results obtained
before Ch-T application (open circles) were 153.9 
 12.5 mV (n �
4), 147.1 
 3.2 mV (n � 5), 164.1 
 8.3 mV (n � 5), and 153.8 

6.2 mV (n � 6), respectively. After Ch-T application (closed circles),
the hSlo1 � M7L, M23L, M177L, or Triple V0.5 values were 85.5 

9 mV (�V0.5 range, �54 to �78 mV; P � 0.001, n � 4), 96.9 
 6.4
mV (�V0.5 range, �42 to �60 mV; P � 0.0002, n � 5), 105 
 5.9
mV (�V0.5 range, �43 to �71 mV; P � 0.0005, n � 5), and 103.1 

7.3 mV (�V0.5 range, �45 to �60 mV; P � 0.0001, n � 6), respec-
tively. (C) The mean �V0.5 values (left) for hSlo1 � M7L, M23L,
M177L, and Triple m�1 were �68.4 
 5.2 mV, �50.2 
 4.1 mV,
�59.0 
 5.8 mV, and �50.7 
 2.6 mV, respectively. The mean
�Qapp values (right) for hSlo1 � M7L, M23L, M177L, and Triple
m�1 were �0.11 
 0.03e (P � 0.04, n � 4), �0.14 
 0.08e (P �
0.15, n � 5), �0.019 
 0.03e (P � 0.6, n � 5), and �0.12 
 0.04e
(P � 0.02, n � 6), respectively. A negative �V0.5 indicates a leftward
shift of the G-V curve, and a negative �Qapp value indicates a
decrease in the slope of the G-V curve after Ch-T modification.

Figure 6. Slowing of channel deactivation after oxidation by
Ch-T is maintained in all m�1 methionine mutant channel
complexes. (A) Superimposed hSlo1 � M7L, M23L, M177L, or
Triple m�1 normalized tail currents recorded at �40 mV after
pulses to 180 mV before (thin sweeps) and after (thick sweeps)
treatment with Ch-T. (B) Voltage dependence of the deactivation
time constant for hSlo1 � wild type (diamonds; n � 5), M7L
(circles; n � 4), M23L (triangles; n � 5), M177L (squares; n � 5),
or Triple (inverted triangles; n � 6) m�1 before (open symbols)
and after (closed symbols) Ch-T treatment.
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tion with any of the m�1 mutants was indistinguish-
able from the slowing of hSlo1 � m�1 (Fig. 6 B). The
voltage dependence of the deactivation kinetics was
also unaltered by Ch-T treatment with the equivalent
charge movement remaining at �0.3e in all cases.
Thus, the Ch-T–induced slowing of channel deactiva-
tion did not specifically require M7, M23, M177, or the
presence of all three residues together in �1.

M177 in m�1 Is Critical for Typical hSlo1 
Activation Properties

Oxidative modification by Ch-T accelerated the activa-
tion kinetics of hSlo1 � m�1 but not of hSlo1 alone
(Fig. 3). For channel complexes that included an m�1
methionine point mutant, there was a trend for the ac-
tivation kinetics to be faster than hSlo1� wild-type m�1
even before Ch-T treatment (Fig. 7 A). However, a dif-
ference in the activation time course was statistically sig-
nificant only in hSlo1 � M177L m�1 (220 mV; P �

0.002, Bonferroni test). In fact, the activation kinetics
of hSlo1 � M177L m�1 before Ch-T treatment was sim-
ilar to that of the hSlo1� wild-type m�1 complex after
modification by Ch-T.

The activation kinetics of hSlo1 � M7L m�1 and
hSlo1 � M23L m�1 after Ch-T treatment were signifi-
cantly faster, as found with wild-type m�1 (Fig. 7, B and
C; P � 0.005 and 0.03, respectively). However, Ch-T

Figure 7. M177 in m�1 specifically affects channel activation.
(A) Voltage dependence of the activation time constant before
treatment with Ch-T for hSlo1 � wild type (diamonds; n � 14),
M7L (circles; n � 4), M23L (triangles; n � 5), or M177L (squares;
n � 5) m�1. (B) Currents recorded at 220 mV from the holding
voltage of 0 mV before (thin sweep) and after (thick sweep)
modification by Ch-T. (C) Activation time constant values at 220 mV
before and after oxidation by Ch-T from individual experiments.

Figure 8. The effect of Ch-T on channel open probability
depends on Ca2�. (A) G-V curves before and after modification by
Ch-T. Currents were first generated by pulsing to different test
potentials from a holding voltage of 0 mV in the virtual absence of
Ca2�. This recording protocol was repeated after bath application
of 2.1 �M Ca2�. Tail currents were measured at �50 mV in zero
[Ca2�]i or �100 mV in high [Ca2�]i. After a return to zero Ca2�

for treatment with 2 mM Ch-T, the recording protocol was again
repeated in zero and then 2.1 �M Ca2�. The zero [Ca2�]i V0.5

values for the results obtained before (open circles) and after
(closed circles) Ch-T application were 155.3 
 5.1 mV and
103.5 
 7.2 mV (�V0.5 range, �47 to �56 mV; P � 0.002, n � 3),
respectively. The smaller �V0.5 value (approximately �50 vs. �75
mV; Fig. 1) was most likely because of the use of an external re-
cording solution containing less K� than that previously used in
the zero [Ca2�]i experiments. The 2.1 �M [Ca2�]i V0.5 values for
the results obtained before (open squares) and after (closed
squares) Ch-T application were 9.1 
 11.2 mV and 29.6 
 12.5 mV
(�V0.5 range, 15–25 mV; P � 0.018, n � 3), respectively. The zero
[Ca2�]i Qapp values for the results obtained before and after Ch-T
application were 0.84 
 0.04e and 0.79 
 0.02e (P � 0.13, n � 3),
respectively. The 2.1 �M [Ca2�]i Qapp values for the results ob-
tained before and after Ch-T application were 1.03 
 0.07e and
0.88 
 0.03e (P � 0.1, n � 3), respectively. (inset) The contribu-
tion of Ca2�-dependent gating to overall channel opening (�GCa)
before and after oxidation by Ch-T from individual experiments.
(B) Representative currents from a single patch (n � 5) in the
presence of 120 �M [Ca2�]i before (thin sweeps) and after (thick
sweeps) Ch-T treatment. The currents were elicited from a hold-
ing voltage of �200 mV.
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failed to accelerate the activation time course of hSlo1 �
M177L m�1 in an appreciable manner (P 
 0.085).
M177L m�1 does associate with hSlo1 because the deac-
tivation kinetics of hSlo1 � M177L m�1 was indistin-
guishable from hSlo1 � m�1 (Fig. 6 B). Thus, M177 in
TM2 of �1 is a key determinant of the activation kinet-
ics and the oxidative sensitivity of hSlo1 � m�1.

The Effect of Ch-T Treatment with �1 Present Is 
Ca2� Dependent

The hyperpolarizing shift in V0.5 caused by treatment
with Ch-T was essentially eliminated by increasing
[Ca2�]i to 2.1 �M (Fig. 8 A). Similar results were ob-
tained with saturating levels of divalent ions, [Ca2�]i �
120 �M and [Mg2�]i � 10 mM (Fig. 8 B). In the pres-
ence of elevated [Ca2�]i, cysteine oxidation is capable
of shifting the G-V curve to the right (Tang et al.,
2004), which may account for the depolarizing shift
seen here after treatment with Ch-T. With the assump-
tion that the free energy changes associated with the
BKCa channel intrinsic opening process, voltage-depen-
dent activation, and Ca2� binding together contribute
to the overall open probability in a linearly additive
manner (Cui and Aldrich, 2000), the measured G-V pa-
rameters were used to infer the free energy contribu-
tions of Ca2� to channel opening (Tang et al., 2004) in
the control and Ch-T treated conditions. The decrease
in �GCa (�50%) after Ch-T modification of hSlo1 �
m�1 in 2.1 �M [Ca2�]i indicates that Ca2� makes a
smaller free energy contribution to overall channel
opening after oxidation (Fig. 8 A, inset).

Biophysical Model Simulation

The functional effects of oxidation by Ch-T of the
hSlo1 � �1 complex in the virtual absence of Ca2� may
be interpreted using the HCA allosteric gating model
(Fig. 9 A; Horrigan et al., 1999) as performed for the
hSlo1 channel without �1 (Tang et al., 2001). The volt-
age dependence of hSlo1 alone shifts by �30 mV, and
the deactivation time course slows after oxidation by
Ch-T. To account for these alterations, Tang et al.
(2001) increased the value of the strongly voltage-
dependent parameter �(0), which may correspond to
movement of the voltage sensor (Horrigan et al.,
1999), by 2.3-fold and decreased the rate constant of
the closing transition dominant at negative voltages
(�0) by 60% (Fig. 9 B; Tang et al., 2001, Fig. 14). We
simulated the potentiated effects of Ch-T treatment in
the presence of �1 in the following manner. First, the
value of �(0) is further increased (about twofold) to ac-
count for the larger shift, �75 mV, of the G-V curve
(Fig. 9 B). Second, the closing rate constant �0 de-
creases by an additional 40% to account for the greater
slowing of the tail kinetics. Third, in addition to the two
quantitative changes listed, the rate constant for the

opening transition dominant at positive voltages (�4) is
increased by 2.1-fold to account for the unique acceler-
ation of the activation kinetics observed in hSlo1 � �1
but not in hSlo1 alone. Simulated data produced from

Figure 9. Simulation of oxidation by Ch-T on hSlo1 � �1
function based on the HCA model. (A) The HCA allosteric gating
model (Horrigan et al., 1999). The most probable opening of the
channel at strongly depolarized voltages involves transitions from
C0 to C1, C2, C3, C4, and then O4. Likewise, channel closing at
negative voltages entails transitions from O4 to O3, O2, O1, O0, and
then C0. (B) Adjustments in average parameter values from the
HCA model required to simulate the effect of modification by
Ch-T on hSlo1 (Tang et al., 2001) or hSlo1 � �1 function. HCA
model values are as follows: �(0) � 1,500 s�1, �(0) � 35,370 s�1,
�0(0) � 0.007 s�1, �1(0) � 0.154 s�1, �2(0) � 3.39 s�1, �3(0) � 52
s�1, �4(0) � 65 s�1, D � 22, f � D0.5, and L(0) � �0(0)/�0(0) � 2 �
10�6. L(0) represents the open-to-closed equilibrium constant in
the absence of an applied voltage. (C) Experimental hSlo1 � m�1
currents (continuous sweeps) recorded at 160 mV before (thin)
and after (thick) oxidation by Ch-T and simulated currents
(dashed lines) from the HCA model adjusted for the effect of
Ch-T in the presence of �1. (D) G-V curves from a patch contain-
ing hSlo1 � m�1 before (open circles) and after (closed circles)
treatment with Ch-T. Data simulated from the hSlo1 � �1 model
before (dotted line) and after (continuous line) Ch-T are superim-
posed. (E) Activation/deactivation time constants. Symbols are
the same as in D.
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this model that account for the effect of Ch-T on hSlo1
function with �1 present match the experimental data
(Fig. 9, C–E).

D I S C U S S I O N

Methionine Oxidation Leads to Distinct Alterations in
hSlo1 � �1 Function

Coexpression of �1 with hSlo1 is known to affect the ac-
tivation/deactivation kinetics and apparent Ca2� sensi-
tivity of the channel (Orio et al., 2002). Here, we have
demonstrated that oxidation of hSlo1 in the presence
of the auxiliary subunit �1 leads to functional effects
clearly distinguishable from those observed with hSlo1
alone. Oxidation of hSlo1 promoted by Ch-T causes a
leftward shift of the G-V curve by �30 mV. However,
this hyperpolarizing shift is more than twice as great
(�75 mV) in the presence of �1. Furthermore, the Ch-
T–induced slowing of hSlo1 deactivation is even more
dramatic with �1 present. In addition, �1 confers a
novel effect of oxidation not observed with hSlo1 alone;
modification by Ch-T leads to the distinct acceleration
of hSlo1 activation evident at each depolarized voltage
only with the inclusion of �1 into the channel com-
plex. These unique features of oxidative modification
in the presence of the �1 subunit overall cannot be ac-
counted for by a difference in the modification rate as
compared with hSlo1 alone or a simple voltage-depen-
dent shift in the open probability and activation/deac-
tivation kinetics.

Role of Cysteine and Methionine Residues in �1

Because Ch-T preferentially oxidizes methionine resi-
dues under physiological conditions (Levine et al.,
1996), methionine is implicated as the main target of
oxidation by Ch-T that is responsible for the observed
functional alterations in both hSlo1 and hSlo1 � �1.
However, protein-modifying agents may not be per-
fectly specific for one particular amino acid. In fact,
both cysteine and methionine are possible physiologi-
cal targets of Ch-T. To determine if cysteine oxidation
plays a role in the Ch-T effect on hSlo1 alone, Tang et
al. (2001) previously showed that cysteine-specific
reagents (5,5�-dithio-bis (2-nitrobenzoic acid), meth-
anethiosulfonate ethylammonium, and p-chloromer-
curibenzoic acid) actually decreased channel activity,
thereby demonstrating that cysteine oxidation has op-
posite effects on channel function than methionine
oxidation. Furthermore, the Ch-T–induced potentia-
tion was maintained in hSlo1 mutants that lacked most
of the cysteine residues within the channel. Finally,
peptide methionine sulfoxide reductase, an enzyme
that catalyzes the reduction of met-O (Weissbach et
al., 2002), partially reversed the effect of Ch-T treat-
ment. Therefore, the functional alterations caused by

Ch-T were attributed to methionine oxidation within
hSlo1.

Cysteine residues within �1 are not required for typi-
cal regulation of hSlo1 kinetics or the enhanced effects
on channel function after oxidation. The b�1 subunit
devoid of any cysteine residues behaves much like wild-
type b�1 in terms of slowing hSlo1 activation and deac-
tivation. Furthermore, after oxidation by Ch-T, the cys-
teine mutations still permit the significantly larger
�V0.5 value, the slower deactivation kinetics and the ac-
celerated channel activation similar to those observed
with wild-type b�1. These results indicate that cysteine
is not the likely Ch-T target responsible for causing the
functional changes after oxidation.

Similar to the b�1 cysteine mutant, the m�1 methio-
nine mutants regulate hSlo1 kinetics much like wild-
type �1. Moreover, all m�1 methionine mutants includ-
ing the triple mutant maintain the dramatic shift of the
G-V curve toward the hyperpolarizing direction and the
enhanced slowing of channel deactivation after oxida-
tion by Ch-T. Evaluation of the role of the initial �1 me-
thionine residue (M1) is not straightforward. However,
its contribution to the enhanced oxidative regulation
of hSlo1, although a possibility, is unlikely due to poten-
tial removal by posttranslational processing of the ma-
ture protein (Creighton, 1993). Therefore, the pres-
ence of the �1 subunit provides the possibility to am-
plify the functional effects of methionine oxidation
within the hSlo1 pore-forming subunit with regard to
channel open probability and deactivation.

�1 M177 Involvement in the Functional Interaction 
with Slo1

Although the enhanced shift of the G-V curve and slow-
ing of hSlo1 deactivation does not require cysteine or
methionine residues within �1, the effect of oxidation
on hSlo1 activation critically depends on M177 in TM2
of m�1. In the control condition, only M177L m�1
causes a significant difference in the channel activation
time course. Furthermore, the M177L mutation elimi-
nates the oxidative sensitivity of channel activation typi-
cally observed with �1 present. Thus, M177 controls
the hSlo1 activation kinetics at very positive voltages,
which is described by the rate constant �4 in the HCA
model (Fig. 9), and oxidation of M177 to met-O most
likely mediates the Ch-T–induced acceleration of acti-
vation kinetics. However, the possibility that the M177L
mutation hinders the access of Ch-T to its target else-
where cannot be completely eliminated.

The mutant-specific effect on channel activation sug-
gests a partial uncoupling of hSlo1 and �1 because of
mutation or oxidation at the M177 position. Because
the activation kinetics of hSlo1 is faster without �1, oxi-
dation of hSlo1 � �1 may cause channel activation to
be more like hSlo1 alone by removal of the �1 influ-
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ence. The hydrophobic leucine mutation at M177 mim-
ics the presence of met-O at that location because the
control activation kinetics of hSlo1 � M177L m�1 re-
sembles that of oxidized hSlo1� wild-type m�1. Indeed,
an increase in surface hydrophobicity, while somewhat
paradoxical, has been shown after oxidation of methio-
nine residues within the enzyme glutamine synthetase
(Levine et al., 1996). Perhaps oxidation of M177 to
met-O, whereby acting as the sensor or switch, partially
disrupts an interaction between the �1 subunit and the
structural elements in or near the RCK (regulator of
K� conductance) domains within hSlo1 that are spe-
cifically responsible for controlling activation kinetics.
Similar to the effect of �1 M177 on channel activation,
other residues within different � subunits influence
functional coupling of the auxiliary subunit and hSlo1.
For example, the phosphorylation states of T11/S17 in
the cytoplasmic NH2 terminus and S210 in the cytoplas-
mic COOH terminus within �4 affect the functional
coupling between hSlo1 and �4, as determined by
changes in channel voltage dependence and activa-
tion/deactivation kinetics specific to modification of
the different residues (Jin et al., 2002).

Physiological Implications

As found with hSlo1 alone, the effect of methionine ox-
idation on hSlo1 function in the presence of �1 is sensi-
tive to [Ca2�]i. In the virtual absence of [Ca2�]i,
hSlo1 � m�1 displays a hyperpolarizing shift of V0.5 that
is twice as great as hSlo1 alone after oxidation by Ch-T.
This Ch-T–induced shift resembles the presence of
�0.4 �M [Ca2�]i (Cox and Aldrich, 2000). The oxi-
dized channel complex can open in the physiological
voltage range (�50 mV) without [Ca2�]i as further evi-
denced by the increase in open probability observed at
�40 mV. An increase in channel open probability at
low [Ca2�]i could have an impact on resting BKCa chan-
nel activity in smooth muscle cells, thereby influencing
vascular tone. Because BKCa channels crucially shape
the action potential posthyperpolarization phase in cer-
tain cell types, this increase in channel open probabil-
ity may prevent unregulated neuronal firing (Lancaster
and Nicoll, 1987; Storm, 1987; Marsh and Brown, 1991;
Zhang and McBain, 1995; Pedarzani et al., 2000; Faber
and Sah, 2002; Edgerton and Reinhart, 2003).

The concept that the binding of Ca2� performs me-
chanical work to open the Slo1 channel (Jiang et al.,
2002) has been further developed into a spring-based
gating mechanism in which the diameter of the gating
ring, formed by the RCK domains from each Slo1 sub-
unit, expands upon Ca2� binding, thereby generating
an active force that pulls the S6-RCK1 linker regions
that act as the springs, thus opening the channel gates
(Niu et al., 2004). This proposed gating process might
be similarly affected by methionine oxidation, which bi-

ases the open channel state. In the absence of [Ca2�]i,
oxidation of methionine residues to met-O within the
hSlo1 pore-forming subunit may likewise affect the
structure or position of the gating ring ultimately influ-
encing gating of the channel. The lack of a hyperpolar-
izing shift of V0.5 in response to modification by Ch-T at
high [Ca2�]i indicates that the effects of Ca2� and me-
thionine oxidation on channel gating are not additive
and may in fact operate on the same effectors. In the
case of the hSlo1 � �1 channel complex, the presence
of �1 may cause a unique conformational change in
hSlo1, such that additional methionine residues in
hSlo1 are exposed and able to react with Ch-T, thereby
accounting for the enhanced functional effects of oxi-
dation. However, the similarity in the modification time
courses of hSlo1 and hSlo1 � m�1 argues against this
possibility.

Modification of ion channels by ROS/RNS during
oxidative stress could alter channel function and even-
tually disrupt normal [Ca2�]i and other homeostatic
parameters (Kourie, 1998). Potential consequences of
oxidative stress include accelerated aging (Hensley and
Floyd, 2002), as well as pathophysiological conditions
such as various neurodegenerative disorders (Coyle
and Puttfarcken, 1993) and ischemia-reperfusion in-
jury after stroke (Babbs, 1988; Rubanyi, 1988). How-
ever, certain ion channel modifications by ROS/RNS
may serve as compensatory mechanisms to oxidative as-
sault. One such example involves the mitochondrial
ATP-sensitive K� channel (mitoKATP) that is activated
by ROS during initial, mild ischemia; as a result, the
heart is preconditioned to future ischemic attacks and
infarctions (Szewczyk and Marban, 1999; Grover and
Garlid, 2000; Zhang et al., 2001). Much like the mi-
toKATP channel, the BKCa channel clearly represents a
prime candidate for aiding in the recovery from ROS/
RNS attack given its localization in brain and smooth
muscle, as well as the documented oxidation-related al-
teration of its function (DiChiara and Reinhart, 1997;
Sobey et al., 1997; Wang and Wu, 1997; Wang et al.,
1997; Barlow et al., 2000; Gong et al., 2000; Soh et al.,
2001; Tang et al., 2001, 2004; Brakemeier et al., 2003).
Whether the BKCa channel contributes to the progres-
sion of oxidative stress-related conditions or instead
serves a more compensatory role—such as maintaining
resting membrane potential if [Ca2�]i is disrupted—
remains to be determined.

In summary, we showed that in the virtual absence of
Ca2�, methionine oxidation by Ch-T dramatically alters
hSlo1 function with the association of the �1 subunit.
The presence of �1 as opposed to methionine and/or
cysteine oxidation within this auxiliary subunit greatly
amplifies the increase in channel open probability and
the slowing of deactivation derived from oxidation of
the hSlo1 pore-forming subunit. The target methionine
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residues within hSlo1 are not yet known, but may be
found in the S5/P/S6 segments (Tang et al., 2001)
and/or the gating ring region (Niu et al., 2004). In
contrast, M177 within �1 influences hSlo1 activation
and most likely serves as the methionine target respon-
sible for the acceleration in channel activation after
methionine oxidation in the presence of the �1 sub-
unit. Testing the oxidative effects with � subunits pre-
sent provides more relevant results that can then be
readily extended to physiological or pathophysiological
conditions. Whether the effect of methionine oxida-
tion on hSlo function in the presence of other � sub-
units (�2–4) also occurs remains to be determined, but
�1 clearly facilitates unique modulation of channel
function in the face of oxidation.
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