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The capacity of an organism to alter its phenotype in response to environmental perturbations changes
over developmental time and is a process determined by multiple genes that are co-expressed in intricate
but organized networks. Characterizing the spatiotemporal change of such gene networks can offer
insight into the genomic signatures underlying organismic adaptation, but it represents a major method-
ological challenge. Here, we integrate the holistic view of systems biology and the interactive notion of
evolutionary game theory to reconstruct so-called systems evolutionary game networks (SEGN) that
can autonomously detect, track, and visualize environment-induced gene networks along the time axis.
The SEGN overcomes the limitations of traditional approaches by inferring context-specific networks,
encapsulating bidirectional, signed, and weighted gene-gene interactions into fully informative networks,
and monitoring the process of how networks topologically alter across environmental and developmental
cues. Based on the design principle of SEGN, we perform a transcriptional plasticity study by culturing
Euphrates poplar, a tree that can grow in the saline desert, in saline-free and saline-stress conditions.
SEGN characterize previously unknown gene co-regulation that modulates the time trajectories of the
trees’ response to salt stress. As a marriage of multiple disciplines, SEGN shows its potential to interpret
gene interdependence, predict how transcriptional co-regulation responds to various regimes, and pro-
vides a hint for exploring the mass, energetic, or signal basis that drives various types of gene
interactions.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Phenotypic plasticity is the capacity by which an organism
changes its phenotypes in direct response to environmental change
[1]. By producing phenotypic novelties that can better adapt to
novel and stressful environments, phenotypic plasticity, through
genetic assimilation, facilitates evolutionary change and speciation
[2–6]. The pattern of how phenotypic traits respond to environ-
mental variation is thought to be mediated by genes [7–11], but
previous studies have been mostly focused on single
differentially-expressed genes [12–14]. Such reductionist thinking
is a powerful approach for identifying key genes, but may be insuf-
ficient to characterize the comprehensive genomic signature of
phenotypic plasticity, because mounting evidence shows that
adaptation to novel environments require the change of myriad
genes that interact and work together to form intricate but coordi-
nated networks [15–18]. Spurred by the recent development of
high-throughput sequencing techniques, there has been a surge
of interest inferring gene regulatory networks for particular cellu-
lar processes [19,20], but the real-time identification of a compre-
hensive relationship between these networks and phenotypic
plasticity has proven to be challenging.

In this study, we develop a computational model that can
reconstruct time-varying networks of gene interactions and track
real-time alterations of network architecture causing phenotypic
plasticity. Most existing approaches can only reconstruct a single
(context-agnostic) network from expression data, failing to charac-
terize causal networks from transcriptional plasticity to pheno-
typic plasticity. We view gene interactions as a game, in which
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each gene (i.e., player) tends to maximize its expression and
impact both based on its own optimal strategy and its accrued
knowledge of the environment affected by other genes. The appli-
cation of game theory to gene expression analysis has been
explored in previous studies, showing its formidable capacity to
disentangle genomic complexities [21–23]. We integrate evolution-
ary game theory [24] to formulate the time-varying expression
level of each gene in terms of its intrinsic capacity and extrinsic
influence by other genes through a mixed ordinary differential
equation (ODE). The implementation of functional clustering [25–
27] and variable selection [28] facilitates the systematic construc-
tion of high-dimensional ODE from genome-wide expressed genes.
In the end, we can encapsulate all possible interactions into sys-
tems evolutionary game networks (SEGN) that quantify how each
gene interacts with every other gene as a regulatory mechanism
that guides the organisms’ response to environmental and devel-
opmental signals.

Because of their dynamic property, SEGN can unravel and track
real-time alterations of network architecture during biological pro-
cesses. Based on the design principle of SEGN, we design and con-
duct a genomic experiment with saline-varying treatments using
clonal replicates of Euphrates poplar (Populus euphratica), the only
woody tree that can survive in the saline desert [29–31]. We recon-
struct SEGN for the phenotypic plasticity of salt resistant-related
physiological traits. SEGN characterize some previously unknown
gene co-regulation patterns that are responsible for the tree’s tol-
erance and resistance to salts.
2. Model overview

2.1. Defining dynamic phenotypic and transcriptional plasticity

We initiate a genomic experiment using cloneable plants that
allow the same individual to be replicated genotypically. The
same genotype of a plant species was grown under two contrast
treatments each with multiple replicates, aimed to study the
genetic mechanisms of how the organism responds to environ-
mental change. We measure a series of phenotypic traits of inter-
est and importance to evolutionary and breeding studies. In
practice, the time schedule of measurement may be unevenly
spaced; for example, data are usually measured more densely at
the early stage than at later stages of the experiment. Let
(Z1k(t1), . . ... . ., Zpk(tT)) denote the phenotypic values of p traits
measured at time t (t = t0, t1, . . ., tT), respectively, under treatment
k (k = 1, 2). Note that t0 can be used as a start time point for both
treatments. We also measure the time-dependent expression
levels of m transcriptomic genes, following the same time sched-
ule as used for phenotypic monitoring. We use (Y1k(t1), ..., Ymk(tT))
to denote the expression values of m genes at time t under treat-
ment k.

To quantify phenotypic plasticity, we take differences of trait
values under two treatments [11]. Thus, the dynamic phenotypic
plasticity (DPP) of trait j (j = 1, . . ., n) is defined as

zi tð Þ ¼ Zj2 tð Þ � Zj1 tð Þ ð1aÞ

¼ uj tð Þ þ ej tð Þ; ð1bÞ

where uj(t) is the time-varying expectation of phenotypic plastic-
ity for trait j and ej(t) is the residual error. We hypothesize that
treatment-induced alteration of transcriptional profiles is a force
that drives the organism to change its trait value from one treat-
ment to the other. The first step of testing this hypothesis is to
calculate the transcriptional plasticity of expression dynamics
which is defined as the difference of expression amounts between
two treatments over time. Thus, the dynamic transcriptional
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plasticity (DTP) of arbitrary gene i (i = 1, . . ., m) at time t is calcu-
lated as

yi tð Þ ¼ Yi2 tð Þ � Yi1 tð Þ ð2aÞ

¼ gi tð Þ þ ei tð Þ; ð2bÞ
where the DTP calculated from Eq. (2A) is partitioned into its
expected value (gi(t)) and residual error (ei(t)), which describe
how the expression of gene i changes from treatment 1–2 over
developmental time as a result of the expectation and the random
error, respectively. A traditional line of thinking is to test how
DPP is statistically dependent on DTP by regressing zj(t) on yi(t)
using standard least-square analysis approaches. Yet, our aim is
beyond this; we seek to reconstruct the regulatory network of m
genes and formulat a model to casually link this network to the
corresponding phenotypic network.

2.2. Integrating evolutionary game theory into gene networks

Genes, co-inhabiting a nucleus, often regulate each other to
form a complex interaction network. Such a network behaves like
an ecological community in which one species may compete for
access to resources or cooperate symbiotically with other species
to drive community dynamics. How a gene chooses a cooperative
(activation) or competitive (inhibition) strategy can be explained
by game theory. Game theory, originated in economic research
[32], models the payoff of one player based on the strategy imple-
mented by the other player. The application of game theory has
been largely popularized by the concept of the Nash equilibrium,
a proposed solution of a non-cooperative game, at which each
rational agent tends to choose an optimal strategy to maximize
its payoff, conditioned on the strategies of its opponents, as long
as the latter remains unchanged [33]. By combining game theory
and evolutionary biology, Smith and Price [24] formulated evolu-
tionary game theory to interpret how frequency dependent fitness
drives strategies to evolution [34]. This theory’s core is the concept
of an evolutionarily stable strategy regarded as an equilibrium
refinement of the Nash equilibrium and its extension to population
evolution. However, Smith and Price’s evolutionary game theory
serves as the static analysis tool of evolutionary stability because
it does not attempt to model how strategies change in a popula-
tion. By adding the time dimension, we expand evolutionary game
theory to its dynamic domain, making it possible to explicitly
model the change of strategy frequencies in the population. Such
a dynamic evolutionary game theory does not need to define a
notion of evolutionary stability. Instead, by specifying a population
dynamic model, all of the standard stability concepts from dynam-
ical systems can be used.

Dynamic evolutionary game theory proposes a mathematical
model for specifying how a gene is expressed differently over
time through its own strategy and the strategies implemented
by other genes. In other words, such a model can decompose
the overall expression of a gene into its underlying independent
expression component (determined by its intrinsic capacity)
and dependent expression component (determined by its extrin-
sic influence). By considering all m genes, we develop an m-
dimensional system of ODE to model the dynamic change of gene
expression, expressed as

dgi

dt
¼ Qi gi t : Hið Þð Þ þ

Xm

i
0 ¼1;i

0
–i

Q ii
0 gi

0 t : Hii
0

� �� �
; i ¼ 1; � � � ;m ð3Þ

where the change of DTP for each gene i (i = 1, . . .,m) per unit time is
split into two components: the independent expression (the first
term), which occurs when the focal gene i is assumed to be in iso-
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lation and is specified by a gene-specific smoothing function
Qi(gi(t;Hi)); and the dependent expression (the second term),
which reflects the aggregated effect of all other genes i0 (i0 = 1,
. . ., i-1, i + 1,. . ., m) on the focal gene and is specified by the

sum of smoothing functions
Pm

i
0 ¼1;i

0
–i
Q ii

0 gi
0 t : Hii

0
� �� �

. Here, Hi

and Hii0 are a set of ODE parameters that describe the indepen-
dent DTP of a gene and how the DTP of the focal gene depends
jointly on other genes, respectively. Let Pi(t) and Pii

0 tð Þdenote
the integrals of independent component Qi(gi(t;Hi)) and depen-

dent component Qii
0 gi

0 t : Hii
0

� �� �
, respectively. Then, we code

Pi(t) as a node and Pii
0 tð Þ as an edge into an m-dimensional

network.
Equation (3) provides a general ODE framework for inferring

systems evolutionary game networks (SEGNs). To reconstruct
large-scale, omnidirectional, and omnigenic gene-gene interac-
tions, we need to develop powerful statistical algorithms for
solving the ODEs in Eq. (3). In the Supplementary Text, we describe
an algorithmic procedure for estimating the ODE parameters under
a maximum likelihood setting.
2.3. Biological interpretation of SEGNs

The SEGN is a fully informative network constructed from bidi-
rectional, signed, and weighted gene interactions. The pattern of
how gene i is affected by gene i0 can be assessed by Pii

0 tð Þ. If this
value is positive, zero, or negative, then this suggests that gene i0

activates, is neutral to, or inhibits gene i, respectively. By compar-
ing Pii

0 tð Þ and Pi
0
i tð Þ, we can classify all gene interactions into five

qualitatively different types:

� Synergism by which two interactive genes activate each other.
This can be seen if both Pii

0 tð Þ and Pi
0
i tð Þ are positive;

� Antagonism by which two interactive genes inhibit each
other. This can be seen if both Pii

0 tð Þ and Pi
0
i tð Þ are

negative;
� Directional synergism by which gene i0 activates gene i but the
latter is neutral to the former. This can be seen if Pii

0 tð Þ is posi-
tive but Pi

0
i tð Þ is zero;

� Directional antagonism by which gene i0 inhibits gene i but the
latter is neutral to the former. This can be seen if Pii

0 tð Þ is nega-
tive but Pi

0
i tð Þ is zero;

� Altruism/exploitation in which one gene activates the other but
the latter inhibits the former. If Pii

0 tð Þ is positive whereas
Pi

0
i tð Þ is negative, this suggests that gene i0 offers altruism to

gene i, or say, gene i exploits gene i0.
Table 1
Qualitative definition of gene interaction and its quantitative characterization by the SEGN

No Qualitative definition

1 Symmetric synergism
2 Asymmetric synergism
3 Directional synergism toward i
4 Directional synergism toward i0

5 Altruism toward i or exploitation by i
6 Altruism toward i0 or exploitation by i0

7 Symmetric antagonism
8 Asymmetric antagonism
9 Directional antagonism toward i
10 Directional antagonism toward i0

11 Coexistence

Note: Pii
0 tð ÞandP

i
0
i
tð Þ are the dependent expression levels of gene i by gene i0 and gene
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It is possible that the two genes may peacefully coexist when
they do not affect each other. This can be seen if both Pii

0 tð Þ and
Pi

0
i tð Þ are zero. The SEGN is also a quantitative network, because

each activation or inhibition is quantified by a value. If Pii
0 tð Þ and

Pi
0
i tð Þ are positive and their values are equal, the synergism of

two genes i and i0 is regarded as symmetric synergism. If Pii
0 tð Þ

and Pi
0
i tð Þ are positive but their values are not equal, then syner-

gism becomes asymmetrical synergism. Similarly, we can distin-
guish between symmetric antagonism and asymmetrical
antagonism. Table 1 condenses the important features of the
SEGNs. Taken together, the definitions and interpretations of vari-
ous patterns of gene co-regulation can facilitate the exploration of
the mass, energetic, or signal basis for each interaction.

The central themes of network reconstruction include sparsity,
stability and causality [35]. As described above, the implementa-
tion of ODEs meets the causality property of a network by deter-
mining the direction of gene interaction. As shown in the
Supplementary Text, the statistical procedure for learning the
SEGN is formulated under the maximum likelihood and convex
optimality setting. Thus, we think of the various strategies used
by each gene as it interacts with different genes as leading to
achieve maximum stability of the interaction network. Modularity
theory asserts that biological entities are often specified for differ-
ent functions and, therefore, are organized into distinct modules
within which entities are more functionally correlated with each
other than with those from other modules [36]. This theory allows
us to cluster a large number of genes into functionally different
modules by implementing the functional clustering algorithm
[25–27]. As predicted by network theory, there is a limit to the
number of links owned by each node in a network [37]. We can
implement variable selection methods to detect the number of
the most significant genes that affect a focal gene. Taken together,
we can reconstruct high-dimensional, multiscale and sparse
networks.

Networks are regarded as snapshots of biological systems at dif-
ferent times. Uncovering the dynamic nature of transcriptional
networks can shed light on the genomic mechanisms that drive
phenotypic plasticity. As a function of time t, Pii

0 tð Þ can be calcu-
lated at any time point from t = 0 to T and, therefore, establishes
a real-time visualization of gene networks during biological
processes.

2.4. Hierarchic networks linking transcriptional plasticity to
phenotypic plasticity

To test whether and how gene networks determine the
DPP of physiological traits that are associated with salt resis-
model.

Quantitative description

P
ii
0 tð Þ P

i
0
i
tð Þ

+ = +
+ – +
+ > 0
0 < +
+ �
� +
� = �
� – �
� 0
0 �
0 0

i0 by gene i, respectively.
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tance, we construct a set of ODE-based regression models as
follows:

duj

dt
¼ Rj uj t : Xj

� �� �þ
Xn

j
0 ¼1;j

0
–j

Rjj
0 uj

0 t : Xjj
0

� �� �

þ
Xm

i¼1

Sji gi t : Wji
� �� �

; j

¼ 1; � � � ;n ð4Þ
where the change of DPP of trait j (j = 1, . . ., n) per unit time is
decomposed into three components: the independent DPP of the
trait (assuming no interaction with other traits and genes) specified
by function Rj (u(t: Xj)), the accumulated dependent DPP affected
Fig. 1. Dynamic transcriptional plasticity (DTP) of 15 distinct modules among 1,819 salt-
related physiological traits (B) measured from roots of Euphrates poplar clones grown
individual genes within a module, and thick blue lines represent the mean curves of all g
legend, the reader is referred to the web version of this article.)

2513
by other traits specified by the sum of functions
Pn

j
0 ¼1;j

0
–j
Rjj

0 uj
0 t : Hjj

0
� �� �

, and the accumulated dependent DPP reg-

ulated by genes specified by the sum functions
Pm

i¼1Sji gi t : Hji
� �� �

.
Functions containing parameters Xj, Xjj’, and Wji can be fitted by
nonparametric approaches, such as B-spline or Legendre orthogonal
polynomials.

We integrate a system of trait and gene-mixed ODEs in Eq. (4)
and a system of purely gene-based ODEs in Eq. (3) to form an
expanded system of ODEs that can model causal gene-trait rela-
tionships. Variable selection approaches are implemented for this
expended system to determine a subset of the most significant pre-
dictors (including traits and genes). We then chart three networks;
the gene network, the trait network, and the gene-trait causal net-
responsive genes (A) and dynamic phenotypic plasticity (DPP) of six salt resistance-
under salt-free and salt-stress conditions. Purple thin lines are the DTP curves of
enes from this module. (For interpretation of the references to colour in this figure



Table 2
DTP-based functional modules of 1819 differentiated genes coded each decomposed
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work. The third network establishes a bridge that links the gene
network to the trait network.
to its independent component and dependent component including passive regula-
tion and active regulation by other modules.

Module #Gene Passive
Regulation

Active Regulation

1 98 8+(0.84),
9+(0.83),
13–(0.72)

3+(0.28), 11+(0.82)

2 30 4+(0.62),
7+(0.16),
13+(0.77)

9+(0.82)

3 73 1+(0.29),
4-(0.66),
9+(0.50)

4* 141 9+(0.91),
15+(0.86)

2+(0.62), 3–(0.66), 5–(0.69), 7+(0.81),
9+(0.88), 10+(0.80), 11+(0.07), 12–(0.38),
14–(0.13)

5 41 4–(0.69),
10–(0.13)

10+(0.93), 15+(0.77)

6 39 9+(0.81),
10+(0.66)

7 220 4+(0.81),
10–(0.42)

2+(0.16), 8+(0.55)

8 145 7+(0.55),
9+(0.79)

1–(0.72)

9* 146 2+(0.82),
4+(0.88),
10+(0.76)

1+(0.83), 3+(0.50), 4+(0.91), 6+(0.81),
8+(0.79), 13+(0.40), 14–(0.01)

10* 219 4+(0.80),
5+(0.93)

5-(0.69), 6+(0.66), 7–(0.42), 9+(0.76),
13–(0.84), 14+(0.98), 15+(0.21)

11 264 1+(0.82),
13+(0.51)

12 246 4–(0.38),,
13–(0.63)

13 79 9+(0.40),
10–(0.84)

1–(0.72), 2+(0.77), 12–(0.63)

14 36 4–(0.13),
9–(0.01),
10+(0.98)

15 42 5+(0.93),
10+(0.21)

4+(0.86)

Note: Column 2 contains the number of genes within each module. Column 3 are
the modules by which a focal module is regulated through activation (+) or inhi-
bition (–). Column 4 are the modules that a focal module actively regulates through
activation (+) or inhibition (–). Hub modules are indicated by an asterisk. Numbers
in brackets are correlation coefficients between two modules across time points.
3. Results

To validate the biological relevance of our SEGN model, we car-
ried out a genomic experiment by culturing Euphrates poplar
clones in salt-stress and salt-free conditions (see the Supplemen-
tary Text). We measured six salt-responsive physiological traits,
i.e., superoxide dismutase (SOD), malonaldehyde (MDA), catalase
(CAT), peroxidase (POD), soluble sugar content, and protein con-
tent, and a total of 1819 salt-responsive genes from poplar roots
before treatment and at four different time points after treatment
(Table S1).

3.1. Functional clustering

According to Eqs. (1a) and (2a), we calculated the DTP of each
gene and the DPP of each trait. The DTP and DPP quantify the
degree of how a gene or trait responds to salt condition, respec-
tively. We found that the genes studied display distinct dynamic
patterns of responsiveness to the salt treatment. We used Jiang
et al.’s [27] Skellam clustering approach to categorize the 1819
genes into 15 modules (Fig. 1A). This is an optimal number of mod-
ules according to AIC. Table 2 gives the number of genes detected
within each module. The 15 modules are different in terms of the
amount and direction of DTP and its rate of change. Several mod-
ules, such as 1, 3, 7, 10, 11, and 12, decrease their DTP consistently
with time, although the rate of decrease varies among these mod-
ules. The DTP of a few modules, like 2, consistently increases with
time. Many modules, including 4, 5, 6, 8, 9, 13, 14, and 15, change
their DTP periodically with time, with the sharpest change occur-
ring in the early stage of salt treatment. We found that all six phys-
iological traits are highly plastic to salinity, although their DDP
display different patterns (Fig. 1B). Overall, week 2 after treatment
is a turnover point at which ing is a turning point at which almost
all traits respond to salt stress differently from their previous pat-
tern of response.

3.2. How genes interact dynamically in response to salt stress

We used the ODEs of Eq. (3) to draw the mean DTP curve of each
module, which is partitioned into its independent and dependent
expression components. The magnitude and pattern of dependent
DTP expression curves reflect the dynamic relationships of a speci-
fic focal module with other individual modules. We find that all
modules are regulated by other modules over time although there
is considerable variability in the frequency and strength of regula-
tion among modules. Table 2 provides detailed information about
the pattern of co-regulation among all 15 modules. Co-regulation
includes passive regulation by which a focal module is activated
or inhibited by other modules and active regulation by which a
focal module activates or inhibits other modules. According to net-
work theory, those modules that display more regulation than the
average are defined as hubs. It is important to define the hubs
because they play a dominant role in mediating network structure
and behavior [38].

The co-regulation among different modules can be illustrated
graphically (Fig. 2). For example, the DTP of module 4 decreases
gradually with time after a short increase in the early stage of
response to salt stress, but the independent DTP of this module
displays a much greater rate of time-dependent decrease. This
difference results from the accumulated positive effect of the
extremely strong positive dependent DTP triggered by module
15 and a slight negative dependent DTP from module 9. In this
2514
sense, module 4 performs its biological function, largely relying
on co-regulation mainly by module 15 and secondly by module
9. While it is regulated by the two modules, module 4 actively
regulates many other modules, making it one of the leaders or
hubs among the 15 modules. Yet, module 4 chooses different
strategies to interact with other modules. It activates the expres-
sion of modules 3, 10, 11, and 12 increasingly with time, but inhi-
bits the expression of module 5 over time. Interestingly, module 4
activates modules 9 and 14 in one stage but inhibits them in an
other stage. We found that the strength and dynamic change of
regulation by module 4 varies considerably, depending on which
module it regulates.

By comparing the dependent DTP curve of module 4 affected by
module 9 and the dependent DTP curve of module 9 affected by
module 4, we found that module 4 is altruistic toward module 9
at the early stage of salt stress during which the former activates
the latter but the latter inhibits the former. However, the strength
of this relationship decreases strikingly with time because module
4 decreases its activation after trees start to sense salt stress. In the
late stage, module 4 still activates module 9, but module 9 does not
affect module 4, suggesting that they establish a directional syner-
gism relationship. As can be seen from the above analysis, the pat-
tern of gene-gene interaction may change with time, which can be
detected and quantified by our method.



Fig. 2. Mean dynamic transcriptional plasticity (DTP) curve of all genes within each module (black solid line) fitted by a nonparametric Legendre orthogonal polynomial (LOP)
approach, which is dissected into its independent DTP curve (red line) and dependent DTP curve regulated by other labeled modules (green line). The thick blue line is the
summed dependent DTP of all interacting modules. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. How a coarse-grained gene network drives DPP

We reconstruct the SEGN of transcriptional plasticity at coarse-
and fine-grained levels. Genes from different modules display dis-
tinct patterns of expression plasticity, whereas those from the
same module respond to saline stress in a broadly similar pattern.
Thus, the network inferred from DTP values of different modules
helps to explain the coarse-grained relationship of gene regulation
through modularity, and a fine-grained view of regulation can be
gained from the networks describing the DTP of individual genes
within the same module. Gene networks at different levels are
used as a predictor of the DPP of salt-responsive traits.

We build a system of trait-based ODE to reconstruct a pheno-
typic network, and regressed the phenotypic network on the gene
network to obtain a gene-phenotype causal network at any time
2515
point from t = 0 to T. These networks are the snapshots of
Euphrates poplar’s tolerance to salt stress, representing fully infor-
mative graphs in terms of interaction direction, sign, and size.
Fig. 3 illustrates these real-time networks reconstructed at 6 h,
24 h, and 18 days after salt treatment. The six physiological traits
form stable networks, but change structurally through time. MDA
is a hub trait that plays a dominant role in modulating the network
by affecting all other traits, but its impact varies dramatically with
time. For example, MDA for sugar activates in the early stage but
shifts to inhibition in the middle stage, and returns to activation
in the late stage. From the phenotypic networks, one can visualize
how each trait links dynamically with other traits.

Such time-varying phenotypic networks may arise from the
dynamic change of gene module networks overwhelmed by direc-
tional synergism and directional antagonism. Of 15 gene modules,



Fig. 3. The transcriptional network of 15 modules and its link to the phenotypic network of six physiological traits through a causal network. Nodes are genes or traits
indicated by circles (where dark circles denote the hubs of networks), and edges are gene regulation, activation or inhibition, indicated by arrowed line and T-shaped line,
respectively. The thickness of lines are proportional to the strength of gene regulation. Hub modules 4, 9, and 10 are composed of many genes (whose names are shown in
grey squares) with known biological functions. Some pairs of modules, like 4 and 9, are mutually regulated.
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nine display direct links to the traits, forming a gene-phenotype
causal network (Fig. 3). We found that each trait is regulated
directly by at least one gene module and indirectly by many other
modules that interact with the former. In the transcriptional net-
works reconstructed at 6 h, 24 h, and 18 days after salt treatment,
modules 4, 9, and 10 are consistently hubs that each regulate more
than seven modules through activation or inhibition. Modules 9
and 10 directly promote the increase of protein content, and they
also pleiotropically promote sugar and POD, respectively, which
are linked indirectly through protein content. Module 4 is not
directly linked with traits, but it affects the phenotypic network
through numerous pathways composed of genes in the trait-
phenotype causal network. The three hub modules each contain
genes that can be related to known saline resistant-related biolog-
ical and molecular processes.

Module 4 contains 136 genes, of which as many as 22 are the
transcriptional factors including ERF109, AIL6, ERF017, ERF020,
AIL5, MYB4, GT3B, BHLH92, WRKY48, WRKY40, WRKY41, and
WRKY46 [39]. It has been well known that ERF109, AIL6, ERF017
and ERF020, belonging to the AP2/ERF transcriptional family are
believed to govern plants’ response to a variety of adverse stressors
by participating in the signal transduction of salicylic acid, jas-
monic acid, ethylene and abscisic acid [40]. Other genes WRKY48,
WRKY40, WRKY41, and WRKY46 are attributed to transcriptional
family, WRKY, a family known to regulate the reaction of plants
to adverse stressors [41]. Module 4 activates many modules,
including 5, 10, 14, 2, 7, 9, 3, 13, and 12, but is activated by 15
and 9, suggesting that module 4 plays a leadership role in mediat-
ing network behavior.

Module 9 contains genes that mostly regulate the function of
molecule transportation, such as potassium ion transmembrane
2516
transporter activity and primary active transmembrane trans-
porter activity [42]. It is interesting to see that module 9 not only
regulates module 1 directly, but also does so indirectly via many
paths, such as path 1 by which module 9 regulates 4, 4 regulates
10, 10 regulates 13, and 13 regulates 1, path 2 by which module
9 regulates 4, 4 regulates 5, 5 regulates 10, 10 regulates 7, 7 regu-
lates 8, 8 regulate 1; and path 3 by which module 9 regulate 8, and
8 regulate 1 (Fig. 3). Module 1 contains a number of genes related
to many salt-responsive biological processes, such as the response
the jasmonic acid mediated signaling pathway, the oxidation-
reduction process, the cellular response to jasmonic acid stimulus,
and the cellular response to oxygen-containing compound [42].
Module 10 also contains many genes related to biological pro-
cesses (Fig. 3). Taken together, the three hub modules 4, 9, and
10 may be major drivers that control the regulatory process of salt
resistance in distinct ways.

Although the structure of the modular network shares some
similarities at three stages of salt response, some remarkable dis-
crepancy exists along time axis (Fig. 3). For example, module 9 trig-
gers directional antagonism toward module 1, with the degree
increasing from early to middle stages of salt response. But this
directional antagonism shifts to directional synergism when salt
response enters a late stage. By contrast, module 10 activates mod-
ule 15 at both the early and middle stage, but the former exerts
directional antagonism toward the latter in the last stage.

3.4. How fine-grained gene networks drive DPP

We reconstructed transcriptional networks among genes from
three hub modules: 4 (136 genes), 9 (144 genes), and 10 (219
genes) (Fig. 4). In the network of module 4 (Fig. 4A), most gene reg-



Fig. 4. The regulatory networks among 136, 144 and 219 genes from modules 4 (A), 9 (B) and 10 (C), respectively, and their links to the phenotypic network of six
physiological traits through causal networks. Hub genes within each module are named transcriptional factors that may be related to salt-resistant processes. Arrowed line
denotes activation and T-shaped line indicates inhibition. The thickness of the lines stands for the strength of gene interaction. Some pairs of genes, like 4 and 9, are mutually
regulated.
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ulations operate via directional synergism, accounting for 71.6% of
the total number of links, suggesting that genes in this module
tend to cooperate with other genes. This module contains seven
hub genes that regulate numerous other genes. For example, genes
74 (ERF061) and 95 (HLH92) are transcriptional factors belonging
to the EFR and BHLH transcriptional families, respectively, and
are involved in response to salt stress in Arabidopsis [43], whereas
gene 82 (MAPK3) recognizes and transfers the external stress sig-
nal. Genes 8 (TCHQD), 37 (GWIN3), and 109 (EBF1) are thought to
interact with each other to regulate ethylene signals [44]. Many
other genes can also be related to salt-tolerant processes in plants.

Module 9 contains several hub genes, such as genes 65 (XTH3),
70 (GHAF1A), 104 (WAK2) and 138 (not annotated) (Fig. 4B). These
genes mediate biochemical processes related to the formation,
growth and function of cell walls, although the exact mechanisms
by which these genes play a role in salt stress resistance remain
unknown. Module 10 has hub genes 7 (encoding Squalene
2517
monooxygenase-like protein), 43 (encoding LORELEI-LIKE-GPI-
ANCHORED PROTEIN 1), 63 (SLC50A1), 85 (not annotated), 130
(NDH2) and 151 (not annotated) (Fig. 4C). These genes participate
in regulating the transmembrane transportation of sugars [42].

Our model enables the visualization of how gene networks of
each module determine the phenotypic network through a gene-
phenotype causal network. The causal network contains genes that
each have a direct link with the phenotypic network (downstream)
and also, link with other genes in the upstream. The upstream
genes that are situated peripherally to the phenotypic network
may have an indirect impact on the traits. Based on their distances
to the casual network, the upstream genes can be divided into a
hierarchy (i.e., layer 1, layer 2, etc.). Results from different modules
show that the causal network is composed of loosely linked genes,
the majority of which are transcriptional factors characterized by a
variety of distinct functions. In the casual network of module 4
(Fig. 4A), gene 45 is annotated as CRRSP12, which is involved in



Fig. 5. Gene regulatory networks among 136 genes from module 4 reconstructed
by SEGM (A), G1DBN (B), and SA-ODE (C).
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plant perception and response to biotic and/or abiotic stress sig-
nals [45]. Our result shows that CRRSP12 plays a leadership role
in regulating and organizing many other genes into a network, in
addition to its direct effect on protein content (Fig. 4A), as has been
observed in previous studies [45]. Gene 101 (CML19) within the
causal network directly inhibits MDA, but the expression of MDA
is strengthened by POD, which is activated jointly by gene 166
(ERF-13), 128 (CYP94C1), and 129 (PUB23), and by protein content,
which is activated by gene 14 (At3g10300) and 36. Gene 36 is not
annotated, suggesting a potential role that has not been detected
previously. In the casual network of module 9 (Fig. 4B), gene 104,
annotated as FH18, is a hub gene that directly links the hub trait
MDA of the trait network. Because of its numerous links to other
genes, its indirect impact on the trait network is also pronounced.
The hub genes that play a similar role are also detected within the
causal network of module 10 (Fig. 4C). Taken together, by recon-
structing a cascade of hierarchic regulatory networks, our theory
can precisely characterize how genes modulate the phenotypic
plasticity of complex traits in response to any environmental
change.

3.5. Methodology comparison and computer simulation

Dynamic Bayesian Networks (DBN) and ODE are two major
approaches for reconstructing gene regulatory networks from tem-
poral expression data. Lèbre [46] proposed a DBM method based
on the concept of a low-order conditional dependence graph and
implemented this method into an R package ‘G1DBN’. Wu et al.
[47] proposed a sparse additive ODE (SA-ODE) method, coupled
with variable selection, to construct dynamic gene networks. We
use SEGN, G1DBN, and SA-ODE to simultaneously reconstruct a
transcriptional network for module 4 (Fig. 5). Compared to SEGN
(Fig. 5A), G1DBN produces a much denser network with poor spar-
sity in which no hub genes are detected (Fig. 5B). Both SEGN and
SA-ODE identify many but different hub genes (Fig. 5A, 5C). As
described above, hub genes detected by SEGN have biological
meanings that are consistent with salt-resistant processes. How-
ever, hub genes by SA-ODE appears to be biologically less mean-
ingful. For example, its hub gene 51 is a kunitz trypsin inhibitor,
a protein that is synthesized when plants are subject to bacterial
infection [48]. Although hub genes 36 and 37 (GWIN3) and 116
(Putative ethylene-responsive transcription factor RAP2-13-like)
detected by SA-ODE are transcriptional factors, only 116 is found
to be related with the salt stress response [49].

To compare the emergent properties of networks reconstructed
from the three methods, we calculate six feature parameters. Con-
nectivity is the number of nodes with which a node links within a
network [38]; closeness describes the degree of linkage of one
node to other genes [50]; betweenness reflects the importance of
a node as a bridge across the network [51]; eccentricity is the long-
est distance of one node to other nodes [52]; eigenvector describes
the importance of a node with respect to its neighboring nodes
[53]; and PageRank evaluates the quality and quantity of links in
a network [54]. Among the three methods, G1DBN performs worst,
except for PageRank, with the connectivity of <10, closeness of
<0.2, betweenness of <500, eccentricity of >10, and eigenvector of
0.01 (Table 3). These values explain the reason why G1DBN found
no hub genes. We found that SEGN is better than SA-ODE in each of
these criteria (Table 3).

To validate the statistical advantage of SEGN, we simulated
gene expression data under different scenarios and analyzed these
data simultaneously with the new model, G1DBN and SA-ODE
(Table S2). Fig. 6 illustrates the estimated independent and depen-
dent DTP curves of all genes by the SEGN model, in comparison
with their true curves under di2 = 0.01 and T = 30. We found that
the estimated and true curves are broadly consistent, suggesting
2518
that our method has a good power for fitting and displays reason-
ably good statistical behavior for capturing the real patterns of
gene-gene interactions within a gene network.



Table 3
Average values of the centrality features for hub genes in the GRN of module 4 reconstructed by our SEGN model in a comparison between two existing approaches, G1DBN and
GA-ODE.

Method Connectivity Closeness Betweenness Eccentricity Eigenvector PageRank

SEGN 14.947 0.407 812.115 3.842 0.157 0.008
G1DBN 6 0.156 202.103 11.158 0.015 0.007
SA-ODE 3.684 0.402 88.857 3.684 0.061 0.006

Note: Hub genes include genes 8, 39, 74, 82, 95 and 109 by GA-ODE.

Fig. 6. Estimated dynamic transcriptional plasticity (DTP) curves from our method, in a comparison with their underlying true curves. Solid red lines are the overall DTP
curves, whereas broken and dotted lines are the independent and dependent DTP curves, respectively. Estimated and true curves are indicated in red and blue, respectively.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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To compare the statistical efficacy of the different approaches,
we calculated their true positives (TP), false positives (FP), true
negatives (TN), false negatives (FN), true positive rates (TPR)
2519
expressed as TPR = TP/(TP + FN), and false positive rates (FPR)
expressed as FPR = FP/(FP + TN). We also calculated the area under
the curve (AUC) of the receiver operating characteristic curve



Table 4
Comparison of statistical properties of GRN reconstruction by our SEGN model, in a comparison with existing approaches, G1DBN and SA-ODE.

Method TP FP TPR FPR AUC

G1DBN 6.9 (2.69) 53 (5.72) 0.08 (0.09) 0.06 (0.003) 0.52 (0.05)
SA-ODE 25.4 (2.38) 32 (3.68) 0.47 (0.09) 0.05 (0.003) 0.73 (0.02)
SEGN 35.2 (2.09) 10.3 (2.51) 0.78 (0.05) 0.01 (0.002) 0.88 (0.02)
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(ROC) from the coordinates of TPR and FPR. Under the simulation
scenario with di

2 = 0.01 and T = 30, we found that SA-ODE performs
better than G1DBH in many aspects, whereas SEGN is much better
than SA-ODE in terms of every criterion (Table 4).
4. Discussion

Although the study of gene regulatory networks as mediators of
the response of phenotypic traits to environmental change is not
new, this article, to our best knowledge, presents the very first
computational model of its kind to reconstruct causal networks
from genes to phenotypic plasticity. We integrate evolutionary
game theory into a unified ODE framework, making it possible to
infer systems evolutionary game networks (SEGNs). As biologically
relevant networks, SEGNs can provide a quantitative characteriza-
tion of bidirectional, signed, and weighted gene-gene interactions.
The implementation of advanced statistical models, such as vari-
able selection and functional clustering, equips SEGNs with the
ability to handle the issue of high- or even ultrahigh dimensional-
ity while preserving sparsity and omnidirectionality.

The most distinct feature of SEGNs may lie in their capacity to
unravel real-time alterations of gene-gene interactions by which
we can monitor how and when genes through their cooperation
or competition drive an organism to best adapt to environmental
change. By integrating phenotypic data, SEGNs can reconstruct
causal links from gene interactions to phenotypic variation (see
Fig. 4). From such hierarchical networks, we can identify (i) which
genes directly affect a phenotype of interest, (ii) which genes indi-
rectly affects this phenotype through their links with other genes,
and (iii) which genes affect this phenotype by pleiotropically
affecting other phenotypes that are correlated with the focal phe-
notype. SEGNs can characterize the magnitude and direction of
these direct effects, indirect effects, and pleiotropic effects. With
no doubt, these lines of information provide an unprecedented
opportunity to understand the biological mechanisms underlying
genotype-phenotype relationships and further design and engineer
novel phenotypes through plant molecular design breeding [55].

We reconstructed SEGNs from salt-responding transcriptional
data collected from Populus euphratica, in order to characterize
how transcriptional factors communicate and coordinate with
each other to determine network dynamics. Salt tolerance includes
a complex web of interactive signals [40] and our SEGNs associated
with salt tolerance can help geneticists to understand the mecha-
nistic basis underlying how genes help plants limit the rate of salt
uptake from the soil and the transport of salt throughout the plant,
adjust the ionic and osmotic balance of cells in roots and shoots,
and regulate leaf development and the onset of senescence
[56,57]. Based on the topological structure of SEGNs, we argue that
salt-tolerant Euphrates poplars can be bred and selected more
effectively by undersatnding and using genetic networks than by
simply understanding individual functional genes.

Our motivation is to dissect the genetic networks of phenotypic
plasticity for a desert woody plant in response to saline stress.
However, the approach for network reconstruction is quite generic
and, can be used to study the phenotypic plasticity of all other bio-
logical phenomena. For example, cancer cells display the ability to
switch states or phenotypes in response to environmental fluctua-
2520
tions [58,59]. The SEGNs of cancer-related phenotypic plasticity
can help understand genetic signatures underlying this disease.
Furthermore, recent developments in spatial and dynamic tran-
scriptomic techniques have made it possible to probe the tran-
scriptomes of single cells. SEGNs inferred from our model form a
foundation for precise exploration of how genes interact with each
other in cell-specific networks and how these networks cross-talk
with biological or biomedical processes. The computational plat-
form of SEGN reconstruction is flexible enough to be used on any
kind of omics data, allowing other researchers to identify key inter-
action pathways by which genotype-phenotype relationships can
be bettered mapped.

5. Data and code availability

The data and code uploaded at https://github.com/LiboJiang/
EuphratesSEGN can be freely uploaded and used by researchers
worldwide. They can also be requested from the corresponding
author.
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