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Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease with
few therapeutic options. However, the immune system, including natural killer (NK) cells, is
linked to ALS progression and may constitute a viable therapeutic ALS target. Tofacitinib
is an FDA-approved immunomodulating small molecule which suppresses immune cell
function by blocking proinflammatory cytokine signaling. This includes the cytokine IL-15
which is the primary cytokine associated with NK cell function and proliferation. However,
the impact of tofacitinib on NK activation and cytotoxicity has not been thoroughly
investigated, particularly in ALS. We therefore tested the ability of tofacitinib to suppress
cytotoxicity and cytokine production in an NK cell line and in primary NK cells derived from
control and ALS participants. We also investigated whether tofacitinib protected ALS
neurons from NK cell cytotoxicity. Finally, we conducted a comprehensive
pharmacokinetic study of tofacitinib in mice and tested the feasibility of administration
formulated in chow. Success was assessed through the impact of tofacitinib on peripheral
NK cell levels in mice. We found tofacitinib suppressed IL-15-induced activation as
measured by STAT1 phosphorylation, cytotoxicity, pro-inflammatory gene expression,
and pro-inflammatory cytokine secretion in both an NK cell line and primary NK cells.
Furthermore, tofacitinib protected ALS neurons from NK cell-mediated cytotoxicity. In
mice, we found tofacitinib bioavailability was 37% in both male and female mice; using
these data we formulated mouse containing low and high doses of tofacitinib and found
that the drug suppressed peripheral NK cell levels in a dose-dependent manner. These
results demonstrate that tofacitinib can suppress NK cell function and may be a viable
therapeutic strategy for ALS.

Keywords: ALS, NK cells, immune system, tofacitinib, JAK/STAT
org February 2022 | Volume 13 | Article 7732881

https://www.frontiersin.org/articles/10.3389/fimmu.2022.773288/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.773288/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.773288/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.773288/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:efeldman@umich.edu
https://doi.org/10.3389/fimmu.2022.773288
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.773288
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.773288&domain=pdf&date_stamp=2022-02-07


Figueroa-Romero et al. Tofacitinib Inhibits NK cells
INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive
neurodegenerative disease resulting in death of the motor
neurons (1). The average patient lifespan is 2 to 4 years from
disease diagnosis, and few therapeutic options exist. However, an
increasing body of literature suggests that the immune system
is involved in the pathogenesis of ALS (2, 3), with specific
immune cell populations likely contributing to disease
progression in ALS mouse models (4–9). Similarly, in human
ALS patients, changes in peripheral immune cell numbers and
activation state correlate with disease progression (10–13).
Unfortunately, suppressing the immune system can have
unintended and sometimes fatal consequences. General
immune suppression increases susceptibility to pathogens and
cancer (14); it may also accelerate ALS progression (15, 16) since
several immune populations perform protective functions,
which slow disease progression (10, 11). The loss of protective
immune cell populations likely explains previous failures
of immunosuppressive drugs for ALS. Conversely, certain
immune cell populations accelerate ALS (6–10, 12, 13); thus,
targeting these specific immune populations may be a more
nuanced and potentially effective approach for slowing disease
progression than global immune suppression.

Generally, immune cells do not attack the body’s own cells
under homeostatic conditions. However, natural killer (NK) cells
destroy the body’s own cells when they become cancerous,
infected, or damaged (17, 18). NK cells may also contribute to
ALS progression (7, 8, 10, 13); we and others have found elevated
NK cell levels in the peripheral blood of ALS patients (10, 11) and
NK cells accumulate in the spinal cord of ALS mice (7, 8, 19).
Moreover, during ALS, motor neurons stop expressing major
histocompatibility complex proteins, which mark them as self,
protecting them from NK cell-mediated cytotoxicity (20, 21).
This suggests a particular vulnerability of motor neurons to NK
cells in ALS. Finally, NK cells drive a pro-inflammatory
microglia phenotype and simultaneously suppress protective
regulatory T cells during ALS (7). Thus, drugs targeting NK
cells may prove a viable therapeutic option for ALS, both by
blocking NK cell cytotoxicity as well as preventing a pro-
inflammatory cascade in the central nervous system.

Tofacitinib is a small molecule pharmaceutical approved for
treating multiple immune disorders, including rheumatoid
arthritis (22), ulcerative colitis (23), and psoriasis (24). The
drug suppresses pro-inflammatory immune activation by
blocking the JAK/STAT pathway of the adaptive immune
system (25, 26) while preserving innate immune activity and
regulatory function (27, 28). However, cytokines associated with
NK cell survival and function, including IL-15, signal through
the JAK/STAT pathway as well (29–32) and would also be
blocked by tofacitinib (33). Indeed, several studies suggest
tofacitinib suppresses NK cell numbers in the peripheral blood
of mice (34, 35) and humans (36). However, little research has
been performed to examine the impact of tofacitinib on NK cell
activation. Thus, tofacitinib could potentially block NK cell
cytokine production and cytotoxicity in addition to lowering
overall levels, providing added benefits as an ALS treatment.
Frontiers in Immunology | www.frontiersin.org 2
In addition, tofacitinib would target NK cells and pro-
inflammatory pathways while preserving protective immune
function (28) thus overcoming previous failures of previous
immune-based therapies for ALS (37).

The present study therefore evaluated the ability of tofacitinib
to suppress NK cell cytokine expression and cytotoxicity in vitro,
both in an NK cell line and in primary NK cells derived from
ALS participants. We also investigated whether tofacitinib
suppressed NK cell cytotoxicity to inducible neurons
(iNeurons) differentiated from ALS patient-derived inducible
pluripotent stem cells (iPSCs). Finally, we examined tofacitinib
pharmacokinetics in mice as well as the impact in vivo on the
immune system, since these data have not been previously
established and are crucial to future preclinical studies of ALS.
Our study found that tofacitinib suppresses NK cell cytotoxicity
and cytokine production in vitro and suppresses NK cell levels in
vivo in mice after oral administration in food. These data
demonstrate that tofacitinib may be a viable ALS treatment
and establish a foundation for future preclinical studies.
METHODS

Study Participants
Healthy control participants without a history of neurodegenerative
disease, chronic inflammatory disease, collagen vascular disease, or
immunomodulatory medication use were recruited through the
University of Michigan Institute for Clinical & Health Research. In
parallel, ALS participants meeting a diagnosis of ALS by El Escorial
Criteria were recruited during clinical visits at the University of
Michigan Pranger ALS Clinic as previously described (13). All study
participants provided oral and written informed consent and the
study received ethics board approval by the University of Michigan
Medical School Institutional Review Board (HUM00028826).

Cell Lines and Primary Human NK Cells
Cell Lines
The NK-92 NK cell line (ATCC Cat# CRL-2408, RRID :
CVCL_3755) and K-562 leukemia cell line (ATCC Cat# CCL-
243, RRID : CVCL_0004) were acquired from ATCC (Manassas,
VA). NK-92 cells were grown in NKmedia [Alpha’sModification of
Medium Essential Eagle media (STEMCELL Technologies
cat #36453) supplemented with 12.5% horse serum (Gibco cat
#16050122), 12.50% fetal bovine serum (FBS, Sigma Aldrich cat
#F4135), 1% penicillin/streptomycin (Gibco cat #15140122), 0.2
mM myo-inositol (Sigma-Aldrich cat #17508), 0.02 mM folic acid
(Sigma-Aldrich cat #F8758), and 0.1 mM b-mercaptoethanol
(Sigma cat #M7522) and 645.2 nM IL-2 (PeproTech cat #200-
02)]. K-562 cancer cells were grown in K-562 media [Iscove’s
Modified Dulbecco’s Medium (STEMCELL Technologies cat
#36150) with 10% FBS and 1% penicillin/streptomycin (Gibco cat
#15140122)]. Human-derived iPSC lines #1021 (control) and #265
(sporadic ALS, sALS) were obtained from the University of
Michigan ALS Biorepository (38). Control and ALS iPSCs were
used to generate iNeurons by suppressing the polypyrimidine-tract-
binding (PTB) protein, as previously described (39). Briefly, iPSCs
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Figueroa-Romero et al. Tofacitinib Inhibits NK cells
were cultured on poly-D-lysine (50 µg/L, Sigma cat #p1149)/
laminin (1:100, Sigma cat #L2020) coated plates in iPSC media
[E8 media (Gibco cat #A1517001) supplemented with iROCK
Y27632 (Fisher cat #BDB562822)] in 6-well plates at a density of
1x105 cells/well. The following day (Day 1), the media was changed
to iNeuron media #1 [E8 media supplemented with 1X N2
supplement (Gibco, cat #17502-048), 1X NEAA supplement
(Gibco cat #11140-050), 10 ng/mL BDNF (Peprotech cat #450-
02), 10 ng/mL NT3 (Peprotech cat #450-03), 0.2 µg/mL mouse
laminin (Sigma cat #L2020), 2 mg/mL doxycycline (Sigma cat
#D3447)]. On Day 2, the cells were changed to iNeuron media #2
[½ E8, ½ DMEM/F12 (Gibco cat #11320-033), 1X N2 Supplement,
1XNEAA supplement, 10 ng/mL BDNF, 10 ng/mLNT3, 0.2 µg/mL
laminin, 2 mg/mL doxycycline]. On Day 3, cells were changed to
iNeuron media #3 [Neurobasal-A (Gibco cat #12349-015), 1X B27
supplement (Gibco cat #17504-044), 1X Glutamax supplement
(Gibco cat #35050-061), 10 ng/mL BDNF, 10 ng/mL NT3, 0.2 µg/
mL mouse laminin, 2 mg/mL doxycycline]. Additional media #3
was added on Day 6 and Day 8. iNeurons were differentiated for 10
days prior to treatment.

Primary NK Cells
10 mL of whole blood was collected from control and ALS
participants, as previously described (10, 12, 13). NK cells were
enriched using RosetteSep Human NK isolation cocktail
(STEMCELL Technologies cat #15025) and cultured in NK
media supplemented with 645.2 nM IL-2 or IL-2 + 2.33 nM
IL-15 (PeproTech cat #200-15) for co-culture assays. All cells
were grown at 37°C in 5% CO2.

NK-92 IL-15 Stimulation and Tofacitinib
Treatment Paradigms
NK-92 cells were cultured using two IL-15/tofacitinib paradigms
(Figure 1A). In the first paradigm (P1), NK-92 cells were
cultured for two hours with 2.33 nM IL-15 in serum-free NK
media prior to overnight treatment with 50 nM tofacitinib
(Selleckchem cat #CP-690550). In the second treatment
paradigm (P2), NK-92 cells were cultured overnight with 50
nM tofacitinib in serum-free NKmedia prior to two-hour culture
with 2.33 nM IL-15. 50 nM concentration of tofacitinib was used
based on previous in vitro immune studies (40, 41). For each
treatment paradigm, three groups of NK-92 cells were generated:
cells receiving no IL-15 and no tofacitinib (Unstimulated), cells
receiving only IL-15 (Stimulated) or cells receiving IL-15
stimulation and tofacitinib treatment (Treated). NK-92 cells
were then collected, washed, and analyzed for STAT1
phosphorylation (P-STAT), cytotoxicity towards K-562 cells,
granzyme B and perforin expression, or cytokine gene
expression (see below).

Primary NK Cell Stimulation and
Tofacitinib Treatment
1x105 human primary NK cells were cultured in a 48-well plate
(Corning cat #3524) in NK media supplemented with 645.2 nM
IL-2 + 2.33 nM IL-15 ± 50 nM tofacitinib for two hours at 37°C
in 10% CO2. Unlike NK-92 cells, primary NK cells were provided
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additional IL-2 cytokine stimulation to enhance survival in
culture (data not shown) (42). The cells were washed and
pelleted for subsequent western blot, quantitative real-time
PCR (qRT-PCR), and cytotoxicity analysis.

Western Blot Analysis
NK-92 or primary NK cells were lysed in RIPA buffer (Pierce/
Thermo Fisher Scientific cat #89901) supplemented with
cOmplete mini, EDTA-free protease inhibitors (Roche cat
#11836170001), sonicated, and centrifuged. Protein samples
were resolved by SDS-PAGE in 10% acrylamide gels,
transferred to Immobilon-FL PDVF membranes (Millipore cat
#IPFL00010), and immunoblotted with the indicated primary
antibodies: rabbit anti-STAT1 (D1K94) (Cell Signaling
Technologies, CST, cat #14994S), rabbit anti-P-STAT1 (Y701)
(CST cat #9167S), and rat anti-a-tubulin (Abcam cat #ab6160;
RRID : AB_305328). Goat anti-rabbit (cat #7074S; RRID :
AB_2099233) and anti-biotin horseradish peroxidase (HRP)-
linked (cat #7075P5) secondary antibodies were used at 1:2000
(CST) and anti-rat IgG HRP-conjugated secondary antibody was
used at 1:5000 (R&D cat #HAF005; RRID : AB_1512258).
Densitometric analysis was performed Quantity One v.4.6.5
(Bio-Rad).

Cytotoxicity Assays
NK-92 Cells and K-562 Cells
Pre-treated NK-92 cells (Paradigm 1 or 2) were plated at a
density of 1x106 NK-92 cells and co-cultured with 1x105 K-562
cells for two hours at a 10:1 ratio in a final volume of 500 mL
followed by flow cytometric analysis of K-562 and NK-92 cell
viability dye levels (positive levels indicating cell death,
see below).

NK-92 Cells and iNeurons
1x106 NK-92 cells were starved for 2 hours in serum-free NK
media, then treated with 50 nM tofacitinib or vehicle (dimethyl
sulfoxide, DMSO) for 30 minutes prior to stimulation with 2.33
nM IL-15 for 4 hours (similar to the intervention treatment
paradigm, P2). Treated NK-92 cells were re-suspended in 0.5 mL
iNeuron media #3 and co-cultured for 2 hours with 10-day old
iNeurons plated at 2x105 cells/well (NK-92:iNeuron = 5:1). At
the end of the incubation, the media containing the NK-92 was
removed and the iNeurons were washed with 1X PBS and
released from the plates with Accutase (Innovative Cell
Technologies cat #AT-104) for viability analysis via flow
cytometry (see below).

Primary NK Cells and K-562 Cells
1x105 human primary NK cells were co-cultured with 1x105 K-
562 cells at a 1:1 ratio were seeded to a 48-well plate (Corning)
with NKmedia for 2 hours at 37°C in 5% CO2 under one of three
conditions: with 645.2 nM IL-2, with IL-2 + 2.33 nM IL-15, or
with IL2 + IL-15 + 50 nM tofacitinib. Following co-culture,
conditioned media was then collected and stored for subsequent
analysis (see below). K-562 and primary NK cells were then
washed with flow buffer [1000 mL 1X PBS + 20 mL FBS + 0.01 g
February 2022 | Volume 13 | Article 773288
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FIGURE 1 | Tofacitinib inhibits NK-92 cells function in vitro. (A) NK-92 cells were cultured with serum-free media under two culture paradigms: Paradigm 1 (P1)
intervention treatment, whereby NK-92 cells were treated with IL-15 for two hours and then cultured overnight in the presence of tofacitinib (Treated), and Paradigm
2 (P2) prevention treatment where NK-92 cells were treated overnight with tofacitinib prior to two-hour IL-15 stimulation. (B) Stimulated and Treated NK-92 cells
were assessed for STAT1 phosphorylation (P-STAT) following both culture paradigms. Representative immunoblots for Stimulated and Treated P-STAT1 and a-
tubulin (internal reference) are shown. Quantitative data represent densitometric analysis, where total STAT1 and P-STAT1 signals were first normalized to a-tubulin
then to P-STAT1 levels in Unstimulated cells; n = 5 independent experiments. (C) Unstimulated, Stimulated, and Treated NK-92 cells were co-cultured with K-562
cancer cells (10:1 ratio) following initial P1 or P2 culture paradigms. Flow cytometry was used to identify K-562 cells in the co-culture, and cell death was assessed
by viability dye staining. K-562 cell death was quantitated for Stimulated and Treated NK-92 cells and normalized to Unstimulated NK-92 cells; n = 10 independent
experiments. (D) Expression of the intracellular NK cell proteins perforin and granzyme B was determined by flow cytometry on Unstimulated, Stimulated, and
Treated NK-92 cells using intracellular flow cytometry following P1 and P2 culture paradigms. Representative histograms are shown; gray peaks = Unstimulated NK-
92 cells, red peaks = Stimulated NK-92 cells, blue peaks = Treated NK-92 cells show MFI. MFI from Stimulated and Treated cells were normalized to protein levels
in Unstimulated NK-92 cells for quantitation; n = 6 independent experiments. (E) Gene expression of IL-10, TNF-a, and IFNg cytokines was assessed in
Unstimulated, Stimulated, and Treated NK-92 cells following P1 and P2 paradigms using qRT-PCR. Data for Stimulated and Treated cells were normalized to
GAPDH expression then to the Unstimulated cells; n = 3-4 independent experiments. (F) Extracellular expression of IL-10, TNF-a, IFN-g, granzyme B, and perforin
was assessed for Stimulated and Treated NK-92 cells using a CD8/NK cell multiplex analysis following P1 and P2 treatment paradigms (n = 8-13 independent
experiments). For all experiments, quantitative data is shown as the mean ± SEM; (A–E) comparisons were made by Student’s t-test; (F) comparisons were made
using a paired t-test or a Wilcoxon test based on normality of the data. Horizontal dashed lines represent normalized Unstimulated NK-92 cell levels. *P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001.
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NaN3] and plated for analysis of both cell types using flow
cytometry and viability dye (see below).

Quantitative Real-Time PCR (qRT-PCR)
RNA was isolated from NK-92 or primary NK cells using the
RNeasy isolation kit (Qiagen cat #74104) and with RNA/DNA/
RNase-free DNase treatment (Qiagen cat#79254). cDNA was
generated using 0.5 mg of NK-92 RNA or 40 ng primary NK cell
RNA and 5X iScript RT (Bio-Rad cat#1708840) in a 20 mL
reaction following the manufacturer’s protocol. The reactions
were run in a PTC-200 Peltier Thermal Cycler (MJ Research).
qRT-PCR was performed in triplicate using 10-mL reactions
consisting of sequence specific TaqMan™ primers for human
IL-10 (Hs00961622_m1), TNF-a (Hs00174128), IFN-g
(Hs00989291_m1), GAPDH (Hs02758991_g1), and yWHAZ
(Hs03044281_g1); 2X gene expression Master Mix (Applied
Biosystems/Thermo Fisher Scientific, cat #4369016) and 2 mL
cDNA. CT values were used to calculate DCT and DDCT using
GAPDH or yWHAZ as the internal references. Data were
expressed as the mean of the relative quantity of gene
expression (2−DDCT).

Multiplex Analysis of Cytokines and
Secreted Proteins
The release of cytokines and pro-apoptotic factors by NK-92 and
primary NK cells was assessed using the LEGENDplex Human
CD8/NK Cell Panel (Biolegend, cat# 740267) according to the
manufacturer’s instructions. In brief, fluorescent beads were
incubated with conditioned media from NK-92 or primary NK
cells co-cultured with K-562 cancer cells, and flow cytometry (see
below) was used to quantify IL-10, TNF-a, IFN-g, granzyme B,
and perforin in the conditioned media.

Mice
Mice were purchased from Jackson Laboratory (Bar Harbor,
ME). Male and female C57BL/6 mice (Stock #000664; RRID :
IMSR_JAX:000664) were used for initial tofacitinib
pharmacokinetic assays. For tofacitinib efficacy studies, male
and female non-carrier, wild-type (WT) control littermates of
SOD1G93A ALS mice were used (B6.Cg-Tg(SOD1*G93A)1Gur/J;
Jackson Stock #004435). All mice were housed under specific
pathogen-free conditions. Animals were fed 5L0D chow ad
libitum when not treated. All mouse studies were performed in
accordance with University of Michigan Institutional Animal
Care & Use Committee approved protocols (approval
#PRO00010247). Mouse studies were conducted in accordance
with the United States Public Health Service’s policy on Humane
Care and Use of Laboratory Animals.

Tofacitinib Administration to Mice and
Plasma Collection for Pharmacokinetic
Assays
Tofacitinib was suspended at 2 mg/mL in PBS containing 5%
DMSO and 10% PEG-400, which was administered by
intravenous (IV) injection (10 mg/kg, 10 mice) or per os (PO)
via gavage (20 mg/kg, 10 mice). At the given time points (0.083,
Frontiers in Immunology | www.frontiersin.org 5
0.167, 0.25, 0.5, 1, 2, 4, 7, 16, and 24 hours), blood samples were
collected using heparinized calibrated pipettes. Samples were
centrifuged at 2000g for 10 minutes. Subsequently, plasma was
collected from the upper layer and frozen at -80°C for
later analysis.

Liquid Chromatography
Sample Preparation
To precipitate plasma proteins, 150 mL of acetonitrile containing
internal standard and 30 mL of ice-cold acetonitrile were added to
30 mL of plasma. The mixture was vortexed for 10 minutes and
centrifuged at 15,000 x g for 10 minutes. The supernatant was
transferred to a 96-well plate (Fisher Scientific) for liquid
chromatograph-tandem mass spectrometry (LC–MS/MS).

Sample Specificity
The chromatograms of blank plasma versus blank plasma spiked
with internal standard (CE302) showed that the blank plasma did
not interfere with tofacitinib and internal standard determination.

Calibration Curve
Analytical curves were constructed with 12 nonzero standards by
plotting the tofacitinib peak area ratio to the internal standard
versus the concentration in plasma. The concentration range was
evaluated from 1 to 10000 ng/mL for drug level quantification in
plasma. A blank sample (matrix sample processed without
internal standard) was used to exclude contamination or
interference. The curve was built with linear regression with
weighing (1/X2). The linearity of the relationship between peak
area ratio and concentration was demonstrated by the
correlation coefficients (r = 0.9990).

Quality Control (QC) Samples
The accuracy and precision were evaluated at four concentration
levels (2 ng/mL, 400 ng/mL, 4500 ng/mL, and 9000 ng/mL) with
three individual replicates at each concentration. The QC stock
solution was prepared from separate weighing. QC samples were
prepared at four levels (2 ng/mL, 400 ng/mL, 4500 ng/mL, and
9000 ng/mL). QC samples were run before, in the middle, and
after running the samples. At least 50% of QCs at each level were
within 15% of their nominal concentration. The intra-batch
precision was calculated and expressed as relative standard
deviation. Data indicate that the assay method was reliable
and reproducible.

Analysis
Tofacitinib concentrations in mouse plasma were determined by
a liquid chromatography tandem mass spectrometry (LC–
MS/MS) method developed and validated for this study. The
LC-MS/MS method was preformed using an AB-4500 Qtrap
(Sciex, Concord, ON, Canada) mass spectrometer with
electrospray ionization source interfaced with a Shimadzu
high-performance LC system. Separation was performed on an
XBridge C18 column (50 × 2.1 mm ID, 3.5 µm; Waters, Milford,
MA, USA) at a flow rate of 0.4 mL/minute. The mobile phase
consisted of A (water with 0.1% formic acid) and B (acetonitrile
with 0.1% formic acid). The gradient was 0.0-0.5 minutes, 2% B;
February 2022 | Volume 13 | Article 773288
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0.5-2.0 minutes, 2-95% B; 2.0-3.6 minutes, 95% B; and 3.6-4.1
minutes, 95-2% B. The mass spectrometer was operated in
positive mode with multiple reaction monitoring for analysis.
The multiple reaction monitoring transitions were m/z 313.1 >
173.1 for tofacitinib and 455.2 > 425.2 for the internal standard.
The gas temperature was 500°C with an ionspray voltage of
5500 V, gas 1 and gas 2 of 30 psi, and curtain gas of 30 psi.
Analyst Software (version 1.6) from Applied Biosystems (MDS
SCIEX; Carlsbad, CA, USA) was used to control the LC-MS/MS
system, as well as for data acquisition and processing. All
pharmacokinetic parameters were estimated using non-
compartmental analyses with Phoenix WinNonlin software
(Certara, Princeton, NJ).

Tofacitinib Mouse Chow
Low-dose (5 mg/kg) and high-dose (30 mg/kg) chow was
manufactured by Research Diets (New Brunswick, NJ). To
determine the initial tofacitinib content in the chow, chow
from two cages of mice was weighed daily for a week to
determine the daily chow consumption per cage. The average
chow consumption for each mouse was then calculated, and low-
and high-dose chow was formulated based on average
consumption. For the peripheral immune analysis, male and
female mice were placed on low-dose, high-dose, or normal
chow (control animals) for two weeks prior to harvest.

Blood Leukocyte Collection
Peripheral immune cells were harvested as previously described
(9). At the time of harvest, mice were euthanized with sodium
pentobarbital, whole blood was collected from the vena cava and
measured using a 1 mL syringe (BD Biosciences, Franklin Lakes,
NJ), and transferred to a BD Vacutainer® blood collection tube
(BD Biosciences) coated with 3.6 mg of EDTA. Red blood cells
were lysed with 9.5 mL red blood cell lysis buffer [150 mM
NH4Cl, 10 mM KHCO3, 0.1 mM EDTA (Thermo Fisher
Scientific) with 13.8 mM HEPES, pH 7.2-7.5 (Thermo Fisher
Scientific)] for 20 minutes on a rocker at room temperature.
Leukocytes were pelleted (1000 rpm, 10 minutes, 4°C, with
brake), supernatant siphoned off, washed twice with flow
cytometry buffer [1X PBS, 2% FBS (Thermo Fisher Scientific),
0.1% NaN3] and resuspended in 1 mL flow cytometry buffer.
Cells were counted by hemocytometer (Hausser Scientific,
Horsham, PA), and kept on ice until staining for flow cytometry.

Flow Cytometry
Intracellular Perforin and Granzyme B Staining
of NK-92 Cells
All samples were washed and resuspended at a density of ≤106 cells/
25 µL, plated in U-bottom 96-well plates (Fischer cat #07-200-760),
and spun down at 1200 rpm for 10minutes. Samples were incubated
with 10 µg/mL human TruStain FcX™ blocking solution (Biolegend
cat #422302; RRID : AB_2818986) at 4°C for 30 minutes prior to
immune staining. Following blocking stage, NK-92 cells were
stained with CD56 and HLA and washed with flow buffer (PBS +
2% FBS). Cells were then permeabilized using Cytofix/cytoperm
(BD cat #554714; RRID : AB_2869008) and stained with antibody
Frontiers in Immunology | www.frontiersin.org 6
for perforin (Biolegend cat #353303; RRID : AB_10915476) and
granzyme B (Biolegend cat #515403; RRID : AB_2114575). Control
stains were performed with non-specific IgG antibody (Biolegend
cat #400111; RRID : AB_2847829 and #400137). Cells were then
transferred to polystyrene tubes (12x75 mm) (BD Biosciences) and
analyzed on a BD LSRFortessa™ flow cytometer with FACSDiva™

software (BD Biosciences) and FlowJo (FlowJo, Ashland, OR).

NK-92 and Primary NK Cytotoxicity Assays
Following collection and wash, co-cultures of NK and K-562 cells
were incubated with Fixable Viability Dye eFluor™ 506 (1:500)
(eBioscience cat #65-0866-14) during the blocking stage. Samples
were then incubated with surface stains CD56 (Biolegend
cat #318318; RRID : AB_604107), CD11a (Biolegend cat#301207;
RRID : AB_10660819), and CD71 (Biolegend cat #334110; RRID :
AB_2563117) at 4°C for 30 minutes. K-562 cells were identified as
CD56-, CD11a-, CD71+. Samples were fixed using Stabilizing
Fixative (BD cat #338036; 1:3 dilution).

iNeurons
All samples were washed, resuspended at a density of ≤106 cells/
25 µL, plated in U-bottom 96-well plates, and blocked at 4°C for
30 minutes prior to staining. Cells were then stained for annexin
V (Invitrogen cat #12-8102-69) and with the viability dye 7-
amino-actinomycin D (7AAD; Invitrogen cat #00-6993-50),
according to the manufacturer’s instructions, and fixed for
analysis, as above, consistent with previously reported
protocols in neurons (43, 44).

Mouse Peripheral Immune Cells
All samples were washed and resuspended at a density of ≤106

cells/25 µL, plated in U-bottom 96-well plates (Fischer), and
spun down at 1200 rpm for 10 minutes. Samples were incubated
with 10 µg/mL mouse TruStain FcX™ blocking solution
(Biolegend cat #101320; RRID : AB_1574975) at 4°C for 30
minutes prior to staining. Samples were incubated with
antibodies against myeloid and lymphoid surface markers as
previously described (9). In brief, cells were stained with
antibodies against CD45, CD11b, Ly6C, and Ly6G to analyze
myeloid populations and CD45, CD3, CD4, CD8, NK1.1, and
CD49b to analyze lymphocyte and NK cell populations.

Statistics
All statistics were performed using GraphPad Prism version 8.0.0
(San Diego, CA). All datasets were assessed for normality using
normality using Shapiro-Wilk (45). For comparing between two
groups, either a two-tailed Student’s t-test (normally distributed
data) or Mann-Whitney (non-normally distributed data) were
used. For cytokine expression by NK-92 cells a paired t-test or a
Wilcoxon test (paired data with non-normal distribution) was
used when data was not normally distributed. A Wilcoxon test
was used for comparing NK-92 cytotoxicity to iNeurons and
comparing primary NK cell cytotoxicity to K-562 cancer cells.
For comparing peripheral immune cell levels, two-way ANOVA
with multiple comparisons was used. P-values < 0.05 were
considered statistically significant.
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RESULTS

Tofacitinib Inhibits NK-92 Cells
Function In Vitro
Previous studies demonstrate that tofacitinib lowers NK cell
levels in vivo (34–36, 46); however, little is known about the
effect of tofacitinib on NK cell activation. Blocking NK cell
activation in addition to lowering levels could potentially
increase tofacitinib efficacy for treating NK cell-mediated
diseases, such as ALS. Thus, we explored whether tofacitinib
reduces NK cell cytotoxicity, cytokine production, and trafficking
in vitro. We initially employed a commercially available NK cell
line, NK-92 cells, and two treatment paradigms to explore the
impact of tofacitinib on NK cell function (Figure 1A). In the first
treatment paradigm (P1, intervention treatment) NK-92 cells
were activated with IL-15 for two hours (30–32) and cultured
overnight in the presence of tofacitinib. In the second paradigm
(P2, prevention treatment), NK-92 cells were first pre-treated
with tofacitinib overnight and then activated for two hours with
IL-15. In parallel, Unstimulated cells (which received no IL-15
stimulation, serum stimulation, or tofacitinib treatment) were
also cultured overnight and analyzed simultaneously with P1 or
P2 NK-92 cells. For both paradigms, NK-92 cells were further
divided into two groups: NK-92 cells cultured with IL-15 without
tofacitinib (Stimulated) and NK-92 cells cultured with both
IL-15 and tofacitinib (Treated). This resulted in a total of five
NK-92 groups (Unstimulated, P1 Stimulated, P1 Treated, P2
Stimulated, and P2 treated) that were analyzed in parallel.

First, we confirmed that tofacitinib treatment blocks IL-15
signaling in NK-92 cells in both intervention and prevention
paradigms. Tofacitinib disrupts JAK/STAT signaling by blocking
STAT protein phosphorylation (47). Therefore, we measured
phosphorylated STAT1 (P-STAT1) levels in Unstimulated,
Stimulated, and Treated NK cells and normalized values levels
in Untreated NK-92 cells to account for run-to-run variation.
Immunoblot analysis indicated that tofacitinib treatment
significantly reduced P-STAT1 in both culture paradigms (10-
fold in P1 and 13 fold in P2, Figure 1B) demonstrating that
tofacitinib blocks IL-15 signaling in NK-92 cells.

We next tested whether tofacitinib treatment suppresses NK
cell function by assessing cytotoxicity, the intrinsic ability of NK-
92 cells to eliminate other cells. NK-92 cells in both intervention
and prevention treatment paradigms (Unstimulated, Stimulated,
or Treated) were co-cultured with K-562 leukemia cells. K652
cell death, as measured by cellular viability dye via flow
cytometry, was used to quantify NK-92-killing activity (48)
(Figure 1C); cytotoxicity of Stimulated and Treated NK-92
cells was normalized to Unstimulated NK-92 cells. We found
that IL-15-treated NK-92 cells doubled the rate of K-562 cancer
cells killing under both paradigms. However, under both
intervention and prevention treatment paradigms, blocking
IL-15 with tofacitinib significantly reduced the ability of NK-92
cells to induce K-562 cell death, showing that tofacitinib reduces
the ability of NK cells to eliminate target cells. To ensure that
tofacitinib is suppressing NK-92 cytotoxicity rather than
reducing cellular viability, we also examined NK-92 survival
Frontiers in Immunology | www.frontiersin.org 7
using viability dye. We found no significant differences in NK-92
viability following tofacitinib treatment (data not shown).

To support these findings, we next examined the impact of
tofacitinib on NK-92 expression of intracellular granzyme B and
perforin, both of which play key roles in NK cell-mediated
cytotoxicity (49). Intracellular granzyme B and perforin levels
from Unstimulated, Stimulated, or Treated NK-92 cells
(Figure 1D) were quantified by the median fluorescent
intensity (MFI) from intracellular flow cytometry; values from
Stimulated and Treated NK-92 cells were then normalized to the
MFI from Unstimulated NK-92 cells. We found that tofacitinib
significantly lowered intracellular perforin levels in the
prevention paradigm (P2), with a trending reduction in the
intervention paradigm (P1). Tofacitinib also induced a
trending reduction towards reduced granzyme B levels. These
data suggest tofacitinib may reduce NK cell cytotoxicity, partly
by suppressing the expression of proteins that induce target
cell death.

In addition to direct cytotoxicity, we examined the ability of
tofacitinib to suppress NK cell cytokine production, which
enhances neuroinflammation in ALS (7). NK-92 cells were
cultured under both paradigms, and cytokine IL-10, TNF-a, and
IFN-g mRNA expression levels were measured by qRT-PCR and
normalized to Unstimulated cells. Overall, TNF-a, IL-10, and IFN-g
gene expression increased in both paradigms following IL-15
stimulation, but this increase was reversed by tofacitinib treatment
(Figure 1E). To confirm these findings, we next examined the
secretion of pro-inflammatory and pro-apoptotic factors using a
bead-based multiplex analysis paired with flow cytometry.
Conditioned media from Stimulated and Treated culture
conditions was analyzed for levels of IL-10, TNF-a, IFN-g,
granzyme B, and perforin. Similar patterns of NK cell suppression
were seen following both tofacitinib treatment paradigms. As
observed with qRT-PCR, both IL-10 and IFN-g levels were
suppressed during the P1 and P2 treatment paradigms
(Figure 1F). Similarly, granzyme B and perforin expression were
suppressed following the P2 treatment paradigm, demonstrating
that tofacitinib suppresses the release of pro-inflammatory and pro-
apoptotic factors by NK-92 cells. Together, these data demonstrate
that tofacitinib suppresses the ability of NK cells to generate
cytokines in addition to blocking their cytotoxicity in response to
pro-inflammatory stimulation.

Next, we explored whether tofacitinib protects neurons from
NK cell-mediated cytotoxicity in an in vitro ALS model. To do
so, we co-cultured NK-92 cells with iPSC-derived iNeurons. Two
iNeuron cell lines were used: one derived from a control
participant and one derived from an ALS participant (50).
Following differentiation and ten days of growth, iNeurons
were co-cultured for four hours with IL-15-stimulated NK-92
cells with and without tofacitinib. Annexin V and 7AAD were
used as markers to quantitate iNeuron cell death by flow
cytometry (43, 44), and mCherry was used to identify
iNeurons within the co-culture (Figure 2A). However, dead
NK-92 cells autofluoresce and appear positive for mCherry,
and NK-92 cells cultured in iNeuron media #3 display
increased NK cell death. Thus, dead NK-92 cells also appeared
February 2022 | Volume 13 | Article 773288
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within the Annexin V+ and 7AAD+ gates for iNeurons,
potentially skewing the data. To account for this this, we
compared Annexin V and 7AAD flow plots for mCherry+
iNeurons versus mCherry+ NK-92 cells cultured alone in
iNeuron media and found that NK 7AAD fluorescence levels
for NK cells were higher than that of iNeurons. Thus, dead
iNeurons were identified based on moderate 7AAD staining; cell
Frontiers in Immunology | www.frontiersin.org 8
death rates for iNeurons co-cultured with Stimulated and
Treated NK-92 cells were then examined. We found that
control-derived iNeurons showed similar rates of cell death
whether cultured with or without tofacitinib treatment
(Figure 2B). In contrast, there was a significant reduction in
the rate of cell death for ALS-derived iNeurons that were
cultured with Treated NK cells versus Stimulated NK cells.
Together these results demonstrate that tofacitinib can protect
ALS neurons from NK cell-mediated cytotoxicity.

Tofacitinib Inhibits Primary NK Cells
Function Ex Vivo
We next extended these findings to determine whether
tofacitinib suppresses cytotoxicity in primary NK cells from
control and ALS participants (see Table 1 for demographics).
Primary NK cells were isolated from the peripheral blood of
control and ALS participants. We first confirmed that tofacitinib
suppresses JAK/STAT signaling in primary NK cells from
control and ALS participants, similar to NK-92 cells. As
measured by STAT1 phosphorylation via immunoblotting,
tofacitinib significantly reduced P-STAT1 levels in primary
ALS and control NK cells versus those stimulated with IL-2
and IL-15 (Figure 3A). Next, cytokine gene expression was
examined in control and ALS primary NK cells following
cytokine stimulation and treatment (Figure 3B). In ALS NK
cells, tofacitinib treatment significantly decreased TNF-a and
IFN-g expression from primary ALS NK cells. A similar trend
was observed in the cytokine gene expression of control primary
NK cells. As with the NK-92 cell line, we also examined whether
tofacitinib inhibits the release of pro-inflammatory and pro-
apoptotic factors using a multiplex analysis. Conditioned media
from primary NK cells cultured with IL-15 with and without
tofacitinib was analyzed for the secretion of TNF-a and IFN-g
(Figure 3C). There was a trend towards reduced TNF-a
secretion from primary NK cells isolated from control
participants and reduced TNF-a and IFN-g secreted from
primary NK cells isolated from ALS participants.

Finally, we examined whether tofacitinib suppresses the
cytotoxicity of primary NK cells isolated from control and ALS
participants. After isolation, primary NK cells were co-cultured
with K-562 target cancer cells, and the rate of K-562 cell death
was used to quantitate primary NK cell cytotoxicity. Since K-562
viability can fluctuate, the rate of K-562 cell death in co-culture
was normalized to the rate of K-562 cells cultured alone
(Figure 3D). The cytotoxicity of both control and ALS
primary Stimulated NK cells (IL-2 + IL-15) did not
significantly differ from NK cells stimulated with IL-2 alone
(data not shown). In contrast, primary NK cells treated with
tofacitinib displayed significantly lower cytotoxicity to K-562
cells than Stimulated NK cells (Figure 3E). As with NK-92 cells,
exposure to tofacitinib did not alter the viability of primary NK
cells (data not shown). Together, these results demonstrate that
primary NK cells are already stimulated in the peripheral blood
of control and ALS participants, but tofacitinib can nevertheless
suppress primary NK cell cytotoxicity by inhibiting JAK/
STAT signaling.
A

B

FIGURE 2 | Tofacitinib decreases the cytotoxicity of NK-92 to motor neurons
in an in vitro ALS model. iNeurons were differentiated from control- or ALS-
participant derived iPSCs and were co-cultured for four hours with pretreated
NK-92 cells (IL-15 ± tofacitinib); cell death was quantitated by flow cytometry.
(A) Gating strategy for quantitating cell death of iNeurons cultured alone, of NK-
92 cells cultured alone, and iNeuron and NK-92 cell co-culture. Dead iNeurons
were characterized by positive fluorescence levels of annexin V (apoptosis) and
moderate levels of 7AAD viability dye (cell death). (B) The rate of iNeuron death
was quantitated in control- and ALS-derived iNeurons following co-culture with
NK-92 cells; data were normalized to cell death rates from co-culture with
Unstimulated NK-92 cells; n = 6 independent experiments. Comparisons were
by paired t-test to assessed paired, non-normally distributed data. *P < 0.05.
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Tofacitinib Pharmacokinetics in Mice
Next, we wanted to optimize tofacitinib pharmacokinetics to
administer to ALS mice in future studies, since NK cells are
implicated in ALS pathogenesis (7, 13). However, symptoms in
ALS mice do not emerge until after 90 days of age, and their
lifespan is about 160 days of age in low-copy mouse strains (9).
Therefore, preclinical studies of tofacitinib in SOD1G93A mice
will require long-term treatment. Unfortunately, previous studies
testing tofacitinib in mice were either short-term studies with
daily gavage (35) or longer-term studies using osmotic
minipumps (51). For long-term diseases, administering
tofacitinib daily by gavage is not logistically feasible and can
induce significant animal losses (52). Conversely, minipumps
cannot administer high treatment doses and require repeated
surgeries. Thus, we wished to evaluate the efficacy of tofacitinib
formulated into chow as a method of long-term administration
for future preclinical studies.

Although tofacitinib pharmacokinetics had been performed
in rats and human participants, little data are available in
mice. Therefore, our first step was to assess tofacitinib
pharmacokinetics after a single orally (PO, per os, gavage) or
intravenously (IV) administered tofacitinib dose to male and
female C57BL/6 mice. Blood was collected at multiple time
points (5, 10, 15, 30, 60, 120, 240, 420, 960, 1440 minutes) post
IV and PO administration and the kinetics of blood tofacitinib
assessed. Tofacitinib bioavailability was roughly 37% in both
male and female mice, i.e., roughly 37% of the initial dose
administered orally reaches the peripheral blood (Table 2).
Interestingly, we observed that other pharmacokinetic
parameters differed between male and female mice. For
Frontiers in Immunology | www.frontiersin.org 9
instance, the maximal plasma level was higher in female versus
male mice after both IV and PO dosing, while drug clearance was
higher in male mice. These data indicate that tofacitinib can be
administered orally by chow with similar drug uptake in males
and females, though there may be sex-specific differences in drug
metabolism resulting in altered plasma levels.

Efficacy of Low- and High-Dose
Tofacitinib in Mouse Chow
Finally, we tested tofacitinib efficacy formulated in chow on NK
cell levels in mice. Based on the pharmacokinetic data, chow was
formulated to deliver a daily dose of 5 mg/kg (low-dose) or 30
mg/kg (high-dose) to male and femaleWT control mice (i.e., WT
littermates on an SOD1G93A background) for two weeks. At the
end of the treatment period peripheral immune cell levels were
assessed by flow cytometry for the percentage and total number
of NK cells, neutrophils, Ly6C- monocytes, Ly6c+ monocytes,
CD4 T cells, and CD8 T cells. Both low- or high-dose tofacitinib
treatment significantly lowered NK cell percentage in a dose-
dependent manner (Figure 4A). Moreover, both doses
significantly reduced total NK cell counts in peripheral blood
versus normal chow, and there was a trend towards fewer
circulating NK cells in of high- versus low-dose mice
(Figure 4B). In contrast, tofacitinib treatment did not
significantly reduce the percentage or total number of
neutrophils, Ly6C+ monocytes, CD4 T cells, or CD8 T cells.
Interestingly, high-dose mice had significantly lower percentage
and total number of circulating Ly6C- monocytes, which is
consistent with our previous study utilizing NK cell depletion
(13). Together, these results demonstrate that tofacitinib can be
TABLE 1 | Subject demographics for primary NK cell analyses.

Western Blot Cytokine Gene Expression Cytokine Protein Secretion Cytotoxicity

Control (n = 3) ALS (n = 4) Control (n = 3) ALS (n = 8) Control (n = 5) ALS (n = 4) Control (n = 12) ALS (n =32)

Age(Mean ± SD)
years

70.5 ± 5.3 60.7 ± 13.4 66.2 ± 10.9 65.0 ± 8.2 69.32 ± 3.9 65.61 ± 6.7 61.7 ± 13.3 64.2 ± 9.0

Sex (%) male 66.6 25.0 33.3 37.5 60.0 50.0 50.0 56.3
ALSFRS-R at
Blood Draw

N/A 23.0 ± 7.7 N/A 28.4 ± 10.3 N/A 35.8 ± 6.1 N/A 26.1 ± 8.3

Site of Onset N/A Bulbar (50.0%)
Cervical (25.0%)
Lumbar (25.0%)

N/A Bulbar (25.0%)
Cervical (25.0%)
Lumbar (50.0%)

N/A Bulbar (50.0%)
Cervical (25.0%)
Lumbar (25.0%)

N/A Bulbar (18.8%)
Cervical (34.4%)
Lumbar (46.8%)

Race White (100%)
Black (0%)Asian
(0%)Not
reported (0%)

White (100%)
Black (0%)Asian
(0%)Not
reported (0%)

White (100%)
Black (0%)Asian
(0%)Not
reported (0%)

White (75.0%)
Black (25.0%)
Asian (0%)Not
reported (0%)

White (100%)
Black (0%)Asian
(0%)Not
reported (0%)

White (100%)
Black (0%)Asian

(0%)Not
reported (0%)

White (100%)
Black (0%)Asian
(0%)Not
reported (0%)

White (90.6%)
Black (9.4%)
Asian (0%)Not
reported (0%)

Ethnicity Not Hispanic
(100%)Hispanic
(0%)Not
reported (0%)

Not Hispanic
(100%)Hispanic
(0%)Not
reported (0%)

Not Hispanic
(100%)Hispanic
(0%)Not
reported (0%)

Not Hispanic
(100%)Hispanic
(0%)Not reported
(0%)

Not Hispanic
(100%)Hispanic
(0%)Not
reported (0%)

Not Hispanic
(100%)Hispanic

(0%)Not
reported (0%)

Not Hispanic
(100%)Hispanic
(0%)Not
reported (0%)

Not Hispanic
(100%)Hispanic
(0%)Not
reported (0%)

Time from Onset
to Collection
(Mean ± SD)
years

N/A 5.0 ± 4.2 N/A 7.7 ± 6.8 N/A 2.7 ± 1.6 N/A 4.1 ± 3.9

Time from
Diagnosis to
Collection (Mean
± SD) years

N/A 3.6 ± 3.4 N/A 5.2 ± 6.7 N/A 1.6 ± 1.5 N/A 2.7 ± 3.6
February
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FIGURE 3 | Tofacitinib inhibits primary NK cells in vitro. Primary NK cells were enriched from the whole blood of control and ALS participants. (A) P-STAT1 was
assessed using Western blot. Primary NK cells were incubated with IL-2 alone, IL-2 + IL-15, or IL-2 + IL-15 + tofacitinib for 2 hours. Protein extracts were resolved by
SDS-PAGE and immunoblotted for total STAT1, phosphorylated STAT1 (P-STAT1), and a-tubulin (internal reference). Graph represents densitometric analysis where
total STAT1 and P-STAT1 signals were normalized to a-tubulin then normalized to NK cells receiving IL-2 alone; n = 2-4 participants. (B) Cytokine gene expression was
assessed using qRT-PCR for TNF-a and IFNg. Data were normalized to yWHAZ expression and normalized to the IL-2 NK cells; n = 3-8 participants. (C) Extracellular
expression of TNF-a and IFN-g was assessed for primary NK cells cultured with IL-15 ± tofacitinib (n = 5 control and n = 4 ALS). (D) Primary NK cells were assessed for
cytotoxicity. Primary NK cells were cultured for two hours with K-562 cancer cells (1:1 ratio) + IL-15 ± tofacitinib; K-562 cell death was assessed using flow cytometry to
quantitate e506 viability dye fluorescence. (E) Data were quantitated by normalizing to K-562 cells cultured without NK cells; n = 12 control and n = 32 ALS. For (A, B),
data are presented as mean ± SEM with dashed line showing cells cultures with IL-2 alone; comparisons were made by Student’s t-test. For (C), comparisons were
made using a paired t-test. For (E), comparisons were made by Wilcoxon test to assessed paired, non-normally distributed data. *P < 0.05, ***P < 0.001,
****P < 0.0001.
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administered in chow mouse models and suppresses NK cell
levels in a dose-dependent manner.

DISCUSSION
Previous studies have shown that tofacitinib treatment
suppresses NK cell levels (34–36, 46), but there is limited
information on the impact of tofacitinib on NK cell function
(41). Similarly, preclinical mouse disease studies of tofacitinib
have been short-term or used administration routes unsuitable to
long-term studies. Addressing these shortcomings is of utmost
importance to test tofacitinib for regulating NK cell function and
counts in future preclinical ALS studies, since NK cells are
implicated in ALS progression (7, 13). Therefore, in the
current study, we evaluated tofacitinib on NK cell function in
vitro and conducted a pharmacokinetic study in vivo. We used
the pharmacokinetic data to formulate tofacitinib in chow, a
suitable format for long-term oral administration. We evaluated
Frontiers in Immunology | www.frontiersin.org 11
the impact of a 2-week tofacitinib chow regimen on circulating
NK cell levels in WT mice. We found tofacitinib suppressed IL-
15-mediated JAK/STAT pathway stimulation, cytotoxicity to
cancer cells and iNeurons, granzyme B and perforin
expression, and cytokine expression in the NK-92 cell line.
Importantly, in the context of ALS, tofacitinib also significantly
lowered cytotoxicity of IL-2/IL-15-stimulated primary NK cells
isolated from ALS participants and healthy controls, as well as
cytokine levels. Finally, tofacitinib bioavailability was similar in
male and female mice, although there were sex differences in
some parameters; formulation in chow at both low- (5 mg/kg)
and high-dose (30 mg/kg) tofacitinib after 2 weeks lowered
peripheral NK cell levels in WT control mice.

These findings suggest that tofacitinib may be a viable
therapeutic strategy to regulate the NK cell population in ALS.
NK cells accumulate in the spinal cord of ALS mice (8, 13, 19,
53). In individuals with ALS, NK cells are increased in the
peripheral blood (10, 11) and co-localize with motor neurons
A B

FIGURE 4 | Impact of orally administered tofacitinib on peripheral immune populations in mice. WT control mice (half male and half female) were treated for two
weeks with low- (5 mg/kg) and high- (30 mg/kg) dose tofacitinib administered in standard chow. Immune cells were then analyzed in peripheral blood using flow
cytometry; (A) percentage of all CD45+ immune cells as well as (B) total numbers of cells was examined for six immune populations. Data show mean ± SEM.
Comparisons by ANOVA; n = 4 mice per group. *P<0.05, **P<0.01, ***P<0.001; monos, monocytes.
TABLE 2 | Tofacitinib pharmacokinetic parameters in plasma following IV and PO administration.

Route Sex Dose C0/Cmax Tmax AUC(0-24) AUC(0-inf) t½ CL/CL_F Vss/Vz_F %F
Unit mg/kg ng/mL h h*ng/mL h*ng/mL h mL/h/kg mL/kg %

IV M 10 3554.4 N/A 676.76 678.09 1.85 14747.23 39278.78 N/A
PO M 20 960 0.25 505.74 508.48 0.91 39332.99 51817.31 37.4
IV F 10 6516.9 N/A 980.54 982.90 0.72 10173.94 10549.83 NA
PO F 20 1114.3 0.167 713.26 719.57 0.90 27794.47 36093.12 36.4
Feb
ruary 2022 | Volu
me 13 | Article 77
IV, intravenous, PO, per os; C0, concentration at time 0; Cmax, maximum observed concentration; Tmax, time to reach Cmax; AUC(0-24), area under the concentration-time curve from
time zero to 24 hours; AUC(0-inf), area under the concentration-time curve from time zero to infinite; CL, systemic clearance; CL_F, apparent clearance; Vss, volume of distribution at steady
state; Vz_F, volume of distribution associated with the terminal elimination phrase; terminal elimination half-life (t½) was calculated based on data points (≥3) in the terminal phase with
correlation of coefficient >0.90; %F, bioavailability; N/A, not applicable.
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in postmortem spinal cord tissue, driving microglial activation
via IFN-g expression (7). Indeed, as ALS progresses, motor
neurons lose surface markers, which protect against NK cells-
mediated cytotoxicity (20), rendering them more susceptible to
attack. In addition to increased NK cell levels, they are also more
highly activated in individuals with ALS, correlating with disease
progression (13). Depleting NK cells from SOD1G93A ALS mice
extends survival (7, 13). Thus, reducing NK cell levels, blocking
NK cell cytotoxicity, and suppressing IFN-g release from NK
cells may slow motor neuron loss and suppress central nervous
system inflammation, increasing survival in ALS.

Previous studies have established that tofacitinib blocks
immune cell activation and activity by interfering with the JAK/
STAT pathway (25), promoting pro-inflammatory cytokine
signaling between cells (27, 54, 55). Blocking cytokines, such as
IFN-g, with tofacitinib prevents inflammatory T cell activation,
which effectively treats autoimmune disorders, such as rheumatoid
arthritis, ulcerative colitis, and psoriasis (22–24). In the case of NK
cells, blocking JAK/STAT signaling suppresses the IL-15 pathway
(33), which is a crucial mediator of both NK cell survival and
activation (29, 56, 57). This likely explains the reduced peripheral
NK cell levels observed after tofacitinib treatment in both mouse
and humans (34–36, 46). However, in addition to maintaining NK
cell homeostasis, IL-15 is also a potent stimulator of NK cell
function (30–32). Thus, tofacitinib should also block IL-15-
mediated NK cell activation. Our current study definitively
shows this: tofacitinib treatment suppresses pro-inflammatory
cytokine production and cytotoxicity in both NK-92 cells and
primary NK cells. This is particularly salient to ALS, since direct
NK cell cytotoxicity as well as IFN-g production likely contribute
to disease progression (7). The importance of these findings is
further corroborated by our results showing that tofacitinib
significantly reduces NK cell cytotoxicity towards iNeurons
generated from ALS patient-derived iPSCs.

The current study also suggests that tofacitinib suppresses NK
cell levels in an ALS mouse model. However, although preclinical
mouse models are crucial for evaluating drug efficacy in vivo, no
comprehensive studies have examined tofacitinib pharmacokinetics
nor the long-term impact of the drug on peripheral immunity in
mice. There are challenges associated with long-term drug
administration. One possible solution is the use of osmotic
minipumps as it has been previously shown (51). However,
minipumps typically administer either a low drug dose over a
long period of time or a high dose over a short period of time. A
higher dose of tofacitinib, such as 30 mg/kg, would require frequent
pump replacement and multiple surgeries. Not only is this
logistically difficult, but frequent surgeries would be potentially
life-threatening for mice in advanced stages of disease. In
contrast, daily oral tofacitinib administration tofacitinib to mice
via gavage is not logistically feasible over long time periods either as
the rate of death associated with technique is 15% over a six week
period (35, 52). Moreover, these previous studies did not examine
tofacitinib pharmacokinetics – particularly bioavailability –
meaning the final concentration in the peripheral blood following
oral administration was not known. In the present study we found
that tofacitinib bioavailability in mice (around 37%) differed from
Frontiers in Immunology | www.frontiersin.org 12
humans, where bioavailability is 74% (58). Perhaps unsurprisingly,
bioavailability in mice is closer to that in rats (29%) (59).
Interestingly, we found that plasma tofacitinib levels differed
between male and female mice, even after IV administration,
suggesting the sexes may clear the drug at different rates. These
sex-specific tofacitinib pharmacokinetics differences are potentially
important for future ALS treatment, since we have previously
described sex-based immune differences in ALS (12, 13).

Consistent with other methods of tofacitinib administration,
treating mice orally with tofacitinib in chow successfully
suppressed circulating NK cell levels in a dose-dependent
manner in WT mice on a SOD1G93A genetic background.
Together with our in vitro findings, these results suggest that
tofacitinib modulates NK cell levels and activity and should be
tested in preclinical mouse models of ALS. However, an in-depth
series of studies will be required, as the mechanisms of NK cell
involvement in ALS is incompletely understood. One mechanism
by which NK cells contribute to ALS is the destruction of damaged
motor neurons within the CNS, as motor neurons are uniquely
vulnerable to NK cells during disease progression (20).
Alternatively, NK cells may be involved in other disease
mechanisms. NK cells may play an important role in driving
early microglial activation (7) which has been implicated in ALS
pathology (60–62), and they may also contribute to peripheral
nerve damage in ALS, as increased expression of major
histocompatibility complex I was associated with slower disease
progression in mouse models of ALS (63). The role of NK cells in
the loss of neuromuscular junction (NMJ) integrity during ALS
has also not been examined.

Preclinical studies must also account for the impact of
tofacitinib on other immune cell populations that modulate
ALS progression, both in the periphery and the CNS. Immune
cells are both protective and destructive in ALS (2, 10), so
preserving protective immune function is of the utmost
importance when designing and utilizing immune-based
therapies. While the current study demonstrated that
tofacitinib suppresses NK cell numbers in the peripheral blood,
changes were also observed in other cell populations. Ly6C-
monocytes, which patrol the body and are involved in fibrosis
and wound repair (64), were significantly reduced in mice treated
with the higher tofacitinib dose; analogous monocytes in human
patients may have a protective effect (65). Similarly, there was a
trend towards reduced CD4 and CD8 T cell levels following
tofacitinib treatment, particularly in mice treated with the high
dose. While these observations did not reach statistical
significance, it is important to account for these changes, as
these immune cell types play a central role in ALS, in particularly
CD4 T cells (4, 10). Since the cellular lifespan of NK cells (66–68)
is much shorter than that of T cells (69) it may be possible to
preserve T cell levels by utilizing on/off drug treatment cycles.
This possibility should also be explored in future clinical trials.

In addition, preclinical tofacitinib studies should account for
the impact of sex in ALS mouse models. Though the impact of
sex on tofacitinib-NK cell interaction was not explored in the
current study, we have previously demonstrated that sex alters
the impact of several immune cell populations in ALS, including
February 2022 | Volume 13 | Article 773288
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NK cells (12, 13). Moreover, depletion of NK cells also impacts
male and female mice differently, both in terms of survival and
neuroinflammation (13); therefore, tofacitinib studies should
likewise account for sex differences given the reduction in
peripheral NK cell levels following tofacitinib treatment.
Altogether, in vivo tofacitinib studies in ALS mice should
examine a myriad of mechanisms and factors including
peripheral and CNS immune cell populations, peripheral and
CNS gene expression, motor neuron survival, and NMJ integrity.
Studies will need to examine drug dosing, drug timing, and will
need to account for the impact of sex.

The current study does have several limitations. First, primary
NK cells are more difficult to culture than NK-92 cells and were
therefore not co-cultured with iNeurons. iNeurons are also not
motor neurons, thus, it is unclear to what degree ALS iNeurons
recapitulate true motor neurons in vivo. Moreover, in mice, we
only examined the effect of tofacitinib on NK cell numbers rather
than on NK cell function. Many of the in vitro assays require large
cell numbers, and tofacitinib treatment reduced overall NK cell
levels, making these analyses in vivo difficult. Finally, while we
have previously shown that both age and sex alter the activity of
immune cells during ALS, including NK cells (12, 13), the present
study did not explore the impact of these factors on tofacitinib
suppression of NK cells. Nonetheless, our results conclusively
show that tofacitinib suppresses NK cell function in vitro,
suppresses NK cell levels in vivo, and can be administered orally
in chow for use in preclinical ALS mouse models. These findings
also indicate tofacitinib may be used to treat long-term diseases
mediated by NK cell function, such as ALS.
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