
Novel Tools and Methods

NDI: A Platform-Independent Data Interface and
Database for Neuroscience Physiology and Imaging
Experiments
Daniel García Murillo,1,2,5 Yixin Zhao,5 Ora S. Rogovin,2 Kelly Zhang,1,5 Andrew W. Hu,1 Mo Re Kim,1

Shufei Chen,2,5 Ziqi Wang,1,5 Zoey C. Keeley,2 Daniel I. Shin,2 Victor M. Suárez Casanova,2

Yannan Zhu,2 Lisandro Martin,2 Olga Papaemmanouil,3,5 and Stephen D. Van Hooser1,2,3,4

https://doi.org/10.1523/ENEURO.0073-21.2022

1Department of Biology, Brandeis University, Waltham, MA 02454, 2Program in Neuroscience, Brandeis University,
Waltham, MA 02454, 3Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, 4Sloan-Swartz
Center for Theoretical Neurobiology, Brandeis University, Waltham, MA 02454, and 5Michtom School of Computer
Science, Brandeis University, Waltham, MA 02454

Abstract

Collaboration in neuroscience is impeded by the difficulty of sharing primary data, results, and software across
labs. Here, we introduce Neuroscience Data Interface (NDI), a platform-independent standard that allows an ana-
lyst to use and create software that functions independently from the format of the raw data or the manner in
which the data are organized into files. The interface is rooted in a simple vocabulary that describes common ap-
paratus and storage devices used in neuroscience experiments. Results of analyses, and analyses of analyses, are
stored as documents in a scalable, queryable database that stores the relationships and history among the experi-
ment elements and documents. The interface allows the development of an application ecosystem where applica-
tions can focus on calculation rather than data format or organization. This tool can be used by individual labs to
exchange and analyze data, and it can serve to curate neuroscience data for searchable archives.

Key words: BRAIN initiative; brain science; data acquisition; data archive; queries

Significance Statement

Neuroscience experiments generate heterogeneous data, and each lab typically stores its data and analy-
ses in their own idiosyncratic formats and organizations. We introduce an interface standard, the
Neuroscience Data Interface (NDI), that allows the user to specify these formats and organizations so that
data and analyses can easily be shared among labs or posted to journals and archives.

Introduction
Despite its importance, collaboration and sharing of

data and primary results is very difficult in the neuroscien-
ces, particularly for physiology experiments. At present,
physiology experiments are usually performed on custom
experimental rigs that acquire data in unique, creative,
and idiosyncratic ways. Neurophysiology or neuroimaging
rigs often employ several pieces of equipment from differ-
ent eras of time and with vastly different degrees of engi-
neering refinement. Each data acquisition (DAQ) device

on a rig usually has its own sampling rate, clock, and
means of storing data to disk. On top of this physical het-
erogeneity are at least two types of digital heterogeneity:
the digital format of the data, that typically varies from de-
vice to device, and the organization of data and metadata
into files or folders, that differs greatly from device to de-
vice and from lab to lab.

Received February 19, 2021; accepted January 10, 2022; First published
January 24, 2022.
The authors declare no competing financial interests.

Author contributions: D.G.M., Y.Zhu., O.S.R., Z.W., O.P., and S.D.V.H.
designed research. D.G.M., Y.Zhu., K.Z., S.C., Z.W., L.M., A.W.H., M.R.K., and
S.D.V.H. performed research; D.G.M., Z.C.K., D.I.S., V.M.S.C., Y.Zha., L.M.,
and S.D.V.H. analyzed data; S.D.V.H. wrote the paper with input from all
authors.

January/February 2022, 9(1) ENEURO.0073-21.2022 1–18

Research Article: Methods/New Tools

https://orcid.org/0000-0002-1112-5832
https://doi.org/10.1523/ENEURO.0073-21.2022


While the current state of affairs allows for significant
creativity on the measurement side of experiments, it
presents substantial challenges for data analysis and its
reproducibility. Most laboratories cannot analyze the data
of other laboratories without perhaps a month or more of
effort writing conversion software (Teeters et al., 2008;
Garcia et al., 2014; Wiener et al., 2016; Rübel et al., 2019;
Sprenger et al., 2019). This barrier has meant that most
labs or investigators write their own analysis software that
they test themselves in only a limited manner. Further, this
barrier impedes the development and utility of common,
best-of-breed analysis packages that are dedicated to
analyzing certain classes of data (Wiener et al., 2016).
There are some important efforts to develop file format
standards (Teeters et al., 2015; Rübel et al., 2019) that, if
followed, would allow for the development of these pack-
ages. However, these standards typically require users
to first convert their data into the common format, which
is itself a barrier to adoption. Heretofore, these packages
have been used by relatively few labs, although this sit-
uation is improving. It would be ideal to have a tool that
allows an analyst to quickly read and analyze data re-
gardless of whether it is organized idiosyncratically or
stored in standardized container formats.
Here, we introduce a new approach that allows the de-

velopment of common analysis tools without requiring a
common file format: a Neuroscience Data Interface (NDI).
The interface provides a standard means of specifying
and addressing the data that are collected in neuro-
science experiments. At the highest level, the interface
provides a vocabulary and conceptual framework for
specifying recordings and analyses. At the implementa-
tion level, the interface contains an extendable set of
open-source code and interface standards for reading
from a variety of data formats and for specifying the man-
ner in which the experimental data are organized on disk.
The interface is platform and computing language inde-
pendent. The interface includes a scalable database for
storing results of calculations on the raw data, and user-
designed or commercial applications can read and write
from the database to build complex, layered analyses.
These database entries are specified using platform-inde-
pendent metadata that is human and machine readable,
and database entries can exist on a user’s computer or in
the cloud. NDI is designed to serve analysts who want to
be able to quickly read data from a variety of collabora-
tors; if it were widely adopted by the community, it also

has the capability to act as a data curation and archive
system for neuroscience data.
In this article, we demonstrate the interface in a

MATLAB prototype. Our purpose here is not to showcase
a completed system that works at scale, but is instead to
propose a solution to the scientific problem about the
level of abstraction that is most useful for wide scale cura-
tion and sharing of neuroscience data that allows for the
development of common tools. We view this as an impor-
tant scientific problem at the boundaries of computer sci-
ence, library science, and neuroscience.

Materials and Methods
Design of the interface
The neural data interface in its current formwere designed

and revised over the course of fiveyears. The conceptual
framework of the system was developed through discus-
sions with Brandeis neuroscience and computer science
graduate and undergraduate students. The system began
from a Laboratory Information Management System (LIMS)
in the Van Hooser Lab and was rebuilt twice from scratch
to incorporate necessary features and simplify the in-
terface and external concepts.
The interface was prototyped in MATLAB (TheMathWorks)

(see Table 1). and is available at https://neurodatainterface.
org. The website provides installation instructions and several
tutorials that demonstrate how to use NDI. NDI was used ex-
tensively to analyze the data of Roy et al. (2020), and NDI was
revised and debugged as necessary to allow a full pipe-
line analysis. In addition, the process of developing tu-
torials for user feedback also identified unnecessary
complexity and bugs that were revised or simplified.
Third party libraries such as sigTOOL (Lidierth, 2009;
https://sourceforge.net/projects/sigtool/) are exten-
sively used to read a variety of data formats. Functions
in NDI also depend on the Van Hooser Lab toolbox
http://github.com/VH-Lab/vhlab-toolbox-matlab and a
set of third-party tools: http://github.com/VH-Lab/
vhlab-thirdparty-matlab.
The code for reading data from the Marder, Angelluci,

and Katz Labs is included in the distribution in the ndi.set-
ups package.

Results
Concepts and vocabulary: probes, subjects, elements,
DAQ systems, and epochs
Before designing a software interface to experiments, we

first sought to codify the elements of an experiment using
easy concepts and defined terms, in an effort to take inspi-
ration from the graphical user interfaces developed by
Xerox PARC and Apple. We define a probe to be any instru-
ment that makes a measurement of or produces a stimulus
for a subject. Probes are part of a broader class of experi-
ment items that we term elements, which include concrete
physical objects like probes but also inferred objects that
are not observed directly, such as neurons in an extracellu-
lar recording experiment, or abstract quantities, such as si-
mulated data, or a model of the information that an animal
has about a stimulus at a given time. Each element must

This work was supported by the National Institutes of Health BRAIN Grant
MH114678.
Acknowledgements: We thank members of the Van Hooser Lab and the

Brandeis systems neuroscience community for comments. We also thank Eve
Marder’s Lab, Alessandra Angelucci’s Lab, and Don Katz’s Lab for sharing
data for demonstration purposes.
Correspondence should be addressed to Stephen D. Van Hooser at

vanhooser@brandeis.edu.
https://doi.org/10.1523/ENEURO.0073-21.2022

Copyright © 2022 García Murillo et al.

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Research Article: Methods/New Tools 2 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org

https://neurodatainterface.org
https://neurodatainterface.org
https://sourceforge.net/projects/sigtool/
http://github.com/VH-Lab/vhlab-toolbox-matlab
http://github.com/VH-Lab/vhlab-thirdparty-matlab
http://github.com/VH-Lab/vhlab-thirdparty-matlab
mailto:vanhooser@brandeis.edu
https://doi.org/10.1523/ENEURO.0073-21.2022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


have a subject, which can be an experimental subject or an
inanimate object like a test resister. We define a DAQ sys-
tem as an instrument or a set of instruments that digitally re-
cords the measurements or the stimulus history of a probe.
These DAQ systems record data from probes each time the
DAQ systems are switched into record mode, and we use
the term epoch to signify each of these recording periods.
The conceptual framework of the interface is applied to

a simple experimental situation in Figure 1. Here, a probe
(an extracellular electrode) is used to record activity in the
cerebral cortex of a subject, a ferret. The probe is wired to
a DAQ system (data acquisition system; DAQ), that is
turned on and off three times, resulting in three epochs of
sampled probe data that is saved to disk. The probe has
been given the name cortex and a reference number of 1
in metadata, in this case provided by the user.
In this framework, a large variety of experimental appa-

ratus are considered probes. Examples of probes that
make measurements include a whole-cell pipette, a
sharp electrode, a single channel extracellular electrode,
multichannel electrodes with either known or unknown
geometries, cameras, two-photon microscopes, fMRI
machines, nose-poke detectors, EMG electrodes, and
EEG electrodes. Examples of probes that provide stim-
ulation are odor ports, valve-driven interaural cannulae,
food reward dispensers, visual stimulus monitors, audio
speakers, and stimulating electrodes.
In an experiment, we also deal with items that we do

not observe directly, or abstract items, or simulated data.
We term all of these items as experiment elements (avoid-
ing the term “object” to minimize confusion with the soft-
ware objects in the implementation). An example of an
inferred element is the activity of a neuron derived from an
extracellular recording. We do not observe the neuron di-
rectly, so while we have some certainty that it corre-
sponds to a physical entity, this is really an inference, and
different analysts may disagree as to whether it exists.
Another type of quantity that we may wish to use in our
analysis is a model, such as a calculation of the informa-
tion that the animal has about a stimulus at a given time.
Moreover, we may wish to generate artificial data or simu-
lated data that will go through the same pipelines as ex-
perimental data. Thus, experiment elements encompass
a broad class of items, including probes.
To read the data generated by a probe, NDI must ac-

cess data from the DAQ device or devices that recorded
the probe, which we term a DAQ system. A DAQ system
can either be a single DAQ, such as a DAQ device made
by a major company, or it can describe the collective re-
cordings of a set of these systems, such as a home-brew
system that might use a few DAQ devices at a time. In our

own lab, our visual stimulation system relies on data from
two DAQs (our stimulus computer and a multifunction
DAQ that records digital triggers), but logically these are
treated together as a single DAQ system in NDI (Fig. 1).
Each time a DAQ system is switched on and off, an

epoch of data is logged. The epochs are numbered (1, 2,
etc.) and assigned a unique identifier that never changes,
so that the epoch can be unambiguously referenced even
if other epochs are added or deleted later. It is also neces-
sary to specify, for each epoch, the mapping between any
probes that are present and the channels of the DAQ sys-
tem that correspond to the probes. Commonly, this infor-
mation must be specified manually using a data type that
we have created, but some multifunction DAQs (such as
SpikeGadgets MFDAQs) and file formats include this
epoch metadata in their native file formats, and this meta-
data can be processed from the files directly.
With a vocabulary to describe the real-world items in an

experimental session, we can describe the necessary
computational features of the interface (Fig. 2). While the
specification of the probes, subjects, elements, DAQ sys-
tems, and epochs is sufficient to allow the interface to
read the data from the probes in the experiment, it would
be useful to the analyst and his/her collaborators to have
a space to store the results of analyses of this data. This
space is provided by the database (Fig. 2), which allows
the user to store any type of text or binary data related to
the experiment in entries called documents. For example,
one may have a document that stores the responses of a
neuron to a family of stimuli, and another document that
stores the results of a model fit of that neuron’s responses
to the stimulus family. Still another document might store
the aggregate statistics of the responses to all the neu-
rons in a given study. Documents in NDI have a human-
readable portion and the option of a binary blob, so that
they can be understood easily by humans and programs.
The interface with the database allows the creation of

an application ecosystem (Fig. 2) that can read the raw
data and read and write to the database. For example,
one common set of early analyses that must be performed
by physiologists examining extracellular data are to iden-
tify spike waveforms from the raw data and to make an in-
ference as to which spike waveforms arise from the same
neuron(s). The NDI document schema specifies a docu-
ment type that includes common spike detection parame-
ters, including threshold algorithm, filter frequencies, the
amount of time around each spike to extract, refractory
period, etc. These parameters can be used by a variety of
spike extraction applications, including the example
“spikeExtractor” app shown in Figure 2 but also other re-
lated applications that may be developed. There is also a

Table 1: Key resources table

Reagent type Designation Source or reference Identifiers Additional information
Software MATLAB The MathWorks RRID:SCR_001622 Software language
Software GitHub GitHub RRID:SCR_002630 Software repository
Software Python3 https://www.python.org/ RRID:SCR_008394 Software language
Software sigTool https://sourceforge.net/projects/sigtool/ Lidierth (2009) Open-source software product
Software Neo http://neuralensemble.org/neo/ RRID:SCR_000634 Open-source software product

Research Article: Methods/New Tools 3 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org

https://scicrunch.org/resolver/SCR_001622
https://scicrunch.org/resolver/SCR_002630
https://www.python.org/
https://scicrunch.org/resolver/SCR_008394
https://sourceforge.net/projects/sigtool/
http://neuralensemble.org/neo/
https://scicrunch.org/resolver/SCR_000634


document schema for storing extracted spike waveforms
and the spike times, and another schema for spike shape
features. These documents can be used by spike sorting
applications, such as the example “spikeCluster,” to pro-
duce assignments of spikes to clusters. One can imagine

another application that automatically performs neuron
assignment from these clusters (“autoSpikeSort”), and so
on. The document schemas are flexible and expandable,
but must contain certain fields that applications can count
on being present. In this way, developers and scientists

Figure 1. A vocabulary for neuroscience experiments that forms the basis of the NDI. Top left, An example experiment. A probe is
any instrument that can make a measurement from or provide stimulation to a subject. In this case, an electrode with an amplifier is
monitoring signals in cerebral cortex of a ferret and the electrode is a probe and the ferret is a subject. A DAQ system is an instru-
ment that digitally logs the measurements or stimulus history of a probe. In this case, a DAQ is logging the voltage values produced
by the electrode’s amplifier and storing the results in a file on a computer. An epoch is an interval of time during which a DAQ sys-
tem is switched on and then off to make a recording. In this case, three epochs have been sampled. The experiment has additional
experiment elements. One of these elements is a filtered version of the electrode data. A second element is a neuron, whose exis-
tence and spike times have been inferred by a spike analysis application and recorded in the experiment. Bottom, In NDI, a wide va-
riety of experiment items are called elements, of which probes are a subset. Examples of probes include multichannel extracellular
electrodes, reward wells, two-photon microscopes, intrinsic signal imaging systems, intracellular or extracellular single electrodes,
and visual stimulus monitors. Other elements include items that are directly linked to probes, such as filtered versions of signals, or
inferred objects like neurons whose activity are inferred from extracellular recordings or images. Still other elements have no physi-
cal derivation, such as artificial data or purely simulated data; nevertheless, we want to be able to treat these items identically in
analysis pipelines. Finally, elements might be the result of complex modeling that depends on many other experiment elements,
such as an inferred phenomenological model of the amount of information that an animal has about whether a stimulus is a grating.
Top right, DAQ systems digitally record probe measurements or histories of stimulator activity. In NDI, DAQ systems are logical enti-
ties, which could correspond physically to a single DAQ device made by a particular company (top), or a collection of home-brewed
devices that operate together to have the behavior of a single DAQ device (bottom). In the bottom example, information from an
electrode probe and digital triggers from a visual stimulation probe are acquired on a single DAQ device, but digital information
from both systems (in separate files) is needed to fully describe the activity in each epoch.

Research Article: Methods/New Tools 4 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org



can write applications that perform a particular job well,
and mix and match their desired applications. The data-
base and document schema allows for powerful collabo-
ration across applications, and allows for a healthy
competition and interchangeability among applications
that perform similar jobs.
The database is also designed to allow for the curation

and examination of neuroscience data and computations
at scale. Because each database document contains the
identifier of the experimental session, the documents can
be combined and searched across the cloud so that data
and analyses from multiple experiments can be queried,
allowing third parties to easily perform analyses or meta-
analyses of a wide variety of experimental data.
The interface is also meant to be used in a similar man-

ner during on-line evaluation of data and off-line evalua-
tion of data. The data are addressed in the same manner
regardless of whether it has been acquired in the last few

seconds or a long time ago. This design choice has the
advantage that all applications can be used on-line or
off-line, and removes the necessity of any second “cura-
tion” step before making data available to the world on a
data archive. The data can be curated live, during the
experiment.

Implementation, high level
The NDI is both an idea, as described above, and an evolv-

ing open-source software product that implements the con-
cepts. The current software implementation of NDI has two
layers: a high-level layer of core objects that are described
here, and a low-level of objects that implement the details of
the high-level objects. The separation between the high-level
and low-level objects has been made so that the external in-
terface of NDI can be stable, while the open-source products
that implement file reading or the database can be switched

Figure 2. An overview of the NDI. Top left, The physical experiment from Figure 1. A probe (electrode) is used to sample data from
the visual cortex of a subject ferret. A DAQ system digitally logs the measurements. Three epochs of data have been recorded by
the DAQ system. Top right, An experiment session is contained in a software object that has a link to the raw data (red), an internal
set of NDI objects that have information about DAQ systems and synchronization methods (green), and link to a database (dark
blue). Upon creation, each ndi.daq.system object is provided with an ndi.file.navigator object, which is a parameterized set of in-
structions for locating the raw files or links that contain the data for a given epoch. Therefore, the same ndi.daq.system can manage
data that is organized into epochs on disk according to different schemas. Metadata associated with each epoch, in a type called
ndi.epoch.epochprobemap, specifies the probes that are present in each recorded epoch and indicates the probe’s name, a unique
reference, and the channel mapping between the ndi.daq.system and the probe. This data can be added manually by the user or
analyst, or can be read from the epoch data files if the ndi.daq.system’s data format or a LIMS encodes this information. The data-
base stores documents, which are platform-independent representations of analyses, analyses of analyses, and NDI internal ob-
jects. Bottom right, Applications can use NDI to read raw data and read the results of previous analyses from the database and
write the results of new analyses back to the database as documents. The database and documents therefore support the con-
struction of pipelines that may be linear or integrated. Applications are free to focus on single analysis problems instead of the raw
data format or organization of their input.

Research Article: Methods/New Tools 5 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org



in and out over time without greatly impacting the user/ana-
lyst’s use of the interface. The high-level interface is intended
as a sort of “neural data operating system” on which GUIs
and other programs can build, but the core of NDI does not
define any particular graphical user interface or stipulate the
use of any particular underlying database product.
The goal of this paper is to describe the high-level ob-

jects in brief so that the ideas of the interface can be dis-
cussed or criticized. This paper is not meant to serve as a
software tutorial. For tutorials on using the software with
neuroscience data, please see the repository of our cur-
rent software at http://github.com/VH-Lab/NDI-matlab.

Reading from DAQs: ndi.daq.system
An ndi.daq.system object is a means of addressing and

reading the files that are stored by the DAQ devices that com-
prise a DAQ system. Different high-level subclasses of ndi.
daq.system allow the user to read from multifunction DAQs
(with analog and/or digital channels and sampling rates: ndi.
daq.system_mfdaq), from imaging systems (with image
channels and frames: ndi.daq.system.image), or from stimu-
lus systems (with events and parameters: ndi.daq.system.
stimulus).
All ndi.daq.system objects rely on 2 key software ob-

jects that determine the ndi.daq.system object’s input
and output. The first of these is an ndi.file.navigator
object, which allows the user to specify, with a few pa-
rameters, how the system should search for the files
that correspond to each recording epoch. Figure 3
shows how different parameters and subclasses of the
ndi.file.navigator class can be used to navigate the dif-
ferent file organization schemas of different labs. Once
the files are found, another software object, the ndi.
daq.reader, provides the services for reading data
from the particular file formats that comprise the
epochs.

Reading from probes: ndi.element and ndi.probe
When an analyst thinks of a probe such as an electrode,

he or she might think of the probe as having the properties
of the DAQ that records it. For example, we may want
to talk about the channels of the electrode, and even cas-
ually speak of the “sampling rate” of an electrode despite
the fact that it is the DAQ system that directly has a sam-
pling rate, not the electrode. The ndi.element class, of
which ndi.probe is a member, allows one to address the
probe or element directly, without regard to the DAQ sys-
tem that acquired it, which is handled behind the scenes
by NDI. In order to define a probe, it is necessary to func-
tionally define, for each recording epoch, a map between
the channels of the ndi.daq.system and the ndi.probe
object. This can be done manually with the class ndi.
epoch.epochprobemap, or can be specified in the data
files directly if the DAQ system allows it. As shown in
Figure 4, probes can be read by analysis programs with-
out any direct concern about the underlying DAQ sys-
tems that were employed.
The ndi.element class allows many types of data to be

treated similarly by software programs. For example, all
time series in NDI are members of a subclass called ndi.

element.timeseries, which can include artificial (test) data,
modeled data, filtered data, and so on. In Figure 5, the
user has created two ndi.element.timeseries objects from
a recording from a sharp electrode: one of these elements
represents the membrane voltage where the spikes have
been removed by a median filter, and the other represents
the the spiking activity of the cell that is recorded by the
sharp electrode. These ndi.element.timeseries objects
can be passed along to an analysis application (here,
our built-in applications ndi.app.tuning_response and
ndi.app.oridirtuning). The epochs of both of these ele-
ment objects are linked back to epochs in the probe,
which are in turn linked to the epochs of the DAQ sys-
tem, so that time relationships between other systems,
such as the visual stimulus system, are automatically
understood for all of the element objects derived from
probes.

Clocks and time: ndi.time.clocktype, ndi.time.
timereference, ndi.time.syncgraph, ndi.time.syncrule
One of the biggest challenges in experiments that in-

volve multiple DAQ systems is synchronizing time across
devices that have different clocks. In general, DAQ devi-
ces do not share the same clocks: the current time re-
ported by each device will differ from others at any given
time, and the drift rate of these clocks differs very slightly
in a matter that may alter the timing of samples in long re-
cordings. Many current data standardization schemas
sidestep this issue and simply insist that the user must
convert all times into a standard clock, and NDI is rare in
building clocks and synchronization into the interface.
NDI defines several types of clocks (ndi.time.clocktype).

The most common type of clock is “device local time”
(dev_local_time), which means that a DAQ system has a
local clock that, for each epoch, starts a time t0 and ends
at a time t1. In most cases, t0 is 0, and t1 is the duration of
the recording. Some devices may further keep a “device
global” time, so that the device has a sub-millisecond re-
cord of the relationship between the t0 of a given record-
ing epoch and the t0 of a second recording epoch on the
same device, but this is unusual. We also define the pos-
sibility that a device has a record of some “global experi-
mental time” or that it keeps “universal controlled time”
(UTC).
As analysts, we would like to be able to refer unambigu-

ously to a time t on the clock of a given DAQ system, and
effortlessly know the corresponding time t’ on the clock of
another DAQ system. Therefore, built into every call to the
function readtimeseries, which reads data from a time ti to
a time tj from an ndi.element, ndi.probe, or ndi.daqsys-
tem, is an input that specifies the time reference (ndi.time.
timereference) being used. ndi.time.timereference objects
include the referent (the ndi.element, ndi.probe, or ndi.
daqsystem being referred to), the clock type, an epoch id
(if the ndi.clocktype is dev_local_time, which is most com-
mon), and an offset time.
The system is illustrated in Figure 4. Here, the user

reads samples from a sharp electrode probe using readti-
meseries, which returns the time reference that was used.
Next, the user wants to extract stimulus times from the
visual stimulus probe, which has a different clock. The

Research Article: Methods/New Tools 6 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org

http://github.com/VH-Lab/NDI-matlab


user simply passes the time reference object that was re-
turned from the sharp electrode probe to the readtimes-
eries call to the visual stimulus probe, and NDI converts
the input and output times appropriately so that the out-
put returned is relative to the sharp electrode probe’s
clock.
The interface solves these conversions from a given

clock to another clock by computing paths through a di-
rected graph that contains all recorded epochs as nodes
and the mappings between epochs as edges. The object
that performs this computation is called ndi.time.sync-
graph. The mappings across epochs recorded on differ-
ent DAQ systems are typically calculated by examining
recordings of the same signal (such as a set of digital trig-
gers) on both DAQ systems. One can also specify rules of

synchronization (ndi.time.syncrule) among devices, and
ndi.time.syncgraph will automatically calculate possible
mappings from its set of ndi.time.syncrule objects and
solve the paths through the graph. An ndi.time.syncrule
might specify the channels of two DAQ systems that re-
cord digital triggers in common, or might specify that two
DAQ systems have the same clock if one of their data files
is shared between the two systems (such that the same
DAQ hardware is being used in service of two DAQ sys-
tems). Sometimes, if DAQ systems were not used simulta-
neously, or if there is no ndi.time.syncrule, there is no
known mapping between different epochs. For example,
if a DAQ system only has a local clock, then we usually do
not understand the time relationship between subsequent
epochs of that system (and usually there is no need to

Figure 3. DAQ systems allow an analyst to read data in a variety of formats and with a variety of file organizations on disk or in the
cloud. All labs begin by initializing the main data management object, an ndi.session. A, In lab 1, data from an ACME DAQ device
(.acme files) is organized in a single, flat directory. With a search parameter (the regular expression.*\.acme\.), an ndi.file.navigator
object is instructed how to find the data for each epoch. The file for epoch 2 is requested and shown. B, In lab 2, data from a home-
brewed configuration using an ACME DAQ device that writes .acme files and a custom stimulation system that writes .stim files are
organized in a single DAQ system. In this lab, data from individual epochs are contained in subdirectories. A subclass ndi.file.navi-
gator.epochdir is used to restrict epochs to the contents of subdirectories, and the search parameters indicate that an epoch must
have both a. acme file and.stim file to be valid. C, Lab 3 uses an integrated file format, such as that from SpikeGadgets. D, After set-
ting up the DAQ systems, data for all the labs is read using the same code, E, which is independent of the file format or the organi-
zation on the disk or server.

Research Article: Methods/New Tools 7 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org



understand this relationship). Example cases of synchro-
nization relationships are shown in Figures 6, 7, and a
demo of using ndi.time.syncgraphis shown online in
Tutorials 2.1–2.5.

Database, documents: ndi.database and ndi.
document
All of the interface that we have described so far is nec-

essary for reading raw electrophysiology or imaging files, but
does not allow the user to store the results of analysis in a
convenient and well-documented manner. For this purpose,
each experiment is linked to a database that can, in principle,
be running on the local computer or in the cloud. The data-
base class ndi.database provides standardized meth-
ods for adding documents to the database that
conform to a validated, open schema, searching the
database, and removing documents from the data-
base. As of this writing, the online version of NDI-
MATLAB offers a database using a file system on the
local computer, and subclass implementations of ndi.
database that allow cloud access using Postgres and
MonogDB are in early testing.
The fundamental unit of the database is the document,

which is implemented by the software class ndi.docu-
ment. All documents include a core structure of fields that
describe the unique identifier of the experiment session,
the unique identifier of the document, the time of creation,
the schema of the document, and a history of how the docu-
ment was created so that the calculation can be traced back
to the raw data or antecedent computations in other

documents. Document schemas are specified in a platform
independent, human-readable format so they can be read
and interpreted on any platform and be read and understood
by human readers easily. Document classes can be com-
posed so that one can build documents that refer to common
elements (such as epoch ids or app properties) in a consist-
ent manner across documents (Fig. 8). Dependencies among
documents can also be expressed so that relationships
among documents in a pipeline are clear. Finally, each docu-
ment has its own binary stream that can be used to store
large binary data.
Note that the idea for an extendable, local-based or

cloud-based database of this type is not new. For exam-
ple, the open-source program DataJoint (Yatsenko et al.,
2015) uses a similar design, although the underlying data
are organized into smaller units called tables rather than
documents. The tables in DataJoint are similar to the sub-
structures of NDI documents.

Analysis pipelines: ndi.app and ndi.query
To understand the power of the interface and the poten-

tial app ecosystem, it is useful to examine a simple analysis
pipeline. In this pipeline, we will use a simple spike detec-
tion app that is included in the base distribution of NDI
called ndi.app.spikeextractor to detect spikes in sharp elec-
trode data, and then user code to plot the spike shapes.
The steps of the code that produces the pipeline are il-

lustrated in Figure 9, along with the database documents
that are produced at each step. First, the user opens an
experiment session and identifies the sharp electrode

Figure 4. Probes. A, When probes are defined by providing (B) a mapping between the channels of the probe and the channels of
the DAQ system, the data can be read through direct calls, and NDI manages the necessary calls to the DAQ systems. C, Code
snippet that loads probe objects for a visual stimulus system and a sharp electrode, and reads time series data from the sharp elec-
trode probe. The code returns a time reference for the sharp probe’s epoch, and that reference is used to request a time series with
the corresponding time intervals from the visual stimulus system (although the systems likely do not have the same clocks). D, The
raw data and stimulus information are plotted together.

Research Article: Methods/New Tools 8 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org



data for each epoch. The data here has been normalized
by subtraction so that the voltage activity during the pre-
ceding interstimulus interval (blank screen) is 0. Then, the
user creates an instance of the application ndi.app.spi-
keextractor (step 1), builds a document that has a set of
parameters that the app will use in identifying spikes, and
adds this document to the database (step 2). Next, the
user calls the app’s extract method to find and extract the
spike data from the element; the results of the extraction,
including spike times and spike shapes for each epoch,
are added to the database as a document (step 3).
To see what results have been computed, it is necessary

to search the database for the analysis documents that cur-
rently exist. The database documents can be queried with a
search object called ndi.query, which allows the user to
performmany types of searches. For example, the user can
search any text field for several types of matches (exact,
partial, regular expression match) or search any number
field for several types of matches (equal to, greater than,
less than, etc.). The user can also search for documents of
specific types, membership in a particular session, and
search for documents that “depend on” specific other
documents. Figure 10 shows a short example of the user
using ndi.query to check for the existence of a spike extrac-
tion document for a particular ndi.element object, and then,
if one is found, plotting the spike waveforms.
Developing pipelines in NDI becomes a task of writing

small programs that read raw data and/or existing

database documents, perform computation, and write re-
sults back to the database in the form of new documents.
The documents exhibit a beautiful structure when plotted as
a graph with nodes corresponding to documents and edges
corresponding to dependencies among documents. A repre-
sentative graph from an experimental session in the study by
Roy et al. (2020) is shown in Figure 11. Online tutorials at
https://neurodatainterface.org showcase four applications
and how to use themwith NDI.

Implementation, lower level
The software product implementation of the interface is

currently released in MATLAB (Materials and Methods).
The low-level database implementation is only a slow pro-
totype, and is currently being modified to use external
SQL databases to allow the system to be used at a larger
scale. Database documents in the prototype are JSON-
based (with a binary blob) but will have stricter typing as
the external database options come online. The system
has been used to analyze data for a paper (Roy et al.,
2020) and will be tested with data from other labs in 2021.
The software product is continuously updated on GitHub
(see Materials and Methods).

Case studies, reading data frommany labs
How easy or difficult is it to read data from other labs in

NDI? We present in Figure 12 an example of reading data

Figure 5. ndi.element objects allow different types of data to go through identical analysis pipelines. Code that reads (A) and plots
(B) time series data from 2 ndi.element objects derived from a single sharp electrode probe: voltage membrane data where spikes
have been “chopped” out with a median filter (top) and thresholded spike data (bottom). C, The objects can be sent through analy-
sis applications identically and the same type of summary data generated and plotted. D, Orientation and direction tuning curves
for the subthreshold membrane voltage and spiking activity of the same cell. Note that filtered data, modeled data, or artificial test
data can be sent through the same analysis pipelines with ndi.element.

Research Article: Methods/New Tools 9 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org

https://neurodatainterface.org


from three laboratories: the Marder Lab at Brandeis
(Hamood et al., 2015), the Angelucci Lab at the University
of Utah (E. Marder, A. Angelucci, D. Katz, unpublished
data), and the Katz Lab at Brandeis (Mukherjee et al., 2019).
The Marder lab recorded signals from the stomatogastric

ganglion of the crabCancer borealis. The lab used a common
DAQ (Spike2 software from Cambridge Electronic Design),
and the data can be specified by creating an ndi.daq.system
with the ndi.daq.reader.mfdaq.cedspike2 reader and describ-
ing where the files for different epochs are found on disk
using an ndi.file.navigator object. It requires only three in-
structions (Fig. 12A) to create the ndi.daq.system once, and
this ndi.daq.system can be used over and over again to ac-
cess all the data from the experiments in the Hamood et al.
(2015) study and many current and past experimental ses-
sions in theMarder lab.
The Angelucci lab recorded 96-channel data from a Utah

array in the marmoset (A. Angelucci and A. M. Clark, unpub-
lished data). The Angelucci lab used a commercial DAQ (from
Blackrock Microsystems) and, like many visual labs, use their
own visual stimulus system. The Angelucci stimulus system
stores its files in MATLAB with a time clock that matches the
Blackrock Microsystems time clock. For this data, we had to
follow a template to make a customized stimulus metadata
reader (15 lines of code from a template), and it took six in-
structions to specify the two ndi.daq.system objects needed
to access the Utah array data and visual stimulus parameters
and timing data (Fig. 12B).

The Mukherjee data (2019) included several probes in
rat, including dual 32-channel electrode arrays that re-
corded gustatory cortex bilaterally, dual optical fibers
that ontogenetically manipulated activity in gustatory
cortex bilaterally, dual EMG electrodes for observing
licks and gapes, and intraoral cannulae for delivering
tastants directly to the tongue. The Katz Lab used a
commercial Intan Technologies multifunction DAQ,
and the code that specifies the ndi.daq.system takes
just six instructions. Again, this ndi.daq.system is
made once and can be re-used by other members of
the Katz Lab (Fig. 12C).
Thus, an analyst who receives data from another lab, re-

gardless of whether that data are packaged in a standard
format such as NWB or in custom formats, can gain easy
access to the data of other researchers and begin analy-
ses the same day using software that follows the NDI con-
ventions, including apps and custom code. Data that is
passed on as an ndi.session can be immediately read by
other researchers.

Discussion
We have designed an NDI that greatly reduces the bur-

den of analyzing datasets from other labs. The interface al-
lows an analyst to quickly address data that is acquired in a
variety of formats and stored with a variety of organization
schemes on disk. It provides tools for time synchronization
across DAQs, and allows experimental probes to be

Figure 6. Epochs and ndi.time.syncgraph. Illustration of an example experiment with two ndi.daq.system objects (elec_mfdaq and
vis_stim_daq) that are each connected to a probe (elec_probe and vis_stim_probe, respectively). The DAQ systems have their own
clocks that are not linked to any global time system. Three epochs have been recorded by each DAQ system. The electrode probe
has been analyzed and an ndi.element object (a neuron, elec_neuron) has been created from it. The clock and time of each of the
epochs for the neuron is inherited from its underlying probe, which is in turn inherited from the underlying DAQ system. The two
DAQ systems each record the same set of digital triggers, and ndi.time.syncgraph has used its list of ndi.time.syncrule objects to
compute a mapping (ndi.time.timemapping) between epochs of those DAQ systems. Time can be converted between epochs that
are recorded simultaneously on the two DAQ systems, but we do not know how the other epochs are related to each other, or how
any epoch is related to a global time system like UTC, shown below.

Research Article: Methods/New Tools 10 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org



addressed directly by the analyst, while the interface per-
forms the necessary reading from underlying DAQ systems.
The interface contains a database that allows experiment ob-
jects, analyses, and analyses of analyses to be stored as
documents, enabling the development of an application eco-
system that performs analysis independently of the format or
organization of the underlying data. The results of the dataset
can be accessed widely by anyone using the interface, such
that the dataset and its analyses are curated for wide
distribution.

An interface with low barriers for curation and
exchange
This NDI offers several advantages relative to the cur-

rent neurophysiological data standardization approaches
of which we are aware. (1) NDI is grounded in concepts
and a vocabulary that is easy for noncoders and coders to
grasp. (2) NDI reads data in its native formats, so there are
no restrictions for experimental data collection other than
a requirement for using a logically consistent scheme
and, once, locating or writing an open-source reader for
each data type. (3) Reading native formats also offers the
significant advantage that the interface can be used re-
gardless of whether the lab performing the data collection
wishes or has the expertise to explicitly convert and cu-
rate their own data for analysis by others: an experienced

data analyst will be able to quickly analyze data using the
tools provided by NDI. (4) Reading native formats does
not preclude the development of excellent file formats,
and implementations of NDI can take partial advantage of
fast code created for existing or future formats. (5) There
is a database document framework so that users and ap-
plications can create and abide by document templates
for saved analyses, so that other users and applications
can read and interpret the results of classes of data analy-
ses in a consistent manner. (6) The database is scalable
and can exist on a user’s computer or in the cloud, and
data from multiple experiments can easily be combined in
the cloud to form large, searchable databases of neuro-
science data and analyses. (7) The database offers meth-
ods for auditing computations and analyses, such that the
code and raw data that underlie computations and analy-
ses can be fully tracked and reconstructed. Finally, like
many standardization efforts, we aim for the development
of an ecosystem of neuroscience analysis apps that will
improve reliability, reproducibility, and ease of discovery
through re-analysis of data by scientists or amateurs.

Why not simply a file format?
Why not simply require users to convert their data into a

common, standard file format? A standard file format pro-
vides several advantages. It provides a common target for

Figure 7. Epochs and ndi.time.syncgraph. Illustration of an example experiment similar to that in Figure 6, except that the vis_stim_-
daq DAQ system also keeps UTC time in addition to its own local clock. Here, time can be converted among any epoch because
there is a mapping between the epochs of vis_stim_daq and UTC, and there are ndi.time.timemapping mappings between the DAQ
system. The time in any epoch can be computed according to the clock of any other epoch, by solving the transformations in the
syncgraph. The mappings shown are ndi.time.timemapping objects built by (1) an ndi.time.syncrule; (2) inheritance (e.g., a probe in-
herits the epoch information of the DAQ system that acquired it); and (3) same units (UTC is a global time system).

Research Article: Methods/New Tools 11 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org



Figure 8. Illustration of ndi_documents and the creation of new classes of ndi_documents by composition. A, Document definitions,
with fields. Several document classes are created by composition: for example, the spikewaves type has its own fields plus those of
document classes ndi_document, ndi_epochid, and ndi_app. B, A specific spikewaves document from a database. The document
includes a description of the document definition, a unique ID and timestamp, the app that created it, the parameters that were
used, a link to the ndi.element that was analyzed and other parameters.

Research Article: Methods/New Tools 12 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org



Figure 9. Analysis pipelines build database documents. A, Code snippet that creates an instance of the NDI spike extractor app
(step 1), creates a document that contains the parameters to be used for spike waveform extraction (step 2), and extracts the spikes
(step 3). B, The database documents that are present at each step. Initially, the experiment has an ndi.daq.system, two probes (a
visual stimulus system and a sharp electrode), and an ndi.element that is a normalized version of the spiking activity. At step 2, a
document describing the parameters to be used for spike waveform extraction is added. At step 3, a document describing the ex-
tracted spikes is added.

Figure 10. Accessing analysis results involves querying the database with ndi_query. A, Code that uses a composition of ndi.query
objects to look for a document that meets the following criteria: (1) it is of ndi.document type “spike_extraction”; and (2) it depends
on the ndi_element variable named element_vmcorrected; and (3) it is from the session S. If it finds such a document, then it calls
the spike extractor’s method to return the spike waveforms w and the parameters wp, and spike times t. All spikes that have an
inter-spike-interval of 100 ms or greater are plotted, as shown in panel B.

Research Article: Methods/New Tools 13 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org



Figure 11. Graph structure of the database documents of an example experimental session, Roy et al. (2020) in NDI. A, linear list of
documents with IDs. B, Property view of a document that stores information about orientation and direction tuning. C, Full graph of
documents. Documents are denoted by nodes (blue or green circles), and arrows point from dependent documents to the docu-
ments that they depend on. In this graph, a is a visual stimulus monitor probe, and b, c are stimulus presentation documents that
describe the presentation of sinusoidal gratings in different directions. d, e are sharp electrode probes corresponding to two record-
ings of different impaled cells. f, g are documents describing the ndi.element objects of probe e where spikes are removed (f) and
where spike times are extracted (g). h is a document containing the stimulus responses of the spikes in g to the stimulus presenta-
tion in c. In i, these stimulus responses have been collated into a tuning curve. Finally, these responses have been examined to ex-
tract orientation and direction index values and to perform a double Gaussian fit, which are all stored in document j. D, Zoomed in
view of the document pipeline a–j.

Research Article: Methods/New Tools 14 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org



development for device manufacturers and for companies
and scientists writing analysis software. As the number of
channels on some devices become larger, it may be pru-
dent to include hardware in analysis, and a common for-
mat facilitates this process. Converting to a common file
format also puts the burden of solving the synchronization
of different devices outside the scope of the file format, as
common file formats such as Neurodata Without Borders
(NWB: Teeters et al., 2015; Rübel et al., 2019) require the
user to import data from various devices into the format,
and the scientist performing data analysis is freed from
considering these problems.

However, there are many reasons why, in our opinion, a
common file format should not be the only tool in our tool-
box. The first set of arguments against a common file for-
mat is technical in nature. We take it as a given that the
most appropriate way to store raw data from an acquisi-
tion device (or simulation) will vary according to the partic-
ular computational and hardware needs of the device,
and these needs may evolve in ways that we cannot imag-
ine at present. For example, the optimal way to compress
and store full 3-d voxel images from a calcium imaging
experiment involving a major portion of the macaque
brain (which may be possible in the future) may be very

Figure 12. With NDI daq readers and a few parameters, one can read many different types of experiments quickly and directly, with-
out file conversion. Subjects (green boxes), probes (blue boxes), and daq systems (red boxes) are shown. Wires and terminals indi-
cate connections of probes to subjects and daq systems. A, Activity of a central pattern generator measured in Eve Marder’s lab
[stomatogastric ganglion (STG) of the crab Cancer borealis; Hamood et al., 2015]. Electrodes on different nerves indicate the pyloric
rhythm that controls the movement of food into the crab’s stomach. The three instructions of code needed to specify the daq sys-
tem, modified on a template, are shown at right. Acquisition system was by Cambridge Electronic Design. B, Unpublished data
snippet from Alessandra Angelluci’s lab showing responses to visual stimulation that were recorded on a 96-channel Utah array im-
planted in a marmoset. Traces show spikes and numbers, and tick marks are visual stimulus identifier numbers. The six instructions
needed to set up the two daq systems are shown; another 15 lines were needed to build a custom stimulus reader (modified from a
similar reader). Acquisition system was by Blackrock Microsystems. C, An experiment by Don Katz’s lab (Mukherjee et al., 2019)
that explored the relationship between activity in gustatory cortex and whether a rat would choose to consume or expel a taste
stimulus delivered through interoral cannulae. The experiment also included optical fibers to optogenetically inhibit neurons projec-
ting to the gustatory cortex from the amygdala. Graph shows EMG recordings (green) indicating licking following sucrose delivery
and gaping following quinine delivery. Some inputs to gustatory cortex were inhibited just after quinine was delivered. The six in-
structions needed to express the daq system are at right. Acquisition system was by Intan Technologies. This figure shows how di-
verse experiments, with different formats and different file organizations, can be read through NDI by specifying only a few
parameters. Additional experiments of these types can be read with no new code.

Research Article: Methods/New Tools 15 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org



different from those required to store 3-d voxel images
from a 500� 500� 10mm cube. By specifying a common
interface standard but leaving the implementation to vary
from DAQ system to DAQ system, we gain most of the
benefits of a common file format without the liabilities of
imposing a particular storage structure. One may suggest
that one could always export the data from a device’s na-
tive format to a common file format, but one must remem-
ber that (1) this is an extra step for the experimenter,
and (2) this step could be prohibitively expensive (in
time) for experiments that require somewhat “online”
access to neural responses. Having direct read access
via a common reader interface allows the data to be ex-
amined “in place” in any file format. Our own experience
waiting an hour to convert a few minutes of 1000-chan-
nel recordings from a prototype acquisition system to
perform “online” analysis makes us very enthusiastic
about “in place” analysis.
A second set of arguments against a common file for-

mat relates to the ease of workflow for the scientists. Our
goal was to create a system that can be used at the time
of data acquisition. There should be no forced separation
between on-line and off-line analysis, so that one can de-
velop best-of-breed tools for either application that do
not depend strongly on the platform or devices being
used.
Finally, data curation is clearly a major burden, as there

exist file formats that could be used for exchange but very
few people use them, although this is improving. The re-
quirement of an extra step at the conclusion of analysis to
“export” the data are a barrier to adoption. In NDI, there is
no curation step, it is an inherent part of using the data
interface.
An interface can bring on board some of the best bene-

fits of an excellent file format, because an interface can
read from any file format. As excellent file formats (such
as NWB) are developed, interfaces such as NDI can still
read them, and these formats can be used as a target for
future development of hardware and software. The NDI
approach allows data from these sources to be integrated
easily with data from older devices, or newer devices that
use a different format for whatever reason (technical,
creative, or historical/idiosyncratic). NDI also allows ar-
bitrary time relationships among epochs to be specified
and navigated by the interface (local or global), so there
are no limits on the data that can be easily included and
referenced.

Stress points: the first DAQ system, ndi.daq.reader,
ndi.file.navigator
NDI was designed so that an experienced analyst can

specify only a few parameters about the file format (ndi.
daq.reader) and data organization (ndi.file.navigator) to
get started (Fig. 3). For most labs, this will entail a small
time investment by a user with coding experience to set
up the initial DAQ system for a lab, or less if the lab uses
file formats for which ndi.daq.reader objects are already
available. After this initial setup, a DAQ system definition
can be re-used as often as necessary, so a majority of lab
users will not need this initial expertise.

Comparisons and synergies with other efforts
This work builds on the experience and expertise of

past and current efforts to ease the sharing of data in the
neurosciences. A scholarly list of efforts to organize and
share neuroscience data are presented in Teeters et al.
(2015; their Table 1), and we will not attempt to enumerate
a list of all such projects here. Instead, we will draw com-
parisons with a few ongoing efforts.
The idea of an open-source system that can read a vari-

ety of file formats is not new. The MATLAB project sigTOOL
(Lidierth, 2009) and the Python-based projects Neo (Garcia
et al., 2014) and SpikeInterface (Buccino et al., 2020) are al-
ready capable of reading a wide variety of data formats,
and we are using the open-source libraries of sigTOOL,
Neo, and SpikeInterface extensively in our construction of
the MATLAB-based and Python-based versions of NDI. On
top of reading different file formats, NDI adds the ability to
deal with different file organizations and explicit manage-
ment of different time bases on top of managing different
file formats or collections. That is, in NDI, you specify a rule
that describes the arrangements of the files without explic-
itly instructing the software where each file is located. Neo
and SpikeInterface manage their raw data output in terms
of quantities that are similar to NDI’s epochs.
NWB is an ongoing effort to devise a file format for neu-

roscience data and analyses (Teeters et al., 2015; Rübel
et al., 2019). At present, it requires users to use or write
conversion software to save data into a single file that is
organized in HDF5 format and that employs a consistent
data schema. In NWB, there is no equivalent of the NDI
daq system; instead, users save what NDI calls probe and
element data directly to the file. The system also offers
spaces to save results of “processing” and “analysis.”
NWB does not allow for multiple time bases, which simpli-
fies the format greatly for the analyst, but it means that it
is difficult to specify situations where probes or other ele-
ments have time bases that can be only partially mapped
to each other (such as multiple synchronized devices that
have only local clocks and no way of mapping to a global
time). The format is at present very tied to a file system (1
file per session), although it can be used in conjunction
with databases like DataJoint. NWB continues to evolve
to broaden its functions and extension capability.
NWB and many other efforts use an HDF5 file format,

which offers some advantages but the notable disadvan-
tages that controlling versions is relatively difficult as is
accessing partial datasets in the cloud. Some of these
disadvantages can be overcome with approaches like
Exdir (Dragly et al., 2018), which offers all of the advan-
tages of HDF5 but without using a single file to store all
information.
Expipe (Lepperod et al., 2020) is another data model

that uses the easy object concepts of Projects, Actions,
and Entities to organize experimental data. It is a light-
weight approach that is highly customizable.
The document space of the NDI database has com-

monalities with the tables in the database DataJoint
(Yatsenko et al., 2015). For example, the document in
Figure 8 can be built by five related tables in DataJoint
(document classes ndi_document, ndi_epochid, ndi_app,
spikewaves, document_class). Different users may prefer

Research Article: Methods/New Tools 16 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org



the table arrangement of DataJoint or the documents of
NDI. We designed our documents independently of
DataJoint and noticed the similarities later. We think that
the document structure of NDI might be easier for non-
programmers to grasp and no more difficult for pro-
grammers to query, but the database forms share similar
forms, including the ability to have dependencies across
table entries or documents. Both DataJoint and NDI lend
themselves to the creation of exploration tools that allow
users to examine the analyses that have been run and the
creation of pipelines, compositions of analyses, that can
speed analyses and improve reliability and reproducibility.
At the other extreme of these approach is a curation-

free (or noncurated) database, such as that proposed in
an article by Cannon and colleagues (Cannon et al.,
2002). In such an implementation, there is minimal stand-
ardization and the data are downloaded from the original
investigators. While this approach has the advantage of
nearly eliminating the “curation” step, it does not easily
allow an app ecosystem. NDI allows the user to flexibly
specify the organization and format of their raw data, but
it is accessed through a fixed API.

Big challenge: a culture of digital annotation
Although NDI was designed to tackle the heterogeneity

of the digital organization of data, our own experience
and several colleagues have commented that another
barrier to analyzing the data of others is the lack of any
consistent digital annotation of data (Teeters et al., 2008;
Grewe et al., 2011; Wiener et al., 2016; Sprenger et al.,
2019). Often, the only copy of important metadata is writ-
ten in a physical notebook and is not expressed digitally.
Hopefully, as investigators see the utility of common anal-
ysis tools, the need to have consistent digital annotations
of data and metadata will become clearer and more in-
grained in experimental culture.

Big challenge: common database schemas for
analyses, analyses of analyses
As data interfaces allow more streamlined access to

data formats, a new problem arises: how do we read anal-
yses or analyses of analyses from other labs? The data-
base’s flexibility in creating new schemas and document
types is a double-edged sword. Imagine that one lab de-
velops a set of database documents that describes sev-
eral responses indexes that characterize the response of
a neuron to a class of stimuli. Now, imagine that another
lab develops its own set of database documents for the
same purpose, but gives the fields different names and
organizes these indexes into a different document set.
Someone doing a meta-analysis of data from the different
labs would either have to recompute the index values
from the raw activity of the neurons, or write analysis
code that would search the database for the document
schemas of both labs. For example, users are free to de-
sign their own schemas in DataJoint, NWB, NDI, odML, or
NeuroSys (Pittendrigh and Jacobs, 2003; Grewe et al.,
2011; Sobolev et al., 2014; Sprenger et al., 2019), but

there is no requirement that these schemas be similar or
be able to exchange with one another.
Efforts to standardize schemas for certain sub disci-

plines (such as visual physiologists, or cellular physiolo-
gists) could be quite useful, but will take time (Wiener et
al., 2016). In our opinions, the development of these sche-
mas has the best chance for broad adoption if they are
created independently of software implementation and
are not tied to any specific software product. Each soft-
ware tool may have its own particular advantages for cer-
tain applications, and it would be very powerful if users
could form queries that make sense across multiple tools.
If there were a standard list of metadata for common data
types, an interface or file format or database could say it
was “ACME 12345”-compliant (where ACME is the name
of the organization making the standard, and 12345 was
the version of the standard), and users could make com-
mon searches across these systems.
The field of fMRI is several years ahead of the physiol-

ogy and imaging communities in the development of
these systems (Cox, 1996; Saad et al., 2006; Gorgolewski
et al., 2016, 2017; Farber, 2017; Nichols et al., 2017;
Poldrack and Gorgolewski, 2017; Markiewicz et al., 2021).
Some of these approaches have been extended to sup-
port human EEG data in a similar manner (Holdgraf et al.,
2019; Pernet et al., 2019).

Summary
As experimentalists and theorists in neuroscience enter

the era of big data, it is necessary to lower barriers of data
exchange and to increase access and the ability to search
and aggregate data across labs and studies. Some labs
have already developed pipelines and tools for exchange
of neurophysiology and imaging data (Teeters et al., 2008,
2015; Yatsenko et al., 2015; Rübel et al., 2019), while the
great majority of labs and investigators still use custom or
idiosyncratic schemas. Data interfaces allow analysts to
quickly work with both types of data, greatly speeding collab-
orations thatmight otherwise be too cumbersome. Data inter-
faces also allow the development of best-of-breed tools that
focus on analysis rather than being burdened with the format
or organization of the underlying digital data. As more neuro-
scientists gravitate toward sharing data, utility and ease of
use will be important determining factors in adoption and the
degree to which users with different levels of computer exper-
tise (users, novice programmers, advanced programmers)
can do science with each system. NDI was designed to ad-
dress all these considerations through conceptual design
first, and implementation second, using an interface frame-
work that can reach back into the data of the past and into
the data of the future.

References

Buccino AP, Hurwitz CL, Garcia S, Magland J, Siegle JH, Hurwitz R,
Hennig MH (2020) SpikeInterface, a unified framework for spike
sorting. Elife 9:e61834.

Cannon RC, Howell FW, Goddard NH, De Schutter E (2002) Non-cu-
rated distributed databases for experimental data and models in
neuroscience. Network 13:415–428.

Research Article: Methods/New Tools 17 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org

http://dx.doi.org/10.7554/eLife.61834
https://www.ncbi.nlm.nih.gov/pubmed/12222822


Cox RW (1996) AFNI: software for analysis and visualization of func-
tional magnetic resonance neuroimages. Comput Biomed Res
29:162–173.

Dragly SA, Hobbi Mobarhan M, Lepperød ME, Tennøe S, Fyhn M,
Hafting T, Malthe-Sørenssen A (2018) Experimental directory
structure (Exdir): an alternative to HDF5 without introducing a new
file format. Front Neuroinform 12:16.

Farber GK (2017) Can data repositories help find effective treatments
for complex diseases? Prog Neurobiol 152:200–212.

Garcia S, Guarino D, Jaillet F, Jennings T, Propper R, Rautenberg
PL, Rodgers CC, Sobolev A, Wachtler T, Yger P, Davison AP
(2014) Neo: an object model for handling electrophysiology data in
multiple formats. Front Neuroinform 8:10.

Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP,
Flandin G, Ghosh SS, Glatard T, Halchenko YO, Handwerker DA,
Hanke M, Keator D, Li X, Michael Z, Maumet C, Nichols BN,
Nichols TE, Pellman J, Poline JB, et al. (2016) The brain imaging
data structure, a format for organizing and describing outputs of
neuroimaging experiments. Sci Data 3:160044.

Gorgolewski KJ, Alfaro-Almagro F, Auer T, Bellec P, Capot�a M,
Chakravarty MM, Churchill NW, Cohen AL, Craddock RC, Devenyi
GA, Eklund A, Esteban O, Flandin G, Ghosh SS, Guntupalli JS,
Jenkinson M, Keshavan A, Kiar G, Liem F, Raamana PR, Raffelt D,
et al. (2017) BIDS apps: improving ease of use, accessibility, and
reproducibility of neuroimaging data analysis methods. PLoS
Comput Biol 13:e1005209.

Grewe J, Wachtler T, Benda J (2011) A bottom-up approach to data
annotation in neurophysiology. Front Neuroinform 5:16.

Hamood AW, Haddad SA, Otopalik AG, Rosenbaum P, Marder E
(2015) Quantitative reevaluation of the effects of short- and long-
term removal of descending modulatory inputs on the pyloric
rhythm of the crab, Cancer borealis. eNeuro 2:ENEURO.0058-
14.2015.

Holdgraf C, Appelhoff S, Bickel S, Bouchard K, D’Ambrosio S, David
O, Devinsky O, Dichter B, Flinker A, Foster BL, Gorgolewski KJ,
Groen I, Groppe D, Gunduz A, Hamilton L, Honey CJ, Jas M,
Knight R, Lachaux JP, Lau JC, et al. (2019) iEEG-BIDS, extending
the Brain Imaging Data Structure specification to human intracra-
nial electrophysiology. Sci Data 6:102.

Lepperod ME, Dragly SA, Buccino AP, Mobarhan MH, Malthe-
Sorenssen A, Hafting T, Fyhn M (2020) Experimental pipeline (ex-
pipe): a lightweight data management platform to simplify the
steps from experiment to data analysis. Front Neuroinform 14:30.

Lidierth M (2009) sigTOOL: a MATLAB-based environment for shar-
ing laboratory-developed software to analyze biological signals. J
Neurosci Methods 178:188–196.

Markiewicz CJ, Gorgolewski KJ, Feingold F, Blair R, Halchenko YO,
Miller E, Hardcastle N, Wexler J, Esteban O, Goncavles M, Jwa A,
Poldrack R (2021) The OpenNeuro resource for sharing of neuro-
science data. Elife 10:e71774.

Mukherjee N, Wachutka J, Katz DB (2019) Impact of precisely-timed
inhibition of gustatory cortex on taste behavior depends on single-
trial ensemble dynamics. Elife 8:e45968.

Nichols TE, Das S, Eickhoff SB, Evans AC, Glatard T, Hanke M,
Kriegeskorte N, Milham MP, Poldrack RA, Poline JB, Proal E,
Thirion B, Van Essen DC, White T, Yeo BT (2017) Best practices in
data analysis and sharing in neuroimaging using MRI. Nat
Neurosci 20:299–303.

Pernet CR, Appelhoff S, Gorgolewski KJ, Flandin G, Phillips C,
Delorme A, Oostenveld R (2019) EEG-BIDS, an extension to the
brain imaging data structure for electroencephalography. Sci Data
6:103.

Pittendrigh S, Jacobs G (2003) NeuroSys: a semistructured labora-
tory database. Neuroinformatics 1:167–176.

Poldrack RA, Gorgolewski KJ (2017) OpenfMRI: open sharing of task
fMRI data. Neuroimage 144:259–261.

Roy A, Osik JJ, Meschede-Krasa B, Alford WT, Leman DP, Van
Hooser SD (2020) Synaptic and intrinsic mechanisms underlying
development of cortical direction selectivity. Elife 9:e58509.

Rübel O, Tritt A, Dichter B, Braun T, Cain N, Clack N, Davidson TJ,
Dougherty M, Fillion-Robin JC, Graddis N, Grauer M, Kiggins JT,
Niu L, Ozturk D, Schroeder W, Soltesz I, Sommer FT, Svoboda K,
Lydia N, et al. (2019) NWB:N 2.0: an accessible data standard for
neurophysiology. bioRxiv 523035.

Saad ZS, Chen G, Reynolds RC, Christidis PP, Hammett KR,
Bellgowan PS, Cox RW (2006) Functional imaging analysis contest
(FIAC) analysis according to AFNI and SUMA. Hum Brain Mapp
27:417–424.

Sobolev A, Stoewer A, Leonhardt A, Rautenberg PL, Kellner CJ,
Garbers C, Wachtler T (2014) Integrated platform and API for elec-
trophysiological data. Front Neuroinform 8:32.

Sprenger J, Zehl L, Pick J, Sonntag M, Grewe J, Wachtler T, Grün
S, Denker M (2019) odMLtables: a user-friendly approach for
managing metadata of neurophysiological experiments. Front
Neuroinform 13:62.

Teeters JL, Harris KD, Millman KJ, Olshausen BA, Sommer FT (2008)
Data sharing for computational neuroscience. Neuroinformatics
6:47–55.

Teeters JL, Godfrey K, Young R, Dang C, Friedsam C, Wark B, Asari
H, Peron S, Li N, Peyrache A, Denisov G, Siegle JH, Olsen SR,
Martin C, Chun M, Tripathy S, Blanche TJ, Harris K, Buzsáki G,
Koch C, et al. (2015) Neurodata without borders: creating a com-
mon data format for neurophysiology. Neuron 88:629–634.

Wiener M, Sommer FT, Ives ZG, Poldrack RA, Litt B (2016) Enabling
an open data ecosystem for the neurosciences. Neuron 92:617–
621.

Yatsenko D, Reimer J, Ecker AS, Walker EY, Sinz F, Berens P,
Hoenselaar A, James Cotton R, Siapas AS, Tolias AS (2015)
DataJoint: managing big scientific data using MATLAB or Python.
bioRxiv e031658.

Research Article: Methods/New Tools 18 of 18

January/February 2022, 9(1) ENEURO.0073-21.2022 eNeuro.org

http://dx.doi.org/10.1006/cbmr.1996.0014
https://www.ncbi.nlm.nih.gov/pubmed/29706879
https://www.ncbi.nlm.nih.gov/pubmed/27018167
https://www.ncbi.nlm.nih.gov/pubmed/24600386
https://www.ncbi.nlm.nih.gov/pubmed/27326542
https://www.ncbi.nlm.nih.gov/pubmed/28278228
https://www.ncbi.nlm.nih.gov/pubmed/21941477
http://dx.doi.org/10.1523/ENEURO.0058-14.2015
https://www.ncbi.nlm.nih.gov/pubmed/31239438
https://www.ncbi.nlm.nih.gov/pubmed/32792932
https://www.ncbi.nlm.nih.gov/pubmed/19056423
http://dx.doi.org/10.7554/eLife.71774
http://dx.doi.org/10.7554/eLife.45968
https://www.ncbi.nlm.nih.gov/pubmed/28230846
http://dx.doi.org/10.1038/s41597-019-0104-8
https://www.ncbi.nlm.nih.gov/pubmed/15046239
https://www.ncbi.nlm.nih.gov/pubmed/26048618
http://dx.doi.org/10.7554/eLife.58509
http://dx.doi.org/10.1002/hbm.20247
https://www.ncbi.nlm.nih.gov/pubmed/16568421
http://dx.doi.org/10.3389/fninf.2014.00032
https://www.ncbi.nlm.nih.gov/pubmed/24795616
http://dx.doi.org/10.3389/fninf.2019.00062
https://www.ncbi.nlm.nih.gov/pubmed/31611781
http://dx.doi.org/10.1007/s12021-008-9009-y
https://www.ncbi.nlm.nih.gov/pubmed/18259695
http://dx.doi.org/10.1016/j.neuron.2015.10.025
https://www.ncbi.nlm.nih.gov/pubmed/26590340
http://dx.doi.org/10.1016/j.neuron.2016.10.037
https://www.ncbi.nlm.nih.gov/pubmed/27810004
http://dx.doi.org/10.1101/031658

	NDI: A Platform-Independent Data Interface and Database for Neuroscience Physiology and Imaging Experiments
	Introduction
	Materials and Methods
	Design of the interface

	Results
	Concepts and vocabulary: probes, subjects, elements, DAQ systems, and epochs
	Implementation, high level
	Reading from DAQs: ndi.daq.system
	Reading from probes: ndi.element and ndi.probe
	Clocks and time: ndi.time.clocktype, ndi.time.timereference, ndi.time.syncgraph, ndi.time.syncrule
	Database, documents: ndi.database and ndi.document
	Analysis pipelines: ndi.app and ndi.query
	Implementation, lower level
	Case studies, reading data from many labs

	Discussion
	An interface with low barriers for curation and exchange
	Why not simply a file format?
	Stress points: the first DAQ system, ndi.daq.reader, ndi.file.navigator
	Comparisons and synergies with other efforts
	Big challenge: a culture of digital annotation
	Big challenge: common database schemas for analyses, analyses of analyses
	Summary

	References


