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ABSTRACT
Retinoma, also referred to as retinocytoma, is a benign manifestation of
biallelic retinoblastoma gene (RB1) inactivation. Genetic or epigenetic loss
of retinoblastoma protein in maturing cone precursors induces genomic
instability which leads to upregulation of senescence-associated p16INK4a

and p130, resulting in non-proliferative retinoma. When senescence path-
ways fail and genetic instability accumulates to a critical level through
altered gene copies of oncogenes and tumor suppression genes, trans-
formation into RB1−/- retinoblastoma occurs. Thus, the management of
retinoma involves frequent ophthalmic examination and imaging to moni-
tor the size and characteristics of the tumor, ensure stability, and rule out
malignant transformation. Key ophthalmoscopic features of retinoma often
include a translucent whitish-gray retinal mass, calcification, retinal pigment
epithelial alterations with well-defined margins, located typically around
the lesion, as well as a zone of chorioretinal atrophy. This review aims to
provide a comprehensive overview of this non-malignant tumor drawing
from current understanding of its molecular genetics, clinical characteristics,
diagnostic modalities, differential diagnosis, management, and prognosis.
A deeper understanding of retinoma could offer valuable insights into how
retinoblastoma develops and oncogenesis more broadly, paving the way for
improved strategies to prevent and treat this malignant tumor.
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INTRODUCTION

Retinoblastoma is the most common ocular malignancy
in children, typically arising from biallelic loss of the
retinoblastoma gene (RB1) within a single vulnerable
developing retinal cell.1 However, the genetic or epi-
genetic loss of both RB1 alleles does not inevitably
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lead to a malignant phenotype; instead, it results in
non-proliferative retinomas. Based on clinical, histopatho-
logic, and genetic evidence,2–4 retinoma is now considered
a benign precursor to retinoblastoma, sharing the same
genetic origin as most retinoblastomas and demonstrating
early genomic changes that precede malignant transfor-
mation. This review aims to provide a comprehensive
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panorama of retinoma, encompassing current insights
from molecular genetics, clinical characteristics, diag-
nostic modalities, differential diagnosis, contemporary
management strategies, and prognosis. By synthesizing
current evidence and highlighting key developments in
the field, this review seeks to enhance understanding of
retinoma and facilitate informed decision-making in patient
management.

TERMINOLOGY

The terms “retinoma” and “retinocytoma” are commonly
used interchangeably across various studies. In 1977, Gal-
lie et al.5 found that individuals with pediatric eye cancer
retinoblastoma displayed an inactive tumor, or “spon-
taneously regressed retinoblastoma”, at a frequency as
high as 1%. In 1982, Gallie et al.6 coined the term
“retinoma” to describe non-progressive retinal lesions with
the characteristic appearance of translucent, gray, reti-
nal masses with calcified nodules and disturbances of
pigment epithelium, observed in individuals known to
carry a heritable pathogenic variant causing retinoblastoma.
The term “retinoma” emerged to replace the previously
utilized term “spontaneously regressed retinoblastoma”,
since these tumors lacked compelling clinical evidence
of regression or involution. One year later, a histopatho-
logical investigation conducted by Margo et al.7 revealed
the benign nature of these tumors, characterizing them
as a benign variant of retinoblastoma. Borrowing from
the nomenclature used to classify neurogenic pineal
tumors (benign ones termed pineocytomas and malig-
nant ones termed pineoblastomas) they introduced the
term “retinocytoma”. An alternative term suggested in the
literature includes “retinoblastoma group 0” and “sponta-
neously arrested retinoblastoma”, though they are seldom
utilized.8

CLINICAL FEATURES

Retinoma typically manifests without symptoms or signs.
However, when do occur, blurred vision and strabismus
are the most commonly reported complaints.9,10 Also, a
case involving retinoma and photopsia has been reported.11

Leukocoria, the most frequent sign of retinoblastoma, is not
commonly observed in retinoma. Younger patients (under 4
years old) with retinoma are more likely than older ones to
exhibit leukocoria or any other sign or symptom.9

Retinoma can be either unilateral or bilateral, with uni-
lateral cases being more common.9,10 The key ophthal-
moscopic features of retinoma comprise a translucent
whitish-gray retinal mass, calcification, retinal pigment
epithelial alterations with well-defined margins, located
typically around the lesion, as well as a zone of chorioreti-
nal atrophy (Figure 1).6,9,10,12,13 This tetrad of features does

FIGURE 1 Clinical presentation of patients with retinoma. Fundus photo
(A) and optical coherence tomography (OCT) image (B) of retinoma in a
43-year-old father identified incidentally after his son was diagnosed with
retinoblastoma, showing a grey translucent elevated mass in the middle of
a retinal scar. Fundus photo (C) and OCT image (D) of retinoma in a 9-
year-old girl under surveillance, showing grey translucent elevated mass
with calcification. Fundus photo (E) and OCT image (F) of a 10-month-
old child with retinoblastoma treated by chemotherapy and enucleated
for reactivation. (G) Histopathology demonstrated active retinoblastoma
(white arrows) adjacent to retinoma (black arrows).

not always coexist in every case; that occurs in only one-
quarter of patients.9 However, one-third of retinoma cases
exhibit at least three of them.9 Other less common features
of retinoma include localized calcium deposits in the vit-
reous (calcified vitreous seeding),13–18 retinal tractions,13

and even intralesional cavitary lesions,19 a feature typically
associated with well-differentiated retinoblastoma. In some
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patients with retinoma, phthisis bulbi has been observed in
the other eye.14,20 Benign cystic growth has also been noted
in certain retinomas.14,21

Generally, the ophthalmoscopic appearance of retinoma
bears a resemblance to the array of regression patterns
observed in retinoblastoma post-irradiation, with the major-
ity of cases being appearance-wise compatible with a type
3 retinoblastoma regression pattern.13 Retinoma foci do not
predominantly appear in any of the three retinal zones.13

Retinoma and retinoblastoma can co-occur, indicating that
they are not mutually exclusive conditions (Figure 1). There
have been reports of instances where both conditions occur
in the same family, in the same patient with retinoma in
one eye and retinoblastoma in the other, or as distinct areas
within the same eye.13

The majority of retinomas retain their benign nature
throughout an individual’s lifetime and never progress
to retinoblastoma (Figure 1). In subsequent follow-up
sessions, retinomas typically maintain their size.13 How-
ever, this observation may reflect a referral bias, as
retinomas may have reached their maximum growth poten-
tial at the time of diagnosis, and all lesions found
in patients with a family history of retinoblastoma are
treated under the assumption that they are retinoblastomas.
Interestingly, in some retinoma cases, photographic docu-
mentation following extended follow-up periods revealed
lesion regression.13,22 The precise mechanisms underlying
retinoma regression remain unknown but may potentially
involve apoptosis.23 The histopathology of retinoma does
not support the involvement of ischemia or immune-
mediated necrosis.24

However, some rare cases of clinically diagnosed retinomas
have undergone malignant transformation (Figure 1).9,25–28

Recently, Shields et al.9 reported that the transformation
of retinoma into retinoblastoma occurred in 2.7% of cases
by 2 years, 9.2% by 5 years, and 15.3% by 10–20 years.
They also reported that the only factor predictive of malig-
nant transformation was an increase in tumor thickness.9

Malignant transformation is characterized by progressive
opacification and enlargement of the tumor, along with the
presence of irregular, fine tumor vessels.17

EPIDEMIOLOGY

The incidence of retinoma varies in the literature. Clin-
ical observations across various studies have shown
retinoma to be present in approximately 1.8% to 3.2%
of retinoblastoma cases, while pathological examinations
have identified retinoma in 15.6% to 20.4% of enucleated
retinoblastoma specimens.2,3,6,14 This variability in inci-
dence likely indicates a referral bias. Even though retinoma
is often found in eyes diagnosed with retinoblastoma upon

pathological examination, its clinical documentation is rare
because it is commonly overgrown by malignant retinoblas-
toma, making its detection difficult.29 Also, diagnosis often
happens when examining symptomatic cases or those with
a family history of retinoblastoma.

DIAGNOSTIC ASSESSMENT

The diagnosis of retinoma relies heavily on a comprehen-
sive approach that integrates patient and family history with
meticulous ophthalmic examination and adjunct imaging
techniques. A multi-faceted evaluation not only aids in con-
firming the presence of the tumor but also in differentiating
it from more aggressive conditions, mainly retinoblastoma.

The diagnosis cannot be confirmed histopathologically
unless the eye is enucleated; biopsy is contraindicated in
cases of suspected retinoma due to the risk of tumor seeding
if retinoblastoma is ultimately confirmed.30 Indirect oph-
thalmoscopy with pharmacologically dilated pupils, per-
formed under general anesthesia in uncooperative patients,
is usually sufficient for diagnosis by an eye specialist, ide-
ally an ocular oncologist. This diagnostic method allows
for the identification of characteristic features of the retinal
mass.

Ancillary examinations can provide important informa-
tion. Both fluorescein and indocyanine green angiography
revealed low vascular activity of retinoma.14 Ocular ultra-
sonography might show hyperechoic spikes corresponding
to intralesional calcification or hypoechoic areas, indicat-
ing the presence of fluid-filled spaces (cysts).14,31 Optical
coherence tomography (OCT) of retinoma typically depicts
a superficial retinal mass lesion with homogeneous inter-
nal reflectivity.31 OCT is very useful since it can detect
small, visually undetectable tumors in susceptible patients
and evaluate any changes in their size during follow-up
appointments.32

DIFFERENTIAL DIAGNOSIS

Although retinoma possesses distinct ophthalmoscopic fea-
tures, several conditions can closely mimic its presentation,
such as retinoblastoma and retinal astrocytic hamartoma
(RAH) (Table 1).

The patient’s medical history can provide valuable clues
to aid in diagnosis. The first clue is the patient’s age.
Retinoblastomas are commonly present in early childhood,
typically affecting children under the age of 5, while retino-
mas are often diagnosed in older children (after the age
of 6) or adults.13 Another key point is the presence or
absence of symptoms, along with the timeline of symp-
tom onset and progression. RAH is usually asymptomatic
and may be discovered incidentally or during screening of
patients suspected of having phakomatoses. Inquiring about
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TABLE 1 Differential diagnosis of retinoma

Clinical features Retinoma Retinoblastoma
Retinal astrocytic
hamartoma

Age at diagnosis Older children
(>6 years old), adults

Younger children (<5
years old)

Typically childhood

Symptoms Typically asymptomatic Leukocoria Typically asymptomatic

Associated systematic
diseases

13q deletion syndrome 13q deletion syndrome Tuberous sclerosis complex
Neurofibromatosis type 1
Usher syndrome
Stargardt disease

Calcification color Chalky white Chalky white Bright yellow

Calcification appearance Chunky Chunky Spherical

RPE alterations Present Present Absent

Chorioretinal atrophy Present Absent Absent

Feeder vessels Absent Present Absent

Retinal hard exudates Absent Absent Sometimes present

Intralesional cavitation Typically absent Present Present

Growth dynamic Typically stable Growing Typically stable

Abbreviation: RPE, retinal pigment epithelium.

family history is crucial, as a family history of retinoblas-
toma directs the diagnostic reasoning toward retinoma or
retinoblastoma. Another aspect to consider is the presence
of associated systemic diseases. Patients diagnosed with
13q deletion syndrome face a heightened risk of develop-
ing retinoblastoma due to the deletion of the RB1 gene,
situated within the chromosomal band 13q14.2.33 Given
that retinoma requires RB1 loss, it can similarly be linked
to 13q deletion syndrome. RAH is strongly associated
with tuberous sclerosis complex (TSC) as well as with
neurofibromatosis type 1, Usher syndrome, and Stargardt
disease.34

Regarding clinical features, calcification in RAH is
glistening yellow with an appearance like fish eggs,
whereas in retinomas and retinoblastomas, it is chalky
white.34 Areas of chorioretinal atrophy and associated
retinal pigment epithelial changes observed in retinomas
are uncommon in astrocytic hamartomas and untreated
retinoblastomas.17,31,34 Although uncommon, hard exu-
dates may occasionally be found around astrocytic hamar-
tomas, whereas they are generally absent in (untreated)
retinomas and retinoblastomas.34 Using OCT imaging,
RAH typically initiates as a flat tumor located in the
nerve fiber layer that gradually grows into a nodular,
full-thickness retinal mass, demonstrating “moth-eaten”
intralesional, optically empty spaces, related to intrinsic
calcification or cavitation.35 On the other hand, retinomas
and retinoblastomas in OCT exhibit a homogenous appear-
ance with the retina.31,36 Regarding growth dynamics, RAH
typically follows a stable course; however, rare cases of
tumor growth or even regression have been reported.37

Retinoblastoma exhibits gradual growth, specifically will
show growth within 4–6 weeks, while retinoma typi-
cally appears unchanged.17 The only reliable method for
distinguishing retinomas from retinoblastomas is through
ongoing follow-up to monitor for any progressive changes
in the lesions.31

MANAGEMENT CONSIDERATIONS

The management of retinoma involves conservative
approaches due to its benign nature and low risk of progres-
sion to malignancy. Retinomas show little to no response
to chemoreduction.38 Observations with regular follow-
up visits are often adequate. Periodic imaging should be
conducted to monitor the size and characteristics of the
tumor, ensure stability, and rule out malignant transforma-
tion. However, in cases where the diagnosis is uncertain,
ophthalmologists may opt to treat the tumor assuming it
to be retinoblastoma, especially if treatment is unlikely to
result in significant visual impairment, or if the clinician is
concerned about patient loss-to-follow-up.

Genetic testing and counseling are integral parts of the
management of patients with retinoma. A family history
of retinoblastoma can imply a germline RB1 pathogenic
variant. Detection of a germline RB1 pathogenic variant
informs the screening strategy of relatives and subse-
quent generations. Somatic RB1 variants in retinoma
have only been detected in eyes enucleated for subse-
quent retinoblastoma,29 as enucleation for retinoma is
contraindicated; it is possible that liquid biopsy of aque-
ous humor to assess cell-free tumor DNA, which is
increasingly being used for retinoblastoma,39,40 may hold
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promise for retinoma patients as well. However, given
that inactive retinoblastoma is typically associated with
low tumor fraction,41 it could be presumed that quiescent
retinoma would similarly yield little-to-no cell-free tumor
DNA, precluding analysis. Regarding genetic counseling,
healthcare providers should prioritize educating and sup-
porting patients and their families about the importance
of regular monitoring of retinoma. These practices help
alleviate anxiety and promote compliance with follow-up
visits.

Long-term considerations for individuals with retinoma
include the risk of developing a second malignant neoplasm
(SMN). Patients with the hereditary form of retinoblastoma
are at a significantly increased risk of SMNs.42 Conse-
quently, it is plausible that individuals with retinoma and
germline RB1 pathogenic variant may also face a sub-
stantial risk of SMNs. However, such cases have rarely
been reported, and the majority of them also suffer from
retinoblastoma.43

HISTOPATHOLOGY

Early evidence of retinoma histopathology was reported by
Margo et al.7 in 1983, who described this tumor as a small,
placoid, non-invasive lesion composed entirely of benign-
appearing cells that exhibited photoreceptor differentiation
and formed bouquet-like arrangements (“fleurettes”). Addi-
tionally, they did not observe any necrosis or mitotic
activity.7 In further studies, histopathological examination
of eyes enucleated due to retinoblastoma showed regions
with characteristics of retinoma, adjacent to both normal
retina and retinoblastoma.2,3,21 The fact that retinoma and
retinoblastoma do not arise from separate areas of the retina
supports the idea that retinoblastoma represents the ulti-
mate malignant stage in a series of clonal developments
from normal to benign to malignant cells in the context of
biallelic RB1 loss.

Light microscopy examination of retinoma sections, using
hematoxylin and eosin staining, enables the observation
of benign cells with abundant eosinophilic cytoplasm,
nuclei of normal size with evenly dispersed chromatin,
and absence of pleomorphism or mitotic activity.2,44

Additionally, there are well-differentiated, prominent pho-
toreceptors, forming fleurettes.2,44 The absence of scarring
or necrosis in pathological analysis of retinomas refutes the
longstanding belief that retinomas represent spontaneous
regression of retinoblastomas.29 Retinoma lacks the typi-
cal features of retinoblastoma, namely densely packed cells
with little cytoplasm, nuclear molding, frequent mitoses, as
well as the characteristic Flexner-Wintersteiner and Homer
Wright rosettes.2,45 It should be highlighted that nuclear
morphometric analysis indicated that there were no sig-
nificant differences in the nuclei of retinoma and tumors

showing mild anaplasia since both exhibit small, round,
and band nuclei.44 The distinguishing factor lies only in the
larger amount of cytoplasm and the presence of fleurettes.44

PATHOGENESIS

Genetic basis of retinoma

Nearly all retinoblastomas initiate in response to biallelic
inactivation of tumor suppressor gene RB1 (RB1−/−).46,47

Approximately 1.4% of all retinoblastoma cases are caused
by oncogene MYCN amplification (MYCNA) with wild-type
RB1 (RB1+/+MYCNA).48 Interestingly, another small subset
of retinoblastoma (1.5%) remains unexplained since they
have normal RB1 and MYCN genes.48 Investigations to date
into the genetic status of retinomas showed that retinomas
are homozygous null for RB1−/−.2 Retinoma has not been
associated with MYCNA retinoblastoma, but the rarity of
this subtype may mean that such cases may exist but have
not yet been documented.

The RB1 gene is located on chromosome 13, more specifi-
cally, 13q14.2, and codes for retinoblastoma protein (pRB),
a regulator of cellular replication. Numerous cellular func-
tions have been ascribed to pRB, but a key one is to prevent
progression from the G1 (first gap phase) to S (synthe-
sis phase) phase of the cell division cycle; pRB inhibits
E2F-activated transcription of genes necessary for G1-to-
S phase progression, while phosphorylation of pRB by
cyclin-dependent kinase (CDK) releases E2F, activating the
cell cycle (Figure 2).49 This kinase activity can be regulated
by the CDK4/6 inhibitor p16INK4a.50,51 Hence, pathogenic
variants in the RB1 gene that result in the dysfunction or
absence of pRB lead to the perpetual activation of E2Fs
and persistent stimulation of the cell cycle, significantly
contributing to tumor development.

Knudson’s two-hit hypothesis of oncogenesis describes
the tumorigenesis of retinoblastoma as a consequence
of two consecutive pathogenic variants of the RB1 gene
(Figure 3).46 In particular, the initial ‘hit’ (M1) can occur
in either germline or somatic cells. Germline pathogenic
variants may be inherited from parents or arise de novo
in individuals. The second ‘hit’ (M2) is only acquired and
never inherited, often due to physical, chemical, or bio-
logical factors. Both hits (M1 and M2) that deactivate
the RB1 gene have been shown to occur in retinomas.2

Also, RB1 pathogenic variants found in retinomas are
indistinguishable from those found in retinoblastomas.2,52

Consistent with the genotype of RB1−/−, no functional pRB
is detectable in retinomas.2

However, loss of both RB1 alleles does not inevitably
result in a malignant phenotype; instead, it tends to induce
genomic instability. A senescence response to this insta-
bility leads to non-proliferative retinoma.2 In other words,
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FIGURE 2 Function of the retinoblastoma protein (pRB) in the control of the G1 checkpoint. A core function of pRB is to prevent the progression
from the G1 to the S phase of the cell cycle by binding to and inhibiting E2F family transcription factors, which drive the cell into the S phase. Cell
cycle progression occurs through the inactivation of pRB, catalyzed by cyclin-dependent kinases (CDKs). Specifically, CDK4 and CDK6 are activated
in response to the accumulation of D-type cyclins (CycD) due to mitogenic signaling, initiating the phosphorylation (P) of pRB. This kinase activity is
counterbalanced by factors including the CDK4/6 inhibitor p16ΙΝΚ4Α. Typically, p16ΙΝΚ4Α is present at low levels in cells, but it can be upregulated in
response to oncogenic stress or DNA damage to suppress CDK4/6 activity.

RB1 inactivation and the subsequent loss of pRB promote
genomic instability, but senescence pathways can prevent
transformation into retinoblastoma, leaving the tumor at the
retinoma stage.

Senescence protein p16INK4a is found to be expressed
in retinoma but not in either the normal retina or
retinoblastoma.2 Specifically, after loss of both RB1 alle-
les, CDKN2A gene (which encodes p16INK4a) in retinomas
is upregulated, expressing high levels of p16INK4a. Inter-
estingly, CDKN2A mRNA is also highly expressed in
retinoblastoma but the absence of p16INK4a protein suggests
the involvement of mechanisms for senescence evasion.2

Rare cells might escape the induction of senescence either
by inactivating p16INK4a or by not activating it at all. Nor-
mally, p16INK4a is involved in blocking the G1/S-phase
transition of the cell cycle, as described in Figure 2. Ιn
retinomas, even in the absence of pRB, p16INK4a manages
to block the cell cycle and mediate cellular senescence,
likely through interaction with pRB family member, p130,
which has partially overlapping functions with pRB and is
highly expressed in retinomas but not in retinoblastomas.2

The non-proliferative nature of retinomas is also supported
by the fact that immunostained tissues from the unaffected
retina, retinoma, and retinoblastoma tested for prolifera-
tion markers Ki67 and proliferating cell nuclear antigen
(PCNA), revealed identical staining patterns for retinomas
and retinas (both negative for Ki67 and PCNA), in con-
trast to retinoblastomas (strong positivity for Ki67 and
PCNA).2 It should be highlighted that high expression of

p130 and absence of Ki67 might indicate arrest in phase
G0. Liu et al.53 discovered that the “retinoma-like” cells in
their organoid study exhibited low levels of Ki67, which
is consistent with ex vivo staining results. However, these
cells showed elevated levels of PCNA, underscoring a
notable difference from the findings observed in ocular
histopathology.

Cellular origins of retinoma

Precise identification of the cellular origin of retinoblas-
toma, and consequently retinoma, has garnered significant
scientific interest and prompted extensive research efforts.
Cone maturation begins as retinal progenitor cells leave
the cell cycle to differentiate into cone precursors, which
give rise to mature cone photoreceptors. Two oncoproteins,
MYCN and MDM2, which are inherently significantly
expressed in normal human cone precursors, are crucial
for the proliferative dynamic and survival of pRB-depleted
cells; specifically, MDM2 acts as a negative regulator of
the p53 tumor suppressor, while MYCN facilitates abnor-
mal cell growth and proliferation.54 Later, it was found
that human cone precursors are uniquely sensitive to RB1
mutation.55 pRB knockdown stimulates cone precursor
proliferation, which relies on MYCN and MDM2 as well
as other factors that have strong expression in maturing
cone precursors and are essential in retinoblastoma cell
proliferation.55 Also, pRB-depleted human cone precur-
sors develop into tumors with features typical of human
retinoblastoma in orthotopic xenografts.55 These pieces of
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FIGURE 3 Genetics of Retinoblastoma. (A) The first two ‘hits’ to RB1 (M1 and M2) occur in somatic cells. (B) M1 is found in all germline cells,
resulting from either de novo or inherited from a parent (in this case example, the father). Consequently, the genotype of the affected individual is
heterozygous, carrying one pathogenic variant in germline cells (RB1+/−). The M2 arises after a somatic mutational event in a retinal cell. Distinct second
pathogenic variants in separate retinal cells give rise to independent tumor foci. (C) In some individuals, M1 occurs during embryonic development,
resulting in somatic mosaicism. The M2 can then occur in retinal cells that harbor the M1, leading to tumor initiation. Heritable disease results from
pathways depicted in pathways B and C. Both M1 and M2 are present in retinoma.

evidence suggested retinoblastoma’s cone precursor origin.
Further investigations, including the most recent studies
on retinal organoids derived from genetically modified
human embryonic cells with biallelic RB1 mutations, have
indicated that retinoma, and by extension retinoblastoma,
originates from maturing retinal cone arrestin-3 positive
(ARR3+) cone precursors.53,56 Specifically, in human reti-
nas, loss of pRB stimulates maturing (ARR3+) cone
precursor proliferation via MYCN-dependent cell-cycle
entry and MDM2-mediated suppression of apoptosis.55,56

In due course, most of these cells exit the cell cycle
with highly expressed p16INK4a and p130, forming indo-

lent premalignant lesions, in which rare cells that hold
proliferative dynamics give rise to quiescent retinomas.56

Some cells escape this mechanism, forming highly prolif-
erative masses that express cone cell markers characteristic
of retinoblastoma (Figure 4).56

From retinoma to retinoblastoma

Although both retinomas and (most) retinoblastomas share
the same genetic status (RB1−/−), retinomas exhibit lower
levels of aneuploidy and higher levels of senescence-
associated proteins.2,4 While M1 and M2 may constitute
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FIGURE 4 Retinoma pathogenesis. In human retinas, the loss of pRB promotes the proliferation of maturing (ARR3+) cone precursor cells (CPs)
through MYCN-dependent cell-cycle activation and MDM2-mediated inhibition of apoptosis. Most of these cells exit the cell cycle, exhibiting high levels
of p16INK4a and p130, which leads to the formation of indolent premalignant lesions. Within these lesions, a small number of cells maintain a proliferative
dynamic, ultimately giving rise to quiescent retinomas. Some cells evade this regulatory mechanism, leading to the development of highly proliferative
masses that express cone cell markers typical of retinoblastoma. While the majority of retinomas remain benign throughout an individual’s lifetime and
do not progress to retinoblastoma, transformation into RB1−/− retinoblastoma may occur when senescence pathways fail and genetic instability reaches
a critical threshold. M1, first hit; M2, second hit; Mn, nth hit.

the initial rate-limiting steps in tumorigenesis, additional
genomic imbalances (M3-Mn) involving specific onco-
genes and tumor suppressors are necessary for malignant
transformation.57 In essence, when senescence pathways
fail and genetic instability accumulates to a critical level,
transformation into RB1−/− retinoblastoma can occur.
Genomic instability can elevate the risk of further muta-
tional events in critical cancer genes, potentially causing
a breakdown of the senescence barrier (Figure 4). This
progression is marked by the altered gene copy num-
bers, a progressive gain of certain oncogenes (MDM4

and KIF14 on chromosome 1q, MYCN on chromosome
2p, E2F3 and DEK on chromosome 6p), and loss of
tumor suppressor genes (CDH11 on 16q).2 Table 2 sum-
marizes the molecular differences between retinoma and
retinoblastoma.

UNANSWERED QUESTIONS AND
FUTURE DIRECTIONS

Despite the challenges in understanding retinoma, ongo-
ing research continues to yield valuable insights into this
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TABLE 2 Gene expression retinoma versus retinoblastoma

Gene expression Retinoma Retinoblastoma

pRB − −

CDKN2A mRNA + (high levels) + (high levels)

p16INK4a + (high levels) −

p130 + (high levels) −

p107 + (equal levels) + (equal levels)

Ki67 − + (high levels)

PCNA† − + (high levels)

p53 +/− +/−

p75NTR + (high levels) −

CDH11 + (high levels) + (decreased levels)

DEK + + (high levels)

KIF14 + + (high levels)

E2F3 − + (high levels)

The comparison is based on immunostaining for proteins and quantitative
RT-PCR for mRNA. Data are adapted from Reference 2.
†The retinoma-like cell cluster in an organoid study by Liu et al.53 strongly
expressed PCNA.
+, detection; −, absence; +/−, detection in some but not all cells; pRB,
retinoblastoma protein; PCNA, proliferating cell nuclear antigen.

condition. However, retinoma research encounters various
obstacles and limitations that hinder rapid progress toward
a thorough understanding of the condition. One primary
challenge is its rarity, leading to a limited patient popula-
tion for clinical studies. Additionally, the subtle and often
asymptomatic nature of retinomas means that they are fre-
quently underdiagnosed, further constraining the available
data pool. Furthermore, the specimens analyzed were pre-
dominantly those from enucleated eyes due to adjacent
malignant retinoblastoma, while eyes with only retinoma
were typically not enucleated. This results in an underrep-
resentation of benign retinomas in molecular studies. Ex
vivo culture and retinal organoid models have proven valu-
able in advancing our understanding of retinal development
and tumorigenesis, providing a controlled environment for
investigating molecular pathways. However, these models
have limitations, including an inability to fully replicate
the in vivo retinal microenvironment, and they have not yet
been optimized for studying the benign nature of retino-
mas. Moreover, the lack of well-established mouse models
for retinoma further constrains preclinical investigations.
Consequently, despite existing research efforts, numer-
ous critical questions about retinoma remain unanswered,
underscoring the need for further investigations.

Some of the most pressing queries include identifying
which retinomas never progress to retinoblastoma and
remain benign for life, and understanding the exact patho-
physiological mechanisms behind this stability. On the
other hand, in the case of malignant transformation; the

full range of genetic mutations involved, and the intracellu-
lar or extracellular factors that might influence this process
are largely unknown. Unraveling these mechanisms will
not only help prevent the occurrence of retinoblastoma in
patients with retinoma but also provide crucial insights into
cancer prevention in general and open new avenues for
therapeutic interventions.

CONCLUSION

In conclusion, retinoma, though a rare and often under-
diagnosed condition, provides significant insights into
retinoblastoma genesis. This overview has highlighted the
critical aspects of retinoma, including its genetic founda-
tions, clinical manifestations, diagnostic challenges, and
potential implications for patient management. By under-
standing the unique characteristics of retinoma and its
relationship with its malignant counterparts, healthcare
professionals can better identify and monitor patients at
risk, ensuring timely intervention and improved outcomes.
Future research should focus on elucidating the molecular
mechanisms underlying retinoma progression and explor-
ing innovative diagnostic and therapeutic approaches,
ultimately enhancing our ability to manage this enigmatic
retinal pathology.
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