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Abstract  

Organ development is guided by a space-time landscape that constraints cell behavior. This 
landscape is challenging to characterize for the hair follicle – the most abundant mini organ – 
due to its complex microscopic structure and asynchronous development. We developed 3DEEP, 
a tissue clearing and spatial transcriptomic strategy for characterizing tissue blocks up to 400 µm 
in thickness. We captured 371 hair follicles at different stages of organogenesis in 1 mm3 of skin 
of a 12-hour-old mouse with 6 million transcripts from 81 genes. From this single time point, we 
deconvoluted follicles by age based on whole-organ molecular pseudotimes to animate a stop-
motion 3D atlas of follicle development along its trajectory. We defined molecular stages for 
hair follicle organogenesis and characterized the order of emergence for its structures, 
differential signaling dynamics at its top and bottom, morphogen shifts preceding and 
accompanying structural changes, and series of structural changes leading to the formation of its 
canal and opening. We further found that hair follicle stem cells and their niche are established 
and stratified early in organogenesis, before the formation of the hair bulb. Overall, this work 
demonstrates the power of increased depth of spatial transcriptomics to provide a four-
dimensional analysis of organogenesis.  
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Introduction 

The hair follicle is the smallest, most numerous organ in the body and a defining feature of 
mammals in evolution (Litman and Stein 2023). Its formation, similar to that of many larger 
organs, involves prototypic coordination between different germ layers (Schneider et al. 2009). It 
is one of the few human organs capable of near-infinite, life-long regeneration involving cycles 
of growth, regression, and quiescence (Welle 2023). Its dysregulation can cause medical 
conditions such as Alopecia (a form of excessive hair loss) and Hirsutism (a form of excessive 
hair growth), among others (Wolff et al. 2016). Given its abundance and cycling nature, the hair 
follicle is a unique model of organ development and regeneration in mammals. 

Three distinct lineages coordinate to form the diversity of cells and structures in the hair follicle 
in the latter half of embryogenesis: epidermis, neural crest, and dermis (Saxena et al. 2019). The 
epidermis, which is ectoderm-derived, contributes the main hair follicle cells known as 
keratinocytes. Keratinocytes invaginate into the dermis during follicle formation, creating the 
bulk of the hair follicle’s structure and ultimately generating the hair fiber itself. The neural 
crest, which is also ectoderm-derived, contributes fibroblasts and melanocytes that migrate into 
the follicle from the skin surface, forming melanocyte stem cells and mature melanocytes that 
intercalate multiple keratinocytes-derived layers of the follicle (Vandamme and Berx 2019; 
Myung et al. 2022). These cells are responsible for the pigmentation of the hair. Finally, the 
dermis, which is mesoderm-derived, contributes fibroblasts that form the dermal sheath around 
the follicle and the dermal papilla at the base of its bulb (Martino et al. 2021). These fibroblasts 
provide a niche for hair follicle formation and are believed to regulate its maintenance and 
regeneration later in life (Yang et al. 2017; Heitman et al. 2020). 

Despite its abundance and accessibility, understanding hair follicle formation and morphogenesis 
at a cellular level remains challenging for two reasons. First, hair follicles develop 
asynchronously during the fetal and early postnatal periods. At any point in this window, the skin 
contains thousands of follicles from a spectrum of stages, making it challenging to reconstruct 
their developmental trajectory. For example, single-cell RNA sequencing (scRNA-seq), or other 
approaches that rely on tissue dissociation, have captured the diversity of cell types and cell 
states within hair follicles during development (Ge et al. 2020; Morita et al. 2021); however, they 
are unable to identify the cells that originate from follicles in the same stage of development and 
thus cannot deconvolve their developmental trajectory. This asynchrony, therefore, necessitates 
using imaging-based approaches, which are hindered by the second challenge. Hair follicle 
structure is micron-scale and non-repetitive along all three axes. This structure is difficult to 
analyze in full using conventional histological and imaging methods that rely on capturing 2D 
planes. 2D methods perform best for organs that are large enough to be serially sectioned (e.g., 
the heart) for 3D reconstruction or those that are repetitive along at least one axis and can be 
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captured by choosing the 2D plane perpendicular to that axis (e.g., a nerve cord). While state-of-
the-art spatial transcriptomic approaches have been effective at profiling many other organs (Lee 
et al. 2014; Rodriques et al. 2019; Xia et al. 2019; Gyllborg et al. 2020; Kebschull et al. 2020; 
Liu et al. 2020; Srivatsan et al. 2021; Dardani et al. 2022; Lake et al. 2023; Yao et al. 2023; 
Kalhor et al. 2024),  they are not suitable for the hair follicle as most are effectively limited to 
thin 2D planes. While there has been progress in extending spatial transcriptomics to thicker 
tissue sections (Wang et al. 2018; Wang et al. 2021), what remains lacking is the combination of 
scalability to a large number of targets, transcript capture efficiency, and fluorescence signal-to-
noise levels required for characterizing hair follicles that are hundreds of microns deep within the 
skin. 

To address these challenges, we first developed 3DEEP-FISH, a new spatial transcriptomic 
approach for multiplexed detection of target transcripts in tissue blocks as thick as 400 microns. 
We applied 3DEEP-FISH to 85 genes related to hair follicle development in newborn mouse 
skin, detecting 6,601,822 transcripts in 371 full hair follicles at different stages of organogenesis 
in a cubic millimeter of skin volume at a single timepoint. We found that the molecular 
composition of each follicle closely reflects its developmental stage and length, allowing us to 
leverage their asynchronicity as an asset by arranging the 371 follicles along their developmental 
trajectory, effectively creating a stop-motion animation of hair follicle organogenesis in space 
and time. This animated atlas unravels the order of emergence and dynamics of expansion for 
different structures within the hair follicle. It revealed extensive shifts in morphogen activity 
within hair follicle structures over the course of its organogenesis, identified a steady morphogen 
signaling center near the top of the follicle, and captured the dynamic changes of the dermal 
papilla, the morphogen signaling center at the follicle’s base. We further characterized the 
structural, cellular, and molecular events involved in the formation of the hair follicle opening 
and canal. Finally, we analyzed the positions of melanocyte and keratinocyte stem cells within 
the follicle and found that they occupy stratified spatial positions at their eventual niche – known 
as the bulge – in the earliest stage of organogenesis. Overall, this work establishes a new 
approach for spatial transcriptomic profiling in thick tissue blocks, provides a spatiotemporal 
(4D) organogenesis atlas of hair follicles, and establishes fundamental insights into the formation 
of hair follicles. 

Results 

Enabling spatial transcriptomics in thick tissue blocks by removing genomic DNA 
To characterize hair follicle formation, we initially attempted to optimize existing gel embedding 
and tissue clearing approaches (Chung et al. 2013; Sylwestrak et al. 2016; Alon et al. 2021) and 
used extended incubation times to perfuse tissue samples with transcript-specific padlock probes 
and reagents for rolling-circle amplification (RCA) (Fig. 1A). Using formalin-fixed 400-micron 
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mouse liver blocks as a test, we first permeabilized and cleared the tissue with SDS solution for 
five days while concurrently diffusing in a padlock probe targeting the abundant Apoa2 RNA 
transcript and a primer for RCA of the probe. The RCA primer was modified on its 5’ end with 
an acrydite moiety, allowing us to perfuse in acrylamide monomers and crosslink them to create 
a hydrogel matrix to which the target transcripts and their probes are affixed through the RCA 
primer (Fig. 1A). We then treated the hydrogel-embedded tissue with Proteinase K to remove 
proteins that can inhibit downstream enzymatic steps. After circularizing the hybridized padlock 
probes using SplintR ligase, we carried out RCA with Phi29 DNA polymerase to create rolling 
circle amplicons and detected these amplicons with a fluorescent probe. The results showed that 
amplicon density decayed rapidly with depth within the tissue to the point that few amplicons 
were generated beyond 50 microns from the tissue surface (Fig. 1B,C). Because the incubation 
times at each step had been long enough for diffusion deep into the tissue, these results suggested 
that either a diffusion barrier or a non-specific sink for some of the reagents remained within the 
tissue. However, the combination of SDS and proteinase K treatment is expected to remove 
lipids and proteins. We thus hypothesized that genomic DNA limited the penetration of our 
reagents into the tissue, likely by acting as a non-specific sink for some enzymes. Revising the 
protocol to include DNase I treatment prior to padlock hybridization to mRNA (Fig. 1A), we 
obtained a dramatic improvement: Apoa2 amplicons were detected throughout the 400-micron 
depth of liver blocks with a higher capture efficiency (Fig. 1B,C). Moreover, fluorescence 
signal-to-noise ratio (SNR) was consistently above 7 throughout the depth of the specimen with a 
25X objective (Fig. 1D). The ability to use medium magnification objectives (i.e., 20–25X) 
enables scanning large volumes rapidly and accurately. Overall, these results establish a strategy 
for spatial transcriptomic characterization of thick tissue blocks by combining clearing and 
hydrogel embedding with genomic DNA removal. We call this approach 3D Hydrogel-
Embedding for Expression Profiling (3DEEP) with Fluorescence In Situ Hybridization (FISH). 
3DEEP-FISH offers a combination of high SNR, capture efficiency, and scalability to a large 
number of genes in thick tissue specimens that, as we demonstrate below, enables spatiotemporal 
characterization of hair follicle formation. 

Selecting a gene panel to characterize hair follicle formation  
Characterizing hair follicle formation using 3DEEP-FISH requires selecting a panel of marker 
genes that can identify various cell types in the developing organ. We compiled a set of 85 genes 
for cell type annotation and functional evaluation of developing hair follicles (Table 1). Briefly, 
we first curated an initial list of marker genes that were independently validated by multiple 
studies for different hair follicle structures. We then augmented this initial set using a high-
quality scRNA-seq dataset from mouse P0 dorsal skin (Ge et al. 2020) to identify other genes 
showing differential expression between cell types within the skin (Fig. 1E, Table 1). The 
chosen genes include 34 for cell type annotation: 13 for keratinocytes subtypes, 8 for fibroblast 
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subtypes, 3 for melanocyte subtypes, and 10 for other cell types residing in the skin (Fig. 1E). 
Figure 1E shows the distinct cellular clusters, namely keratinocyte, melanocyte, adipocyte, 
fibroblast, lymphocyte, and Schwann cell, separated by the subset of the curated genes. These 
genes capture the subclusters of keratinocyte and fibroblast clusters. The list also includes 51 
genes for functional evaluation: 9 stem cell markers, 40 morphogen-related genes (10 for the Wnt 
pathway, 16 for the Tgf superfamily pathway, 5 for the Notch pathway, 4 for the Igf pathway, 5 
for the Edn pathway), a chemokine marker, and a marker of bacterial cells. Overall, these 85 
genes capture the structural and functional diversity of cells within the hair follicle (Fig. 1F).  

Spatial transcriptome of newborn mouse dorsal skin  
To characterize these 85 genes in developing hair follicles, we multiplexed 3DEEP-FISH based 
on Hybridization-Based In Situ Sequencing (HybISS) (Gyllborg et al. 2020). We designed and 
synthesized up to five padlock probes for each of the 85 transcripts in our panel (Table S1). Each 
probe contains a 40-nucleotide sequence split into two 20-nucleotide (nt) arms that specifically 
hybridize to the target transcript, an 18-nt ID sequence that is unique to each transcript and used 
for downstream identification, and a 19-nt common sequence to prime RCA (Fig. 1G). All 
probes for the same transcript share the same ID. After RCA, the resulting amplicon will contain 
a concatemer of ID sequences. To decode these IDs with fluorescence imaging, we designed 
bridge probes and fluorophore-conjugated probes for five sequential rounds of hybridization and 
imaging in four channels (Table S2). Bridge probes are complementary to the amplified ID 
sequences and one of the four fluorophore-conjugated oligonucleotides. Each round of 
hybridization uses a different library of bridge probes such that the combination of all rounds 
labels each ID with a unique permutation of colors over hybridization rounds (Fig. 1G). In five 
rounds of hybridization with four colors, 45 = 1,024 color codes are possible, of which a 144 
subset has a Hamming distance of at least two between all pairs. We assigned 85 of these 144 
color codes to our transcripts’ IDs, leaving the remaining 59, which do not correspond to any 
transcript, as negative control ‘ghost IDs’ for estimating decoding accuracy. 

Using these probes, we performed 3DEEP-FISH on the dorsal skin of a 12-hour old mouse 
without slicing the tissue (Fig. 1H). We scanned six 0.75 x 0.75 x 0.3 millimeter (X, Y, Z) 
adjacent fields of view (FOVs) using a spinning disk confocal microscope and a 20X objective, 
in total covering a 3.3 mm2 area of skin at a depth of approximately 300 microns. To analyze raw 
image stacks and identify amplicons, we initially applied the well-established ExSeq processing 
pipeline (Alon et al. 2021). The pipeline identified a total of 10,044,124 putative amplicon 
locations ( ~10 rolonies per 10-micron voxel). Of these, 4,771,780 (48%) could be confidently 
matched to a transcript color code while allowing 5% false positives, as measured by the number 
of amplicons assigned to ghost IDs. We reasoned that the depth and density of amplicons in our 
dataset combined with the technical noise unique to each imaging setup prevent the ExSeq 
pipeline from maximizing data extraction. We thus developed a machine-learning approach 
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based on a convolutional neural network to supplement the pipeline and improve decoding 
accuracy (Fig. 1I). To train the network, we used the images (4 colors by 5 cycles) for the 
744,696 amplicons in the top 10% of confidence scores together with their gene calls from the 
ExSeq pipeline. No ghost IDs were detected among these top 10% amplicons. After training, we 
input the images for each of the 10,044,124 amplicons into the model to predict gene names. The 
model returned a likelihood of each amplicon corresponding to each gene, which was used as a 
confidence score for gene calling. For each gene, we chose a confidence score cutoff across the 
dataset such that the average ghost ID detection rate was 5% or below. Four transcripts (Crabp1, 
Ccl2, bacterial rRNA, and Wnt7b) that did not reach this confidence threshold were eliminated 
from further analysis. Overall, our machine learning approach improved the number of 
amplicons decoded with high confidence to 6,601,822 (66%), resulting in 6.5 rolonies per 10-
micron voxel across approximately 1 mm3 of skin.  

We analyzed the overall spatial characteristics of the amplicons’ distribution. Amplicon 
detection efficiency was highest near the two surfaces of the tissue block, as observed in the liver 
(Fig. 1C), but was otherwise consistent across the depth of the tissue and different fields of view 
(FOVs) (Fig. 1J). The density of detected amplicons across the tissue was consistent, with an 
average of 92 per 20-micron voxel (25th percentile: 43, 75th percentile: 128) (Fig. 1K). 
Decoding efficiency, the fraction of initial amplicons decoded confidently, showed a consistent 
distribution across both tissue depth and 20-micron voxels (Fig. 1K,L). Overall, these results 
suggest that 3DEEP-FISH performs consistently across different tissues and in a multiplexed 
setting. 

While the total transcript distribution was consistent across space, individual transcripts 
exhibited spatial heterogeneity. Different transcripts were enriched at varying depths of the tissue 
(Fig. 1M–O). For example, Krt14 and Krt15, which are highly expressed in epidermis, are 
enriched near the skin surface, while Krt35, a hair shaft marker, is enriched deeper in the skin 
(Fig. 1M) (37, 38, 92). Despite this spatial heterogeneity, the total abundance of each transcript 
matched expectations: our spatial transcriptomic data correlates with scRNA-seq in overall gene 
abundances (Spearman’s ρ = 0.50, p-value < 2e-6) (Fig. 1P). Overall, these results indicate that 
our 3DEEP-FISH dataset of 81 genes accurately reflects the heterogeneous tissue structure, 
portending its ability to capture the spatiotemporal dynamics of hair development. 

Identifying hair follicles within skin tissue 
To focus on hair follicles within the captured skin volume, we manually isolated each follicle. 
Follicles are visually distinguishable in our data as distinct cylindrical shapes that extend inward 
from the surface and are enriched in keratin expression (Fig. 2A). We defined a region of interest 
(ROI) for each hair follicle by manually identifying the contours of its cross-section in each 
optical section. Figure 2A shows the contours of eight representative follicles of different sizes 
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across five optical sections. This process identified 371 complete follicles in all six FOVs. 359 
follicles at the boundaries of the scanned volume or spanning multiple FOVs were excluded from 
further analysis due to incompleteness or uncertainty about exact 3D organization, respectively. 
The overall density of follicles was approximately 186 per square millimeter (Fig. 2B). The 
complete follicles were designated HF001 to HF371 based on their position within the imaged 
tissue (Table S3). The ROIs for each follicle are provided in the supplementary materials. These 
ROIs allowed us to determine the molecular composition of each follicle in 3D. Figure 2C 
shows a 3D rendering of transcripts within the boundaries of the representative follicles from 
Figure 2A. On average, we detected 5,586 decoded amplicons per hair follicle, with a range from 
424 in HF196, one of the smallest follicles, to 33,151 in HF245, the largest (Fig. 2D). 

Hair follicles do not grow perpendicularly to the skin surface. Moreover, longer follicles in later 
stages of development may curve or bend. To simplify structural comparisons between hair 
follicles of different shapes, we developed a computational pipeline to transform each follicle 
into a linear structure using thin-plate spline transformation while preserving the spatial 
relationships between transcripts (Fig. 2E). This linearization allowed us to measure the overall 
length of the follicles, which ranged from 57 μm (HF57) to 553 μm (HF245) (Fig. 2E,F). Going 
forward, we will analyze these linearized hair follicles in a cylindrical coordinate system (Z: 
axial coordinate with 0 at the skin surface and positive values indicating depth within the skin; R: 
radial distance from the Z-axis; θ: azimuth with 0 along the direction of hair follicle growth), 
unless otherwise noted. These steps provide a foundation for the molecular analysis of 
developing hair follicles in 3D. 

Reconstructing developmental trajectory of hair follicles  
Based largely on histological characterization, hair follicle formation is classically divided into 
three broad phases – induction, organogenesis, and cytodifferentiation (Schneider et al. 2009) – 
which are further broken down into eight stages. During induction (Histological Stages 0 and 1), 
interactions between adjacent dermal and epidermal cells initiates hair follicle formation. During 
organogenesis (Histological Stages 2 to 5), the follicle grows, and all its cell types and tissues 
emerge. During cytodifferentiation (Histological Stages 6 to 8), the follicle matures 
morphologically, and the hair shaft emerges. Because different follicles develop asynchronously, 
newborn skin is expected to have follicles spanning all stages of organogenesis and early 
cytodifferentiation (Paus et al. 1999; Sayama et al. 2010; Saxena et al. 2019). We tested whether 
molecular profiles of hair follicles reflect their developmental stage. We performed principal 
component analysis (PCA) on the transcriptome of the 371 follicles by treating each as a 
homogeneous compartment of transcripts (Fig. 2G). The results show that the first two principal 
components, which explain a 55% of the variation in the dataset, clearly match follicle size, 
indicating that each follicles’ captured transcriptome reflects its stage along their developmental 
trajectory. We thus used Slingshot (Street et al. 2018) to place each follicle at a relative position 
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along this developmental trajectory (Fig. 2G), thereby creating a whole-organ pseudotime 
ranging from 0 to 1. Pseudotime 0 here is expected to approximate Histological Stage 2 while 
pseudotime 1 is expected to approximate Histological Stage 6. Follicle pseudotime startlingly 
correlates with its length (Spearman’s ρ = 0.94, p-value < 6e-178) (Fig. 2H). These results 
demonstrate that the molecular composition of each hair follicle can be used to infer its 
developmental stage.  

We next analyzed the relationship between follicle developmental stage and spatial arrangement 
in the skin. Follicle pseudotimes were bimodally distributed, with modes at 0.2 and 0.8 (Fig. 2I). 
This observation is consistent with the well-known waves of mouse hair follicle induction, which 
occur around E14, E16, and E18, to give rise to primary, secondary, and tertiary follicles, 
respectively (Duverger and Morasso 2009). Primary, secondary and tertiary hair follicles account 
for 1–3%, 30% and 65–69% of all follicles, respectively. Therefore, the pseudotime mode at 0.8 
largely represents secondary follicles with a minority of primary follicle, whereas the mode at 
0.2 likely represents tertiary hair follicles. We thus classified all follicles into simplified groups 
of secondary and tertiary using Gaussian mixture model clustering of their pseudotimes (Fig 2I). 
When we analyzed the positions of full hair follicles in the skin, we observed regularly spaced 
rows of follicles in which secondary and tertiary follicles appear to alternate (Fig. 2J). Among 
the full hair follicles, the closest hair follicle to 85% of the secondary hair follicles is a tertiary 
follicle, which is significantly higher than the 58% that would be expected by chance (Chi-
squared test of independence, p-value < 6e-7). Moreover, the developmental stage of all adjacent 
secondary-tertiary follicle pairs is significantly correlated (Pearson’s R: 0.34, p-value < 3e-5) 
(Fig. 2K). Together, these results support a Turing reaction-diffusion model of follicle induction, 
which posits that tertiary follicles are induced between secondary follicles as skin growth leads 
to increased distance between them (Sick et al. 2006; Schlake and Sick 2007). 

Separating the secondary and tertiary follicles improved the agreement between hair follicle 
length and developmental stage, revealing differences between the growth dynamics of 
secondary and tertiary follicles. The mean squared error of the linear regression between follicle 
stage and length is 0.011 for all follicles combined but is significantly lower when secondary and 
tertiary follicles are separated, at 0.005 and 0.004, respectively (Wilcoxon rank-sum test, both p-
values < 2e-15) (Fig. 2L,M). These results also demonstrate the accuracy of a molecular 
approach for staging hair follicles compared to the standard approach of measuring length, as the 
size overlap between the oldest tertiary follicles and the youngest secondary follicles prevents 
accurately staging them based on size alone. 

The molecular staging of the follicles enabled us to characterize the changes in gene expression 
during hair follicle development (Fig. 2N). Hair follicles in the earliest stages of morphogenesis, 
represented by pseudotimes close to 0, are enriched in subsets of Wnt and Bmp genes (Wnt16, 
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Wnt6, Axin2, and Bmp1), whereas those in the later stages of morphogenesis, represented by 
pseudotimes close to 1, exhibit elevated Notch signaling genes (Jag1 and Hes1) (Fig. 2N). 
Additionally, a transition from a single keratin gene to a diverse set (Krt15 to Krt17, Krt25, 
Krt27, Krt28, Krt35, and Krt71) was observed, indicating the successful isolation of hair follicles 
from the early and late stages. More importantly, this molecular staging enabled us to order the 
3D structures of hair follicles along their developmental trajectory, creating a 371-frame stop-
motion animation of their development in time and space (Fig. 2O). 

Identifying the cell types and structures of hair follicles in space and time 
The stop-motion animation clearly conveys a visual sense of hair follicle growth, with newly 
obtained cells and structures marked by the emergence of different keratin genes. To map this 
structural evolution at a cellular level, we first inferred cell boundaries within each follicle. 
3DEEP-FISH, similar to the majority of other spatial transcriptomic methods (Wang et al. 2018; 
Wang et al. 2021), does not preserve exact cell boundaries. To infer approximate boundaries, we 
applied Baysor, an expectation maximization (EM) algorithm that iteratively optimizes inferred 
cell boundaries to maximize transcriptional similarity within each cell (Fig. 3A) (Petukhov et al. 
2022). To minimize the possibility that distinct cells are mistakenly combined into a single 
boundary by Baysor, we used a conservative 5-micron expected cell radius. Across all follicles, 
we obtained a total of 122,059 inferred cells, ranging from 23 (HF196) to 1,826 (HF245), with 
the total number of cells correlating with follicle size (Figs 3B, C). Henceforth, we will refer to 
these inferred cells simply as cells. The average cell contains 16 amplicons (Fig. 3D); the 
average transcript is covered 0.19 times per cell, which is threefold higher than the number of 
UMIs per transcript per cell for the same set of genes in matching scRNA-seq data (Fig. 3E) 
(Han et al. 2018). 

We assigned these cells to different cell types and structures based on their transcript 
composition and spatiotemporal positions in the follicle (Fig. 3F–H). We began by classifying 
cells into fibroblast, melanocyte, and keratinocyte lineages based on their marker genes, as listed 
in Table S1 (Fig. 3G,H). This procedure placed 98.8% of all cells in one of these three lineages; 
the remaining 1.2% were excluded from further analysis. We next assigned cells in each lineage 
to anatomical structures in hair follicles. While the three main lineages have mutually exclusive 
markers, making their identification straightforward (Fig. 1E), their substructures can overlap in 
markers, requiring simultaneous consideration of marker expression, anatomical position, and 
hair follicle stage (Joost et al. 2016; Joost et al. 2020). Firstly, we classified the keratinocytes that 
comprise the inner structures of the follicle because they have the most distinguishable markers 
and occupy contiguous volumes. These structures include the hair shaft at the center, the inner 
root sheath (IRS), which surrounds the hair shaft, and the matrix, located at the base of the bulb 
(Fig. 3F). To identify these three structures, we placed all keratinocytes that expressed the 
structures’ specific marker genes (Table S1) in a three-dimensional space with axes 
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corresponding to their axial position (Z) in their follicle, radial position (R) in their follicle, and 
their follicle’s pseudotime (Methods). We then used density-based clustering in this 3D space to 
classify keratinocytes belonging to each of the hair shaft, IRS, and matrix (Fig. 3I–K). Secondly, 
we classified the remaining keratinocytes, which constitute the outer sheath that envelops the 
follicle from the skin down to the bulb. These cells tend to be similar in transcriptional profiles 
but show slightly different transcriptomes based on their positions within the follicle (Joost et al. 
2016; Joost et al. 2020). We first made pseudobulks of these outer sheath keratinocytes by fusing 
spatiotemporally proximal cells. This process generated 3,160 representative pseudobulks with 
on average 20 cells and 354 amplicons each (Methods). We applied network-based Leiden 
clustering (Traag et al. 2019) to the pseudobulks’ transcriptional profiles to identify five clusters 
(Fig. 3L). Based on the agreement between their transcriptional profiles and previous work 
classifying the outer sheath keratinocytes (Sennett et al. 2015; Joost et al. 2016; Joost et al. 
2020), we classified keratinocytes in each cluster as outer root sheath (ORS), mid-part outer 
sheath (mOS), bulge, suprabasal, and upper hair follicle (uHF) (Fig. 3G,L). These five regions of 
the outer sheath occupy different depths in the follicle, from the ORS, which wraps the bulb, to 
the uHF, which connects to the skin surface (Fig. 3F,G). Thirdly, we classified all the fibroblasts 
in and around the hair follicle. We employed a similar spatiotemporal pseudobulking approach as 
we did for the outer sheath keratinocytes, generating 1,557 representative pseudobulks with on 
average 20 cells and 251 amplicons each. We applied network-based clustering to these 
pseudobulks, which identified four classes of fibroblasts in and around the hair follicle (Fig. 
3M): (1) the dermal condensation or dermal papilla (DC/DP) fibroblasts; dermal condensation 
induces hair formation at early stages and, over time, migrates inside the bulb to form the dermal 
papilla; (2) dermal sheath or reticular (DS/Reticular) fibroblasts, which wrap the outer sheath 
keratinocytes in the reticular layer of the dermis; (3) bulge fibroblasts, which are situated above 
the DS/Reticular fibroblasts and wrap the bulge keratinocytes; and (4) papillary and inter-
follicular (Papillary/IF) fibroblasts, which wrap the outer sheath keratinocytes in the papillary 
layer of the dermis and form the top fibroblast layer beneath the skin surface (Fig. 3F,G). Lastly, 
we classified all melanocytes. We again employed the spatiotemporal pseudobulking approach, 
generating 212 representative pseudobulks with on average 20 cells and 327 amplicons each. We 
applied network-based clustering to these pseudobulks which identified four groups of 
melanocytes in the hair follicle (Fig. 3N). Based on spatial location, we classified the cluster on 
skin surface as “epidermal melanoblasts”, the cluster at the hair bulge as “bulge melanocytes”, 
and the two clusters in the hair bulb as “bulb melanocytes” (Fig. 3F,G).  The bulge melanocytes 
can be considered the same as melanocyte stem cells in later stages of development, whereas the 
bulb melanocytes can be considered mature melanocytes (Zhang et al. 2023).  
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Cellular dynamics of hair follicle formation 
The classification of hair follicle cells into its various structures enabled measuring the growth 
rate of each structure and cell type over time (Fig. 4A–O). The results show the cascades of cell 
type emergence from all three lineages during hair follicle organogenesis (Fig. 4P) with three 
distinct stages. During the first stage, between pseudotimes 0 and 0.2, the follicle is dominated 
by uHF, bulge keratinocytes, papillary/IF fibroblasts, bulge fibroblasts, epidermal melanoblasts, 
and bulge melanocytes. In the second stage, between pseudotimes 0.2 and 0.7, cell type 
complexity of the follicle increases with the formation of the bulb and the ordered emergence of 
suprabasal keratinocytes, ORS, bulb melanocytes, matrix, hair shaft, and IRS, followed by late 
induction of mOS. In the final stage, between pseudotimes 0.7 and 1, the follicle transitions into 
a growth phase, with rapid expansion of mOS, hair shaft, matrix, ORS, IRS, DS/Reticular 
fibroblasts, and DC/DP fibroblasts. The behavior of different cell types is distinct during these 
windows. The uHF, papillary/IF fibroblasts, and epidermal melanoblasts show steady numbers 
throughout. The bulge keratinocytes, bulge fibroblasts, and bulge melanocytes show a burst early 
in follicle development (0-0.2) and remain steady in number thereafter. DS/Reticular fibroblasts, 
DC/DP fibroblasts, suprabasal keratinocytes, matrix, hair shaft, ORS, and bulb melanocytes 
initially increase between 0.2-0.4 and show a second burst in number after 0.7. IRS emerges 
around 0.3 and continues to grow throughout to become the most abundant cell type in the hair 
follicle by pseudotime 1. Finally, mOS emerges around 0.6 and expands rapidly after 0.8. These 
observations capture the complicated dynamics of cell type emergence followed by growth 
during hair organogenesis. They also update the histological descriptions of hair follicle 
formation (Paus et al. 1999; Saxena et al. 2019; Welle 2023). Whereas these analyses had 
suggested that matrix and IRS emerge first, followed by ORS, and then hair shaft, our results 
clearly show that these populations emerge almost concurrently in a short window of time during 
organogenesis at pseudotime 0.2–0.3, with the ORS appearing first (Fig. 4P). A possible 
explanation for this discrepancy is that matrix and hair shaft cells remain small in numbers after 
initial emergence and only expand in the later stages of development. Therefore, histological 
analyses may have only been able to identify these cells after they grow in numbers. Another 
possibility is that molecular changes accompanying the differentiation of these cells precede the 
histological changes, making it challenging for histological approaches to identify their presence 
in the earliest stages of their differentiation. 

 Spatiotemporal dynamics of morphogens  
Our gene panel of 81 genes included 40 morphogens and morphogen receptors. These genes 
represent the changes in the extrinsic environment that the cells in the hair follicle establish and 
experience. We created a spatiotemporal atlas of changes in each morphogen and receptor in the 
hair follicle (Fig. S1) and all annotated structures (Figs. S2 and S3). These data show the 
complex dynamics, in space and in time, of morphogen expression throughout hair follicle 
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organogenesis involving all five targeted morphogen families, namely the Wnt family, the Tgf b 
superfamily, the Notch family, the Igf family, and the Edn family. However, a few distinct 
patterns emerge. First, fibroblasts and keratinocytes show lineage-specific morphogen profiles 
even when in spatial proximity. We divided the pseudotime window into nine bins and averaged 
the expression of all cells from the same hair follicle structure within each bin to calculate 
overall expression level (z-score) and significance (q-value) for each morphogen over time (Fig. 
5A). The results show a more similar morphogen profile between the same cell lineage in 
different structures than between different cell lineages (Fig. 5A). For example, in both the upper 
and lower halves of the hair follicle, Nog and Igf1 are enriched in fibroblasts, whereas Hes1 is 
enriched in keratinocytes (Fig. 5A). This observation indicates that the distinct functional and 
structural roles of different lineages are also reflected in their signaling profiles. Second, 
morphogen patterns are more stable over time in the upper region of the hair follicle compared to 
the lower region of the hair follicle. For example, uHF keratinocytes and bulge fibroblasts 
maintain their overall morphogen profiles over time (Fig. 5A,B). By contrast, DC/DP and matrix 
show extensive temporal dynamism in their morphogen profiles (Fig. 5A,B). We quantified this 
dynamism by calculating the variance of z-scores over pseudotime for the enriched morphogen 
genes in each structure (Fig. 5C). The result indicates that uHF morphogen expression is the 
most stable over time with the lowest variance in mean expression levels, while lower part 
structures, including DC/DP, DS/Reticular fibroblasts, and ORS, show the highest variations in 
morphogen gene expression. When average variance corresponding to each structure was 
grouped for upper and lower structures, the overall variance was significantly higher in the lower 
part (Fig. 5D). This contrast in morphogen dynamism between the upper and lower halves of the 
follicle is reflected in their structures as well. For example, the papillary/IF and bulge fibroblasts 
in the upper parts of the follicle occupy stable locations that minimally change over time (Fig. 
5E), whereas DC/DP, IRS, and matrix in the bulb region show extensive structural changes over 
time (Fig. 5E). This contrasting behavior of the upper and lower hair follicle during development 
matches the mature hair follicle wherein the upper part does not change visibly and the lower 
part is continuously remodeled during the hair life cycle (Schneider et al. 2009). Therefore, these 
results suggest that the foundation for the divergent behavior between the upper and lower parts 
of the hair follicle in the adult stage is laid during ontogeny. Third, a signaling hub is 
distinguishable on each end of the follicle. In the upper part of the hair follicle, uHF 
keratinocytes are enriched in 12 out of the 40 morphogen-related genes tested across the 
developmental window; no other upper-half structure is enriched in more than 7 (Fig. 5B). In the 
bulb region, DC/DP fibroblasts are enriched in 22 different morphogen-related genes at some 
point in the developmental window, which is the highest among all structures (Fig. 5B). DC/DP 
is well-known as a dynamic signaling niche during hair follicle formation and cycling. Our 
results capture DC/DP’s dynamism as a shift from Bmp3, Bmp4, Bmp7, Dll1, and Igf1 signaling 
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genes to Gdf10, Igf2, Nog, Tgfb2, and Wnt5a over the course of hair follicle organogenesis. 
Taken together, these results are consistent with a model in which the stable upper hair follicle is 
maintained by a stable signaling center in uHF keratinocytes, and the dynamic lower follicle is 
guided by a dynamic signaling center in DC/DP. 

The changes in morphogen expressions were not restricted to DC/DP. Hair follicle structures that 
grow significantly over time show more extensive changes in morphogen expression. We 
identified these changes by calculating the correlation between the number of cells in each 
structure and the expression levels of each morphogen within that structure (Fig. 5F, Figs. S1–
3). Many growing structures, namely IRS, hair shaft, matrix, ORS, DS/Reticular fibroblasts, and 
DC/DP, show either a negative or a positive correlation between cell numbers and morphogen 
expression for most morphogens (Fig. 5F), capturing a shift from a set of signaling pathways 
(i.e., the negatively correlated) to another set (i.e., the positively correlated) over time and upon 
growth.  For example, the formation and growth of IRS involves a shift from Notch signals (see 
Notch2, Hes1, Jag1, Dll1 in Fig. 5C), canonical Wnt signaling (Axin2), and a subset of Bmp 
signaling (see Bmp1, Bmp3, and Bmp4) to Bmp2, Wnt5, and Noggin (Fig. 5F). These results are 
unique in mapping a large number of morphogen genes over space and time during the 
development of an organ. They capture the broad and dynamic changes in morphogen signaling 
and extrinsic cues during organ development that accompany differentiation, growth, and 
morphogenesis. 

Formation of the hair follicle canal and opening 
The formation of the hair canal inside the follicle is a drastic morphological transformation 
during its development that prepares it for its eventual function – hair production. Most 
histological annotations place the hair follicle opening in Stage 6 (Paus et al. 1999; Saxena et al. 
2019; Welle 2023), after the end of hair organogenesis. However, the structural changes 
associated with this process are poorly understood. Mutant mice incapable of forming the hair 
shaft still form the canal and opening of the follicle, demonstrating that these events are 
independent of hair shaft growth (Vidal et al. 2005; Nowak et al. 2008). Instead, canal and 
opening formation are believed to involve rearrangement and apoptosis of Krt79-positive 
(Krt79+) keratinocytes at the center of the upper hair follicle (HARDY 1949; PINKUS 1958; 
Mesler et al. 2021). We analyzed raw 3DEEP-FISH images around the epidermis and observed 
openings, or ostia, in late-stage follicles (Fig. 6A). We then measured the fraction of open 
follicles over time. The results show that follicles open in the 0.65–0.85 pseudotime range: no 
follicles were open before 0.65, half were open between 0.7–0.8, and all were open after 0.85 
(Fig. 6B). We then evaluated the dynamics of this opening process by measuring the radial 
distribution of Krt79+ cells at the skin surface in pseudotime 0.5–1.0. The results show that the 
diameter of the opening grows at a steady rate between 0.7 and 0.9 (Fig. 6C); after 0.9, follicles 
reach a maximal opening diameter of ~25 microns. 
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To visualize the morphological changes associated with opening and canal formation, we divided 
the pseudotime range between 0.5 and 1.0 into ten bins of 0.05 and overlaid hair follicle 
structures within each bin, focusing on keratinocytes around the emerging canal (Fig. 6D). The 
results show that the hair canal and opening form before the hair shaft grows into the canal. This 
opening process involves three structural rearrangements in rapid succession. First, the center of 
the uHF starts opening in pseudotime 0.7 (Fig. 6A,C). Second, IRS gradually transforms from a 
cylinder into a cylindrical shell, with the transition occurring most rapidly at pseudotime 0.8 and 
the inner diameter of the shell reaching approximately 15 microns by pseudotime 1 (Fig. 6D–F). 
Third, IRS starts to move downwards into the dermis after pseudotime 0.8 (Fig. 6D,G). This 
downward movement results in opening of the hair follicle below the bulge area (Fig. 6D). It is 
not due to the IRS shrinking – IRS continues to grow in length during this time (Figs 4F and 
6H); rather, the growth of the outer sheath, in particular its ORS and mOS regions, results in the 
overall hair follicle lengthening more rapidly than IRS, thereby pushing it downward into the 
dermis (Fig. 6G,H). Overall, these results suggest that hair follicle ostia and canal formation start 
from its top, at the epidermal level, and propagate downward towards the emerging hair shaft. 

We also analyzed the molecular changes associated with hair follicle opening and canal 
formation. IRS shows a significant increase in Bmp2 and decrease in Axin2 expression around 
pseudotime 0.75 (Wilcoxon rank-sum test, p-value < 0.01) (Fig. 6I). Soon after, IRS undergoes a 
significant reduction in the expression of the Wnt3a (p-value < 0.05) (Fig. 6I). These changes 
appear to coincide with the IRS transformation from a cylinder into a cylindrical shell. Finally, 
near the conclusion of its structural transformation at pseudotime 0.9, IRS undergoes a 
significant reduction in Tgfb1 expression (p-value < 0.05)(Fig. 6I). Overall, these results identify 
signaling shifts in IRS keratinocytes that coincide with hair follicle canal and ostia formation.   

Tracing melanocytes stem cells, keratinocyte stem cells, and their niche 
Mature hair follicles regenerate throughout the lifespan, undergoing cycles of regression 
(catagen), quiescence (telogen), and regrowth (anagen). Their ability to regrow requires resident 
stem cells, which are quiescent during most of their life cycle but are activated at the outset of 
anagen to create progenitors of the growing follicle. Two main stem cell populations have been 
characterized in the hair follicle (Lee and Choi 2024). First, melanocyte stem cells, which 
regenerate the mature melanocytes that pigment the hair shaft. Second, keratinocyte stem cells, 
which regenerate various keratinocyte-derived structures (Fig. 3F). Both stem cell populations 
reside in the bulge region of the follicle, which does not undergo destruction during catagen (Ito 
et al. 2004). We sought to leverage our spatiotemporal map of hair organogenesis to investigate 
the origins of these two stem cell groups and their niche. 

Cells of melanocyte lineage reside in three locations within the follicle at the latest stage of 
organogenesis captured in our data: in the epidermis, in the bulge, and in the bulb (Figs. 3F,G 
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and 7A,B). Melanocytes that reside in the bulge are the stem cells (Nishimura et al. 2002). 
Tracking the history of these cells back in time to the earliest stages observed in our data 
provided insights into their history. Before pseudotime 0.2, cells of melanocyte lineage are 
uniformly distributed throughout the hair follicle (Fig. 7A,B). This pattern is consistent with 
their migration from the epidermis into the follicle (Vandamme and Berx 2019). However, after 
pseudotime 0.2, these cells stabilize into their eventual locations in the bulge and the bulb, 
signaling an end to active migration and separation of their fate from migratory melanoblasts into 
quiescent melanocyte stem cells in the bulge and proliferative mature melanocytes in the bulb. 
Consistent with this conclusion, we observe proliferation of bulb melanocytes after pseudotime 
0.4, whereas bulge melanocytes remain steady in numbers (Fig. 4N,O). Overall, these results 
indicate that future melanocyte stem cells reach the bulge area prior to pseudotime 0.2, which 
precedes the genesis of lower follicle structures (i.e., IRS, matrix, hair shaft). During the 
formation of bulb structures, these melanocyte populations separate into distinct bulge and bulb 
regions. 

Keratinocyte stem cells, similar to their melanocyte counterparts, reside in the bulge area. 
However, unlike the melanocyte stem cells, they are a heterogeneous population in which 
different subpopulations are biased toward regenerating different areas of the hair follicle during 
anagen (Trempus et al. 2007; Jaks et al. 2008; Lee et al. 2008; Nowak et al. 2008; Jensen et al. 
2009; Snippert et al. 2010; Brownell et al. 2011; Polkoff et al. 2022). Several marker genes 
specific to these cells have been described: Cd34, Gli1, Lgr5, Lgr6, and Lrig1. The inclusion of 
all these markers among the panel of 81 genes in this study enabled us to characterize their 
spatial distribution and history (Fig. 7C–G). We observed that Lgr5+ and Lgr6+ stem cells are 
the least proliferative, suggesting they are quiescent in nature, while Lrig1+ proliferate rapidly 
during the capture window of time, suggesting that they may be generating the cell types that 
nascently emerge during follicle growth (Fig. 7H). Interestingly, while all these markers show 
localization to the bulge area, their exact positions are slightly different (Fig. 7C–G). Lrig1, 
Lgr6, and Cd34 localize to the upper bulge area closer to the epidermis, whereas Gli1 and Lgr5 
localize to the lower bulge area (Fig. 7I). While our dataset does not have the resolution to 
distinguish all stem cell subpopulations, this observation suggests that different keratinocyte 
stem cell populations are spatially stratified in the bulge. Moreover, all these markers are present 
in the follicle prior to pseudotime 0.2 (Fig. 7C–G), and their relative positions are maintained 
throughout organogenesis (Fig. 7I). These observations suggest that keratinocyte stem cell pools 
occupy their niche very early in hair follicle formation. We also assessed the spatiotemporal 
distribution of Col17a1 (Fig. 7J), a stem cell niche marker required for the proper function of 
both keratinocyte and melanocyte stem cells (Tanimura et al. 2011). Col17a1-positive 
keratinocytes were previously reported in the epidermis and the bulge (Tanimura et al. 2011). 
Our results recapitulate these reports and further indicate that Col17a1 starts to be expressed in 
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the bulge before pseudotime 0.2. Taken together, these results suggest that both melanocyte and 
keratinocyte stem cells, as well as the niche supporting them, are established at the outset of hair 
organogenesis and maintained thereafter. 

We asked whether other genes among our targeted panel are associated with stem cells versus 
their niche in the bulge. Unlike dissociated scRNA-seq, our data can separate bulge keratinocytes 
that are positive for the five stem cell markers from those that are negative. The results show that 
keratinocytes in the bulge that are positive for stem cell markers are most enriched for Krt79, 
followed by Tgfb3, Krt17, Bmp7, Krt14, and Ednra (Fig. 7K). The other keratinocytes in the 
bulge, which presumably help form the niche for these stem cells, are most enriched for Gata3. 
Enrichment of Col17a1 is observed in both stem and niche keratinocytes (fold change = 1.0 in 
stem vs. non-stem). These results suggest that differences in signaling pathway activity exist 
between stem and non-stem keratinocytes in the bulge region. 

Discussion 

In this study, we mapped the development of the most abundant mini organ, the hair follicle, 
over time and space using a novel spatial transcriptomics technology. We developed a targeted 
spatial transcriptomic approach, called 3DEEP-FISH, for characterizing tissue blocks as thick as 
400 microns. We used this approach to analyze intact newborn mouse skin in which hair follicles 
develop asynchronously. Through analyzing RNA content of the tissue alone, we captured 
hundreds of follicles in different stages of formation to create an animated atlas of their 
development across time and space. Based on this atlas, we characterized the emergence and 
growth dynamics of different tissues within the hair follicle, mapped morphogen changes over 
time and space, and dissected structural changes leading to hair follicle opening. 

3DEEP-FISH strategy creates a medium that is clear for both imaging and reagent diffusion at 
depths by casting RNA in a hydrogel using padlock probes and removing genomic DNA along 
with proteins and lipids (Fig. 1). We applied this approach to blocks as thick as 400 microns; 
however, we expect the approach to work for thicker blocks with increases in diffusion times and 
reagent concentrations. While we detected target transcripts by implementing a padlock-based 
strategy (Chen et al. 2018; Gyllborg et al. 2020), the casting and clearing approach of 3DEEP is 
broadly applicable to in situ transcriptomic approaches (Wang et al. 2018; Kalhor et al. 2024) 
and is likely to improve sensitivity as well as reachable depths. Moreover, 3DEEP is 
straightforward to integrate with tissue expansion (Chen et al. 2015; Alon et al. 2021). Together 
with ongoing advances in increasing the capabilities of spatial transcriptomic approaches in 
characterizing thicker tissue sections (Fang et al. 2023; Gandin et al. 2024 Jan 1; Sui et al. 2024 
Jan 1), 3DEEP enables molecular analysis of microscopic cellular structures that, like the hair 
follicle, are complex along all axes. 
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Using spatial transcriptomics addressed the key challenges in characterizing hair follicle 
formation – their asynchronous development and microscopic complexity – as we sampled 
hundreds of follicles at different stages of development in 3D (Fig. 2). Because their 
transcriptional profile reflected their age, we were able to leverage their asynchronicity from a 
challenge into an asset by ordering them along their developmental trajectory. This process 
resulted in a spatiotemporal atlas that animates hair follicle organogenesis from its induction to 
maturation. It is important to note that our ability to target highly informative genes depended on 
the wealth of information generated by prior studies (Sennett et al. 2015; Joost et al. 2016; Ge et 
al. 2020; Joost et al. 2020). While other spatiotemporal atlases have been generated by sampling 
multiple timepoints in development (Cao et al. 2019; A. Chen et al. 2022; Liu et al. 2022; 
Sampath Kumar et al. 2023), this work is unique in its temporal resolution, effectively hundreds 
of time points, which enables one to virtually track structures over time. A similar feat has only 
been accomplished before without a 3D context and by ordering hundreds of embryos based on 
morphology prior to dissociation and single-embryo scRNA-seq (Mittnenzweig et al. 2021; 
Saunders et al. 2023). 

Our work captures how the organogenesis phase of the hair follicle results in the emergence of a 
complex structure and multiple tissues from a simple dermal placode (Figs. 3 and 4). While 
previous histological studies have divided this phase into five stages (Histological Stages 2–6), 
we conceptualize our animated spatiotemporal atlas here into three Molecular Stages (Fig. 8). In 
the first Molecular Stage, between pseudotimes 0 and 0.2, progenitor cells from all three lineages 
establish along the main axis of the follicle to form structures and stem cells necessary for 
formation and long-term maintenance of the follicle. The structures include the dermal 
condensation at the bottom and uHF at the top of the follicle, which establish its longitudinal 
axis. The stem cells, which position themselves between the dermal condensation and uHF in the 
future hair bulge, include keratinocyte stem cells and melanoblasts which migrate from the skin 
surface. They stratify in heterogeneous layers at this stage (Fig. 7). The second Molecular Stage, 
between pseudotimes 0.2 and 0.7, is marked by differentiation and histogenesis of tissues that 
undergo destruction and rebirth during the cyclical regenerative life cycle of the hair follicle. 
Several new tissues that are necessary for growing the hair follicle and generating hair strands 
emerge at 0.2-0.3. These include the DS/reticular fibroblasts, ORS, IRS, hair shaft, matrix, 
followed by late onset of mOS at 0.6. At this stage, melanocytes are spatially delineated into 
bulge and bulb melanocytes, settling into their future positions upon the bulb formation. Their 
orchestrated emergence is a fine example of differentiation and histogenesis in development 
made possible by germ cells from distinct lineages laying a foundation in an earlier stage. The 
third Molecular Stage, between pseudotimes 0.7 and 1, is marked by coordinated growth and 
morphogenesis, when now-formed structures change their morphologies to enable the organ’s 
main eventual function: hair production. During this stage, a marked increase in the growth of 
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the structure can be detected which is largely driven by the expansion of mOS, ORS, and IRS. 
As a hallmark of morphological changes, the opening and the canal of the follicle develop 
through coordinated changes in multiple tissues within the hair follicle (Fig. 6).  

It is not straightforward to establish the correspondence between the three Molecular Stages we 
define here and the five Histological Stages defined previously (Schneider et al. 2009) because 
our results revise the order of events and provide additional information about cellular dynamics 
that are unattainable without capturing entire follicles. Specifically, we show that ORS emerges 
first, followed by near-simultaneous inductions of matrix, hair shaft, and IRS. It was previously 
thought that the matrix emerges first, followed by the gradual acquisition of IRS, ORS, and hair 
shaft.  

Another unique feature of this work is characterizing a large set of morphogen genes in their 
spatial context during organ formation. Changes in morphogen expression can be captured in 
scRNA-seq approaches; however, critical information about whether cells in a given location are 
changing their morphogen expression patterns over time or new cells with a different profile are 
emerging are lost. The spatial context here allowed us to cluster cell types based on both their 
transcriptional profile and their position in time and space, which captured morphogen 
expression changes in structures that are spatiotemporally contiguous (Fig. 5). While it is not 
possible to characterize the function of morphogens in this type of data, two interesting insights 
emerged from analyzing their spatial distribution. The first insight is the enrichment of uHF and 
DC/DP, which occupy the bottom of the bulb at the opposite end of the follicle’s long axis, in 
morphogen expression compared to their surrounding structures. The uHF at the top of the 
follicle is stable in its morphogen profile whereas DC/DP evolves extensively over time. This 
observation is interesting because there are more changes during organogenesis in the bulb area 
of the follicle than there are in the upper parts. Even after the follicle matures, it is known that 
the upper parts remain steady as the bulb area undergoes destruction and regeneration around the 
DC/DP during the hair cycle (Schneider et al. 2009). Considering that 1) both DC/DP and uHF 
emerge very early in hair follicle formation, 2) they are positioned at the extremes of the follicles 
main axes, 3) they are enriched in morphogens, and 4) their molecular behavior (i.e., stability 
versus change) presages the behavior of their anatomic neighborhood, we propose that these 
regions are the main organizers of the hair follicle. This hypothesis expands on the established 
view of the DC/DP as a main regulator of hair follicle development and growth (Driskell et al. 
2011; Morgan 2014). It also suggests the possibility that regeneration of mature hair after its 
destruction during catagen may involve a sequence of events similar to the second and third 
Molecular Stages during its initial formation. However, this hypothesis must be explicitly tested 
in future studies of hair regeneration.  
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The second interesting pattern that emerged from morphogen analysis is the extensive 
morphogen shifts in many subpopulations over time (Fig. 5). In general, we broadly observed 
that morphological changes accompanied extensive shifts in morphogen expression profiles. 
While morphogens have been historically associated with morphological changes, what is 
striking here is the multiplicity of shifts observed, involving several signaling pathways 
coordinated in distinct subpopulations. We hypothesize that such shifts are commonplace during 
the formation of other organs and across development but may be underappreciated due to the 
low throughput nature of the approaches commonly used to track them. 

A few limitations must also be considered when interpreting this spatiotemporal atlas of hair 
follicle organogenesis. First, these results are based on 81 genes. While these are highly 
informative genes selected based on the depth of literature in this field and the wealth of scRNA-
seq data, it is possible that they do not capture all information and that some tissues or cell types 
may be missed. Another limitation is that the different subtypes of hair follicles have not been 
identified here. For example, the first wave of hair follicle induction in mice primarily leads to 
guard hairs, the second wave primarily to awl hairs, and the third wave to zigzag hairs. While we 
expect these types to have very similar organogenesis stages because of the shared 
compartmental structures with few exceptions (Schlake 2005), it is possible that the 
developmental trajectory presented here could be further deconvolved into multiple follicle 
subtypes. Another limitation is the lack of detailed lineage information required for 
understanding the exact origin of tissues that emerge during hair follicle organogenesis. 
Addressing this limitation would require incorporating high-throughput lineage barcoding 
approaches (Kalhor et al. 2018) and is likely to significantly advance our understanding of the 
cell fate hierarchy during hair follicle formation (Fang et al. 2022). Finally, pseudotime may not 
have a linear relationship with real time. Therefore, our conclusions about the dynamics of hair 
follicle growth may be distorted compared to real-time measurements. 

Taken as a whole, this study generates an animated atlas of a whole organ’s genesis by 
integrating time and space using a new spatial transcriptomic approach. This atlas advances our 
understanding of hair follicle formation and has broad implications for dermatology research. It 
also deepens our understanding of developmental processes in general because different organs 
develop based on similar fundamental principles. 
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Materials and Methods 

Mouse 
C57BL/6J mice (Strain #:000664) were purchased from Jackson Lab. Mice were housed at Johns 
Hopkins Animal Facility. Animal procedures were approved by the Johns Hopkins University 
Animal Care and Use Committee (ACUC). Mice were housed in cages on a 12 hour light–dark 
cycle with accessed water and rodent diet. Animals were monitored by facility staff and 
researchers. They were euthanized according to institutional guidelines, and death ensured with a 
secondary means before tissue collection.  

Chemicals and enzymes 
All chemicals and enzymes are listed here with the manufacturer and catalog number. DMSO, 
anhydrous (Biosciences, #786-1666), 10x PBS, pH 7.8 (Bio-Rad, #1610780), 10x PBS, pH 7.4 
(Quality Biological, #119-069-131), 1M Tris-HCl, pH 8.0 (Quality Biological, #351-007-101), 
20% SDS (Research Products Internatioal, #151-21-3), 1M Tris, pH 7.0 (Invitrogen, 
#AM9850G), 0.5M EDTA, pH 8.0 (Invitrogen, #AM9260G), Triton X-100 (Sigma-Aldrich, 
#T8787-100ML), Glycerol (Fisher BioReagents, #BP229-1), Ethanol (Fisher BioReagents, 
#BP2818-500), Acetic Acid (Sigma-Aldrich, #A6283-500ML), Formamide (Sigma-Aldrich, 
#47671-250ML-F), Sucrose (Sigma-Aldrich, #S7903-1KG), O.C.T. compound (Tissue-Tek, 
#4583), Methanol (Sigma-Aldrich, #179337-1L), 20x SSC (Promega, #V4261), VWR Micro 
Slides (VWR North American, #48300-026), Cover Glass (Corning, #2850-18), Microseal B seal 
(Bio-Rad, MSB1001), GlassBottom Dish (Cellvis, D60-30-1.5-N), 16% Formaldehyde(Thermo 
Scientific, #28908), ½ ml Syringe (BD, #305620),  PMSF (Cell Signaling Technology, #8553S), 
DNase I and DNA Digestion Buffer (New England Biolabs, #M0303L), Salmon Sperm DNA 
(Invitrogen, AM9680), Proteinase K (New England Biolabs, #P8107S), SplintR and SplintR 
ligase Reaction Buffer (New England Biolabs, #M0375L), Phi29 DNA Polymerase and Phi29 
DNA Polymerase Reaction Buffer (New England Biolabs, #M0269L), Thermostable Inorganic 
Pyrophosphatase (New England Biolabs, ,#M0296L), RNase Inhibitor Murine (New England 
Biolabs, #RNase Inhibitor Murine), Acryloyl-X (Invitrogen, #A20770),  Bind Silane (Millipore 
Sigma, #M6514-25ML), Acrylamide (Bio-Rad, #1610140), Bis-Acrylamide (Bio-Rad, 
#1610142), N,N,N',N'-Tetramethylethylenediamine (TEMED, Sigma-Aldrich, #T7024-50ML), 
Ammonium Persulfate (APS, Sigma-Aldrich, #A3678-100G), Deoxynucleotide (dNTP, New 
England Biolabs, #N0447S),  N,N'-(1,2-Dihydroxyethylene)bisacrylamide (Trolox, Sigma-
Aldrich, #294381-5G), Beta-mercaptoethanol (Sigma-Aldrich, #M6250),  5-AA-2'-dUTP 
(TriLink, N-2049), DAPI (Invitrogen, #D1306). All oligos were ordered from Integrated DNA 
Technologies. 

3DEEP-FISH for RNA detection in liver 
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3DEEP-FISH 

Ten-week-old male C57BL/6J mice were sacrificed using CO2. The harvested liver was trimmed 
to a size of 0.5 cm x 0.5 cm to facilitate PFA diffusion. The trimmed tissue was washed in PBS 
and incubated in ice-cold 4% formaldehyde/1x PBS, pH 7.4, overnight at 4°C. The fixed samples 
were washed with PBS (pH 7.4), followed by immersion in 15% sucrose and then 30% sucrose 
solutions at 4°C until the samples sank in the sucrose solutions. The samples were then 
embedded in O.C.T. compound, which was solidified using liquid nitrogen. The samples were 
sectioned at 400 μm using a Cryostat (LEICA CM1860). The slices were transferred to 100% 
methanol. The methanol-fixed samples were stored at -70°C until use. 

Two liver slices were treated with or without DNase I for subsequent 3DEEP-FISH processing. 
The stored samples were transferred to a 1.5 ml tube containing 1 ml of 2% SSC/8% SDS 
solution and incubated at 37°C for 30 minutes with a tube rotator. All procedures described in 
this paragraph were performed with a tube rotator. This wash step was repeated twice. To 
permeabilize the nuclear membrane, the samples were further incubated in 1 ml of 
permeabilization solution (2x SSC, 8% SDS) overnight at 37°C. To quench the SDS solution, the 
samples were incubated in 1 ml of quenching solution (2x SSC, 2% Triton X-100) at 37°C for 1 
hour. The solution was then replaced with DNase I buffer (1x DNA digestion buffer, 2% Triton 
X-100), and the samples were incubated again at 37°C for 1 hour. For the DNase+ control, 
genomic DNA in the sample was digested by incubating the sample in 1 ml of DNase I solution 
(1x DNA digestion buffer, 2% Triton X-100, 800 U RNase inhibitor murine, and 400 U DNase I) 
overnight at 37°C. The DNase- control was incubated in the buffer solution overnight at 37°C. 
The DNase I solution was quenched with 2x SSC/8% SDS solution at 37°C for 2 hours. 

Following gDNA inactivation, we hybridized the RNA in the samples with a padlock oligo. The 
samples were incubated in 1 ml of hybridization buffer (2x SSC, 20% formamide, 8% SDS, and 
20 μg salmon sperm DNA) at 37°C for 1 hour, followed by incubation in the padlock probe 
hybridization solution (2x SSC, 20% formamide, 8% SDS, 200 nM Apoa2-targeting padlock 
oligo 
[/5Phos/AGGTTCATTAAACTGCTGAACATAACAACAAAACAACCTCATTATCTCTCCA
CACACACTCCTCTCACTCAGGAGCCGGTTTCTCCTCA], 500 nM acrydite-modified RCA 
primer [/5Acryd/AGTGAGAGGAGTGTGTGTG], and 10 μg salmon sperm DNA) at 37°C for 5 
days. The samples were then washed with 1 ml of 1x SSC/0.5% SDS solution at 37°C for 1 hour, 
twice. 

To anchor the hybridized RNA and replace the tissue structure with hydrogel, we initiated the 
gelation step. A 1 ml monomer solution (10% acrylamide, 0.02% bis-acrylamide, 2x SSC) was 
prepared. First, the samples were washed with 500 μl of the monomer solution at room 
temperature for 30 minutes. The remaining monomer solution was bubbled with argon gas to 
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remove oxygen, which inhibits the acrylamide polymerization reaction. To activate the prepared 
monomer solution, 2 μl of RNase inhibitor murine, 4 μl of 5% TEMED, and 4 μl of 5% APS 
solutions were added to 200 μl of the argon gas-bubbled monomer solution. The samples and the 
activated monomer solution were mixed on a glass slide. A coverslip was placed on the samples 
to form the gel by sandwiching the samples between the glass slide and coverslip. The samples 
were incubated at 37°C for 1 hour, allowing the gel to solidify sufficiently. 

After confirming the formation of a gel, we degraded the tissue structure using Proteinase K. A 
digestion buffer (50 mM Tris-HCl, pH 7.0, 1 mM EDTA, 2x SSC, 2% SDS) was prepared 
beforehand. Occasionally, the digestion buffer was prewarmed because 2% SDS can precipitate 
in the 2x SSC solution. The samples were transferred to the Proteinase K solution (100 μl of 
Proteinase K, 900 μl of the digestion buffer) and incubated at 37°C overnight with gentle 
rotation. To quench the Proteinase K and SDS, the samples were washed with 1 ml of quenching 
solution (2x PMSF, 2x SSC, 0.1% Triton X-100) at room temperature for 30 minutes. The wash 
step was repeated with 2x SSC/0.1% Triton X-100 at room temperature for 30 minutes, twice, 
and then with 2x SSC at room temperature for 30 minutes, three times. 

Following the gelation and tissue degradation, ligation and RCA steps were performed to 
amplify oligos using the hybridized padlock probe as a template. First, the samples were briefly 
washed with ligation buffer (1x SplintR ligase reaction buffer) twice. The samples were then 
incubated at 37°C for five hours in 500 μl of SplintR reaction solution (1x SplintR ligase reaction 
buffer, 200 U RNase inhibitor murine, 625 U SplintR) to ligate the padlock probes. Following 
this, the samples were washed with 1x phi29 DNA Polymerase Reaction Buffer, twice. The 
samples were incubated in 200 μl of RCA solution (1x phi29 DNA Polymerase Reaction Buffer, 
0.1 mg/ml recombinant albumin, 500 μM dNTP, 4 U thermostable inorganic pyrophosphatase, 
80 U phi29) at 30°C under agitation. 

The amplified concatemers from the RCA reaction were detected with a fluorescent probe 
(CATAACAACAAAACAACCTCATTATCTCTC/3AlexF647N/). The samples were washed 
briefly with 2x SSC and equilibrated in 2x SSC/20% formamide. The samples were incubated in 
a dye probe solution (2x SSC, 20% formamide, 500 nM dye probe, 5 μg/ml DAPI) at room 
temperature in a dark environment for 2 hours. The samples were then washed with PBS at 37°C 
for 5 minutes, four times. Finally, the samples were imaged using a Nikon Eclipse Ti2 confocal 
microscope with a 25X silicone oil-immersion objective (CFI Plan Apochromat Lambda S 
25XC, NA:1.05, 599 μm x 599 μm in FOV). 

Image analysis 

The obtained images were denoised using Nikon denoise.ai, followed by deconvolution function 
within Nikon NIS-Elements. The background signals were subtracted using the default rolling 
ball background subtraction function in NIS-Elements. The preprocessed images were then used 
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to detect amplicons with the Big-FISH pipeline (Imbert et al. 2022) (https://github.com/fish-
quant/big-fish). The signal-to-noise ratio was calculated by dividing the intensities of the 
amplicons by the standard deviations of disks within 7 to 10 μm of each amplicon. 

Marker gene selection 
Candidate marker genes were selected based on a review of relevant literature. Among these 
candidates, a minimal gene list was curated by confirming their expression and specificity using 
single-cell RNA sequencing data (GSE131498). Since dataset GSE131498 included E13.5, 
E16.5, and P0 mouse samples, P0 murine dorsal skin cells (5065 cells) were extracted for this 
study. To distinguish major skin cell types (keratinocytes, fibroblasts, melanocytes, lymphocytes, 
adipocytes, and schwann cells), a minimal gene set was selected, ensuring that at least two 
marker genes were assigned to each cell type. Other cell types, such as lymphatic vessels, were 
excluded from the analysis due to low marker gene expression levels in the single-cell dataset. 
For example, Prox1, a well-characterized lymphatic vessel marker gene, had fewer than 0.01 
reads on average across the cells. As a reference, Krt14 and Krt15, which are widely expressed 
keratin genes in keratinocytes, had 1.5 and 1.2 reads on average per cell, respectively. We 
prioritized marker genes within a similar expression range. The literature and databases used for 
gene curation are summarized in Table 1. Single cells were classified with the candidate marker 
genes using scSorter (Guo and Li 2021), and the clusters of cell types were visually inspected. 
To minimize the number of genes used in the study, we manually excluded non-specific or less-
abundant marker genes. 

After selecting cell type markers, we further curated keratin genes for annotating hair follicle 
substructures. Joost et al. extensively curated keratin gene expressions in these substructures 
(Joost et al. 2016; Joost et al. 2020). Among the 33 reported keratin genes, 12 keratin genes 
(Krt5, Krt14, Krt15, Krt16, Krt17, Krt25, Krt27, Krt28, Krt32, Krt35, Krt71, and Krt79) had 
more than 0.01 reads per cell in the single-cell dataset. These genes are enriched in the outer 
sheath, IRS, and hair shaft/cortex of hair follicles. We adopted 8 of these keratin genes to detect 
these major structures. Some keratin genes were excluded due to non-specificity or overlapping 
expression patterns with other keratin genes. Additionally, a few marker genes were added for 
their specific expressions (e.g., Krt6a in the middle outer sheath) and supplemental structural 
information (e.g., Mt1, expressed in the epidermis, ORS, and matrix, and Gaba3, expressed in 
the epidermis and IRS, related to keratinocyte fate determination). 

To broaden the research scope, we included stem cell marker genes and morphogen genes. Stem 
cell marker genes with evidence of hair regeneration capabilities were curated (Jaks et al. 2008; 
Lee et al. 2008; Snippert et al. 2010; Brownell et al. 2011). We also included stem cell marker 
genes used in lineage tracing studies and those with functional relevance to stem cells (Nowak et 
al. 2008). For morphogen analysis, we focused on the Wnt, Tgf, Notch, Igf, and Edn families due 
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to genetic evidence supporting their roles in hair development, cycling, and regeneration (Millar 
et al. 1999; Lin et al. 2000; Reddy et al. 2001; Blanpain et al. 2006; Inoue et al. 2009; Tanimura 
et al. 2011; Kandyba and Kobielak 2014; Wang et al. 2014; Lim et al. 2016; Rezza et al. 2016; 
Issa et al. 2017; Trüeb 2018; Bao et al. 2020; Daszczuk et al. 2020; Hochfeld et al. 2021; Li et al. 
2022; Simonson et al. 2022; Jacob et al. 2023). Morphogen genes with low expression in the 
single-cell dataset were excluded from the analysis. Some stem cell-related and morphogen 
genes were used as markers for keratinocyte/fibroblast substructures (e.g., Shh for keratinocyte 
matrix). These genes were also utilized for cell type/substructure annotations when necessary. 

Padlock probe design 
The padlock probe consists of two 20-nt complementary sequences at the 5' and 3' ends, which 
bind to the target RNA sequence. The linker sequence includes a 19 nt RCA primer binding 
sequence [CACACACACTCCTCTCACT], an 18 nt HybISS bridge probe binding sequence, and 
a 2 nt gap sequence between the RCA primer binding sequence and the bridge probe binding 
sequence. 

Using a curated list of marker genes, RNA sequences were obtained from the NCBI gene 
database, specifically using the RefSeq Select RNA sequences. From these sequences, 40 nt 
candidate RNA sequences were selected by applying a simple threshold: GC content between 
40% and 60% for each 20 nt complementary sequence. For the generated 40 nt candidate target 
sequences, the BLAST command pipeline was used to detect homologous sequences to identify 
possible non-specific targets. For each suggested non-specific target, the melting temperature 
was estimated using the Biopython MeltingTemp module. The number of significant non-
specific targets was determined by applying a melting temperature threshold of 45°C. The 
melting temperature of the true positive targets was similarly estimated using the same package. 

Given the candidate sequences, GC content, the estimated number of non-specific targets, and 
the melting temperature of the padlock oligo candidates, we selected favorable probes with 0 
non-specific targets, 40% to 60% GC content, and non-repetitive sequences, excluding 
candidates with CCCC, GGGG, and/or GCGCGCGC motifs. Since we generally obtained more 
than five probes per gene, we further applied distance clustering to the padlock probe candidates 
based on their target sequence coordinates on the chromosome. This step was taken to select 
evenly distributed padlock probe pools, enhancing the chances of probing multiple exons. Five 
probes were selected for each gene, and these probes were synthesized using the IDT oPools 
service with 5' phosphorylation. When fewer than five candidate probes were available, the 
maximum number of probes was designed for the genes. 

The bacterial ribosomal RNA-targeting padlock probes were manually designed. The 16S 
ribosomal RNA sequence was obtained from the NCBI gene database (NR_024570.1). To probe 
conserved sequences across bacterial species, each 24-mer was extracted from NR_024570.1 and 
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searched against bacterial species with identical sequences using the BLAST command pipeline. 
The 16S ribosomal RNA database (Bacteria and Archaea type strains) was used for this analysis. 
We confirmed 26,810 sequences in the database and calculated the percentages of detected 
sequences for each 24-mer. The highest detection percentage was 85%, followed by 75%. To 
increase the melting temperature of the probe bindings, we adjusted the lengths of the probe 
binding sequences. Since rRNA sequences are also conserved in mammalian rRNA, we checked 
the mouse rRNA sequences to ensure that the designed probes do not recognize mouse rRNA. 
Similar to the marker gene padlock probes, the bridge probe binding sequence and RCA primer 
binding sequence were incorporated. The padlock probes were synthesized using the IDT oPools 
service. 

HybISS bridge probe design 
Unique barcodes for each gene were designed using DNABarcodes (Buschmann and Bystrykh 
2013). The original barcodes were generated in the "ACGT" oligonucleotide format, with each 5 
nt barcode using 4 channels (ACGT), maintaining a Hamming distance of 2 between each 
barcode. These barcodes were subsequently converted to a fluorescent format using AF488, 
AF546, Cy5, and AF750. A total of 144 unique barcodes were generated, with 85 assigned to 
transcripts and 59 used as negative control barcodes. 

To incorporate the fluorescent barcodes into the padlock oligos, we integrated unique bridge 
oligo binding sequences into the padlock probes for each gene. For this purpose, we utilized 
bridge probe binding sequences previously designed by Gyllborg and colleagues (Gyllborg et al. 
2020). From the 128 pre-designed bridge probe binding sequences available, 85 were randomly 
selected and incorporated into the respective padlock oligo sequences. These sequences were 
also used in the corresponding bridge probes to detect the rolonies in the tissue. To ensure the 
bridge probes would react with the fluorescent probes, the bridge probe sequences were linked to 
the complementary sequences of the respective fluorescent probes corresponding to the earlier 
designed barcodes. The bridge probes were synthesized using the IDT oPools service, with the 
bridge probe sets for each round ordered separately. 

3D spatial transcriptomics in P0.5 mouse dorsal skin 
P0.5 C57BL/6J pups were prepared by crossing male and female C57BL/6J mice, which were 
harvested between 3 to 6 p.m., defining this time as P0.5. After euthanization, the dorsal skin of 
the pups was excised with scissors. Fat and muscle tissue were carefully removed using tweezers 
and a paintbrush, and the samples were then washed with PBS (pH 7.4). The skin was flattened 
on a filter paper and fixed overnight in ice-cold 4% formaldehyde/1x PBS (pH 7.4) at 4°C. 
Following fixation, the samples were washed with PBS and transferred to 100% methanol, then 
stored at -70°C until use. 
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3DEEP-FISH was applied to the intact skin tissue. First, genomic DNA in the fixed sample was 
degraded. Stored samples were transferred to 1.5 ml tubes containing 1 ml of 2% SSC/8% SDS 
solution and incubated at 37°C for 30 minutes on a tube rotator. The wash process was repeated 
twice. To permeabilize the nuclear membrane, samples were incubated overnight in 10 ml of 
permeabilization solution (2x SSC, 8% SDS, 1% beta-mercaptoethanol) at 37°C. The samples 
were then incubated in 2 ml of quench solution (2x SSC, 2% Triton X-100) at 37°C for 1 hour to 
neutralize the SDS. This was followed by incubation in DNase I buffer (1x DNA digestion 
buffer, 2% Triton X-100) at 37°C for 1 hour. Genomic DNA was digested by incubating the 
samples overnight at 37°C in 2 ml of DNase I solution (1x DNA digestion buffer, 2% Triton X-
100, 800 U RNase inhibitor murine, and 400 U DNase I). The DNase I solution was quenched by 
incubating the samples in 2x SSC/8% SDS solution at 37°C for 2 hours. 

Following gDNA removal, RNA in the samples was hybridized with a padlock oligo solution. 
The samples were incubated in 2 ml of hybridization buffer (2x SSC, 20% formamide, 8% SDS, 
20 μg salmon sperm DNA) at 37°C for 1 hour. The samples were then transferred to a 96-well 
plate and incubated in a padlock probe hybridization solution (2x SSC, 20% formamide, 8% 
SDS, 100 nM padlock oligo each [415 probes, 41.5 μM in total], 100 μM acrydite-modified RCA 
primer, and 10 μg salmon sperm DNA) at 37°C for 5 overnights with agitation. The plate was 
sealed with PCR tape to prevent evaporation. After incubation, the samples were transferred to 
1.5 ml tubes and washed twice with 1 ml of 1x SSC/0.5% SDS solution at 37°C for 1 hour each. 

To anchor the hybridized RNA and replace the tissue structure with hydrogel, the sample was 
gelled. A 1 ml monomer solution (10% Acrylamide, 0.2% Bis-acrylamide, 2x SSC) was 
prepared, and samples were washed with 500 μl of the monomer solution at room temperature 
for 30 minutes. The remaining monomer solution was deoxygenated by bubbling with argon gas 
to facilitate acrylamide polymerization. The monomer solution was then activated by adding 2 μl 
RNase inhibitor murine, 4 μl of 5% TEMED, and 4 μl of 5% APS solutions to 200 μl of the 
argon-degassed monomer solution. The sample and the activated monomer solution were mixed 
on a slide glass, and a coverslip was placed over the sample to form a gel. The sample was 
incubated at 37°C for 1 hour to allow the gel to solidify. 

Once the gel had solidified, tissue structures were degraded using Proteinase K.  Samples were 
transferred to Proteinase K solution (100 μl Proteinase K + 900 μl digestion buffer  (50 mM Tris-
HCl pH 7.0, 1 mM EDTA, 2x SSC, 2% SDS)) and incubated overnight at 37°C with a tube 
rotator. A digestion buffer was occasionally pre-warmed due to SDS precipitation in 2x SSC. To 
ensure complete digestion, the Proteinase K solution was replaced with fresh solution the next 
morning, and samples were incubated for an additional 3 hours. Proteinase K and SDS were 
quenched by washing the samples with 1 ml of quench solution (2x PMSF, 2x SSC, 0.1% Triton 
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X-100) at room temperature for 30 minutes using a tube rotator. The samples were further 
washed five times with 2x SSC/0.1% Triton X-100 at room temperature for 30 minutes each. 

Ligation and RCA were performed to amplify the oligos using the hybridized padlock probes as 
templates. The samples were briefly washed twice with a ligation buffer (1x SplintR ligase 
reaction buffer). They were then transferred to a 48-well plate containing 500 μl of SplintR 
reaction solution (1x SplintR ligase reaction buffer, 200 U RNase inhibitor murine, 625 U 
SplintR) to ligate the padlock probes. The reaction was carried out under agitation at 37°C 
overnight. Subsequently, the samples were washed twice with 1x phi29 DNA Polymerase 
Reaction Buffer and incubated in RCA solution (1x phi29 DNA Polymerase Reaction Buffer, 0.1 
mg/ml Recombinant Albumin, 500 μM dNTP, 10 U Thermostable Inorganic Pyrophosphatase, 
40 μM 5-AA-2'-dUTP, 160 U Phi29) at 30°C under agitation. The Phi29 solution was replaced 
with a fresh Phi29 solution 8 hours after the initial reaction, and the RCA reaction was carried 
out overnight. The total RCA reaction time is approximately 24 hours. The samples were then 
washed with 2x SSC solution. 

Following amplification, the samples were anchored to a glass-bottom plate to minimize 
deformation during image-based sequencing. A second gelation treatment was performed to 
anchor the amplicons to a secondary gel and fix the first gel structure on the glass plate. To make 
the amplicons reactive to the second polyacrylamide gel, samples were treated with 10 mM 
Acryloyl-X/2x SSC (10% DMSO) at room temperature for 2 hours, modifying the 5-AA-2'-
dUTP in the amplicons with acrylamide. A monomer solution (2.5% Acrylamide, 0.125% Bis-
acrylamide, 2x SSC, 0.1% Triton X-100) was prepared, with Triton X-100 added after Ar gas 
bubbling. Samples were washed with 200 μl of the monomer solution. Meanwhile, the glass-
bottom plate was activated by sequential washing with water and ethanol, followed by treatment 
with bind silane solution (1 ml Ethanol, 5 μl Bind Silane, 50 μl Acetic Acid) at room temperature 
for 30 minutes. The bind silane solution was removed, and the plate was dried. Finally, the plate 
was washed with ethanol and dried again. The monomer solution was activated by adding 4 μl of 
5% TEMED and 4 μl of 5% APS to 200 μl of the monomer solution. The sample was transferred 
to the activated plate with the activated monomer solution, and a coverslip was placed over it to 
flatten the sample on the plate. The monomer solution was solidified at 37°C for 1 hour. After 
solidification, PBS was added, and the coverslip was removed using a ½ ml syringe. 

With the fixed sample on the glass-bottom plate, the HybISS protocol was implemented. The 
sample wash briefly washed with a hybridization buffer (2x SSC, 20% formamide). Bridge probe 
solutions (2x SSC, 20% formamide, 20 nM bridge probe each [86 probes, 1.72 μM in total], 500 
nM AF488 fluorescent probe, 500 nM AF546 fluorescent probe, 500 nM Cy5 fluorescent probe, 
500 nM AF750 fluorescent probe) were prepared for five rounds and stored at -70°C until use. 
The sample was incubated with a bridge probe solution at room temperature for 2 hours in the 
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dark, followed by washing with hybridization buffer (2x SSC, 20% formamide) at room 
temperature for 10 minutes. The samples were washed six times with PBS at 37°C for 5 minutes 
each. PBS was then replaced with a scanning solution (1x PBS pH 7.8, 40% (v/v) glycerol, 2 
mM Trolox). The sample was imaged for in situ sequencing using a Nikon Eclipse Ti2 confocal 
microscope with a 20X water-immersion objective (LWD Lambda S 20XC WI, NA: 0.95, 737 
μm x 737 μm x 1 μm FOV) equipped with four lasers corresponding to AF488, AF546, Cy5, and 
AF750 channels. After imaging, bridge probes were stripped using a stripping solution  (0.1x 
SSC, 70% formamide) at 60°C for 10 minutes, 6 times. The hybridization step was repeated for 
each sequencing round. 

Initial processing of images with ExSeq pipeline 
To convert the observed amplicons to transcripts, we first denoised the raw images using Nikon 
denoise.ai within Nikon NIS-Elements. Background subtraction was performed with the built-in 
Nikon rolling ball background subtraction function. The processed nd2 files were then converted 
to the hdf5 file format, optimized for handling 3D array data. Preprocessed images from different 
cycles were registered using established spatial sequencing analysis pipelines. Image registration 
and spot detection were conducted using the ExSeq pipeline 
(https://github.com/dgoodwin208/ExSeqProcessing) (Alon et al. 2021). The coordinates of the 
amplicons slightly shifted between the imaging cycles were aligned with the ExSeq pipeline. The 
pipeline parameters were optimized specifically for the images in our study. The color correction 
feature of the ExSeq pipeline was disabled by setting params.COLOR_CORRECT_CLAMP to 
0, as channel shifts in our study were minimal, given that a single camera was used during 
imaging. Default color correction could introduce artificial channel shifts. Furthermore, we 
modified the spot detection parameters. The default setting performed spot detection by 
summing all images from all channels and all rounds. To prevent overcrowding effects caused by 
image summation, spot detection was performed by using each image from each channel and 
each round, resulting in a total of 20 images analyzed. Redundant amplicons were eliminated by 
applying a distance threshold of 10 pixels (3.2 μm) between spots; the same transcripts within 10 
pixels were aggregated to prevent double-counting of transcripts. 

Using the detected spots, transcripts were decoded, and a confidence score was computed. The 
ExSeq pipeline provided intensity values for each channel across all rounds at the detected spot 
coordinates. Scores were calculated using the following equation: 

𝑆𝑐𝑜𝑟𝑒 ='
𝑆𝑖𝑔𝑛𝑎𝑙𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦!,#!

∑ 𝑆𝑖𝑔𝑛𝑎𝑙$
%&' 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦!,%

(

!&'

 

where R is the round, C is the channel, and Ei  is the expected code at Round i for a given gene. 
To evaluate decoding accuracy, we used negative control barcodes that do not correspond to any 
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IDs in the designed probes. Scores were computed for all 85 barcodes, along with 59 negative 
control codes for each spot. The gene with the highest score was then assigned to each spot. 

Machine learning based sequence decoding 
To overcome molecular crowding and spherical aberration, a machine learning-based decoding 
scheme was applied to our dataset. By applying a score threshold of 4.5 calculated above, a 
training dataset without false positives was generated. Using the coordinates of the spots with 
scores greater than 4.5 (top 10% scores), high-quality 8x8 pixel images from the raw sequencing 
images were extracted. The convolutional neural network pipeline was designed to take 20 
images (4 channels x 5 rounds) as input and output one transcript name. Since the number of 
generated images for each gene was not uniform, the training image data was augmented by 
altering the order of the image rounds to artificially generate high-quality images for other 
barcodes. This approach generated 10,000 training data inputs per FOV for 85 barcodes and 59 
negative control codes, respectively. 

The model was trained in TensorFlow Keras with the generated training dataset, and this process 
was repeated for six FOVs using the same model. After model training, all amplicon images 
were processed through the model to predict gene labels. To improve prediction accuracy, the 
input data was augmented by flipping the images horizontally, vertically, and both ways. These 
four test image sets were used for prediction, with the trained model returning the likelihood of 
each gene, and the average likelihood was used to finalize the transcripts. 

After decoding, the average negative control barcode percentage was computed for each gene to 
estimate the fraction of false positives induced by decoding errors. To ensure accurate detection 
of each gene, the confidence score thresholds were adjusted for each gene so that the average 
negative control barcode detection rate remained at or below 5% for all genes. Exceptions were 
Crabp1, Ccl2, bacterial rRNA, and Wnt7b, where the estimated false positive rates induced by 
decoding errors were 5.7%, 7%, 20%, and 22%, respectively, even at the maximum confidence 
threshold. These genes were subsequently excluded from the analysis. 

Data processing and analysis for Figures 1J-P 
Quantification of detected amplicons across skin depth and FOVs 

All amplicons detected from six distinct FOVs were used for the quantification. The total 
number of detected amplicons was quantified for each FOV, and their distribution across varying 
skin depths was visualized with Matplotlib hist fucntion. Epidermis, dermis, and adipocyte 
annotations were generated based on the visuzal assessment of the distributions of the keratin 
genes and adipocyte marker expressions. 

Histogram analysis of detected amplicons and decoded transcripts 
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The total number of detected amplicons and the corresponding decoded transcripts were 
quantified and visualized as a histogram with Matplotlib hist fucntion. 

Decoding efficiency across skin depth 

Decoding efficiency was assessed by calculating the ratio of decoded transcripts to the total 
number of detected amplicons at each skin depth. The amplicons were divided into 10 bins 
according to their depth and the decoding efficiencies at each depth were visualized with 
Matplotlib scatter plot and line plot. 

Gene distribution analysis across skin depth 

The spatial distributions of specific gene categories, including keratin genes, morphogen genes, 
and stem cell-related genes, were analyzed across skin depths. Detected transcripts across skin 
depth were smoothed with the statsmodels LOWESS function to illustrate depth-denpendent 
gene expression for visualization. 

Correlation between scRNA-seq and 3DEEP-FISH 

The detected transcripts with 3DEEP-FISH were compared with a scRNA-seq dataset 
(GSE131498) to confirm the validity of their expression profile of P0.5 mouse skin. Total 
numbers of the transcripts for the gene set were plotted with Matplotlib scatter plot. Correlation 
coefficient and statistical significance were calculated by using the Scipy Spearmanr function. 

Hair follicle identification and linear transformation 

To isolate individual hair follicles from the images, we generated hair follicle mask images to 
accurately identify the follicle regions. Using Labelme (https://github.com/labelmeai/labelme), 
an interactive image polygonal manual annotation tool, the contours of each hair follicle were 
manually marked. Due to the labor-intensive nature of this task, generating masks for every Z-
stack is impractical. Therefore, we manually created masks for every 10th Z-stack of the raw in 
situ sequencing images. To enhance boundary detection accuracy for hair follicles, decoded gene 
coordinates of Krt6a, Krt14, Krt15, Krt17, Krt25, Krt27, Krt28, Krt35, Krt71, Krt79, Mt1, and 
Pmel were superimposed onto the raw sequencing images. By doing so, we observed the 
following characteristics: 1. Hair follicles consist of keratin genes at high density rooted in the 
epidermal layer, 2. Transcript density within hair follicles is higher than in the dermis, and 3. 
High-density regions exhibit spherical or cylindrical shapes. These observations are consistent 
with prior knowledge (Joost et al. 2020). After visually confirming these features, all hair 
follicles, including those partially located at the borders of FOVs, were annotated. 

Subsequently, we generated in-between mask labels for every 10th Z-stack by interpolating the 
manually created masks. This was achieved by transforming the manually generated masks into 
contours using distance transformation. By connecting these contours between the top and 
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bottom masks with the scipy.interpn function, we computed the intermediate masks. Applying 
these mask images to the coordinates of the detected spots allowed us to successfully isolate the 
transcripts from 371 hair follicles across 6 FOVs. 

The extracted transcripts from these 371 hair follicles were spatially curved because of their 
natural shapes. To facilitate structural comparison between follicles, we linearized the hair 
follicles after excluding partial follicles at the FOV borders. This was accomplished by applying 
a thin plate spline transformation, converting the original transcript coordinates into a cylindrical 
shape with a linear Z-axis and a flat XY plane. The thin plate spline method needs "source 
points" and "target points" to create a warping transformation. We used the centerlines of each 
hair follicle as source points, as well as two planes representing the skin surface and the bottom 
of the follicles. The target points were designed as a flat XY plane at Z=0 (for the skin surface), 
straightened points along the Z-axis (for the hair follicle centerline), and flat XY planes at the 
corresponding Z coordinates (for the follicle bottom plain). This transformation was then applied 
to the transcript coordinates to align them along a straight Z-axis with minimal distortion. The 
detailed steps are as follows: 

1. Detect the skin surface using the transcripts from each hair follicle within the bottom 20 
μm. The transcripts were segmented into a 5 x 5 pixel XY grid, and the lowest Z value 
was computed for each grid cell. These lowest values were used to describe the skin 
surface. This skin surface was subsequently used as a source plane for the thin plate 
spline transformation. 

2. Identify the center point of the skin surface. Since the detected skin surface is tilted, it 
needs to be flattened to accurately identify its center. To flatten the skin surface, PCA 
was applied to the points identified in Step 1, successfully producing a flat XY plane. 
Using this PCA-generated plane, the center point of the skin surface plane was calculated 
by deriving the mean values of PC1 and PC2. Retrospectively, the corresponding center 
point in the original data was identified by comparing the PCA plane with the original 
skin surface. 

3. Calculate the angle of the hair follicle and rotate the transcripts to align their overall 
orientation with the X-axis. To determine this orientation, we used the coordinates of 
structure-related genes (Krt6a, Krt14, Krt15, Krt17, Krt25, Krt27, Krt28, Krt35, Krt71, 
Krt79, Mt1, and Pmel). Using the center point and these gene coordinates, the distance of 
each transcript were computed to select the farthest 100 points. If the total number of 
transcripts for these genes was fewer than 1000, the farthest one-tenth of the total 
transcripts were used for the later analysis. We then calculated the angles from the center 
point to the farthest points. The average angle estimated from the 100 farthest points was 
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applied to rotate the transcripts onto the X-axis. Additionally, the average coordinates of 
the farthest points were used later as an endpoint for the centerline calculation. 

4. Estimate the centerline using the coordinates of the transcripts in both the XZ and XY 
planes, which were later combined to construct a 3D centerline. First, from the transcript 
coordinates, we generated a binary mask array describing the hair follicle and non-follicle 
regions. This conversion utilized Alphashape, which outlines a boundary area from 2D 
points. From the resulting binary image, hair follicle contours were identified using the 
skimage.find_contours function. The centerline was then estimated from these contours 
using the Voronoi diagram. The Voronoi diagram subdivides a 2D area into multiple 
regions, ensuring each region corresponds to the closest data point. This method 
effectively identified central points within the contours of the hair follicle. To improve 
the accuracy of the centerline inference, these central points were computed for all 
transcripts and selected transcripts (Krt6a, Krt14, Krt15, Krt17, Krt25, Krt27, Krt28, 
Krt35, Krt71, Krt79, Mt1, and Pmel), respectively. These separately calculated central 
points were combined to improve the inference of the centerline. Using the points around 
the center of the hair follicle, a centerline was derived by computing its shortest path 
from the start point to the endpoint obtained in Steps 2 and 3. The derived path was 
smoothed using the statsmodels.lowess function. 

5. Detect the vertical plane at the bottom of the hair follicle. With the centerlines of the XZ 
and XY planes acquired, the 3D centerline can be described as a function of X. Using the 
endpoint (X_end, Y_end, and Z_end) of the centerline and the second point (X_end - 40 
μm, Y at (X_end - 40 μm), and Z at (X_end - 40 μm)), the vertical plane at the hair 
follicle bottom was computed using a vector equation of a plane. The generated vertical 
plane at the follicle bottom was used as the source points. When the overall length of the 
hair follicle in the X coordinate was less than 40 μm, half of the maximum value of X 
was used to generate the vertical plane at the hair follicle bottom. 

6. Obtain the target plane and adjust the target plane angle. With the surface plane, 
centerline, and hair follicle-bottom vertical plane prepared, we next produced the 
corresponding target planes with adjusted angles. Applying PCA to the source planes 
identified in Steps 1 and 5 produced flat planes, which served as the target planes for the 
skin surface and the bottom vertical planes, respectively. Since the angles of the PCA 
planes were arbitrary, the target planes were rotated so that the transcripts in the direction 
of the hair follicles align with the X-axis. To achieve this, the direction of the hair follicle 
was calculated using the centerline on the XY axis. With the given angle, the target plane 
was rotated. 
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7. Prepare the summarized source points and target points. The source points were 
generated in Steps 1, 4, and 5. For the source point planes, the target points were 
generated in Step 6. For the remaining centerline, the target points were generated using a 
simple numerical derivative. Here, the target points of the centerline are equivalent to the 
linearized centerline. We calculated the length of the centerline with a step size of 0.1 in 
X using the following equation:  

𝐿𝑒𝑛𝑔𝑡ℎ ='4(𝑥!)' − 𝑥!)* + (𝑦!)' − 𝑦!)* + (𝑧!)' − 𝑧!)*
+

!&,

 

S is the total number of steps. For each step, the corresponding target points were 
generated on the linear Z axis with the equivalent lengths. For the skin surface target 
plane, Z was set at 0, while for the vertical plane at the hair follicle bottom, the respective 
Z coordinate was used, equivalent to the overall hair follicle length. 

8. Transform the coordinates of the transcripts. By using the source points and target points, 
a thin plate spline warping function was trained. Applying this function to the 
coordinates, the transformed coordinates of the transcripts around the Z-axis were 
computed. 

Data processing and analysis for Figures 2B-N 
Hair follicle density analysis 

The distribution of full and partial hair follicles was visualized using the Matplotlib scatter plot 
function. To avoid double-counting due to partial hair follicles that span across multiple FOVs, 
15% of the data from the sides was excluded from the density estimation. Focusing on the hair 
follicles located at the center of the FOVs, the density was calculated by dividing the number of 
hair follicles by the area across six FOVs. 

Transcript quantification per hair follicle 

After assigning the transcripts to each hair follicle with the masks, the number of transcripts 
detected within each hair follicle was visualized with the Matplotlib hist function. 

Hair follicle length calculation and distribution 

After linearizing the hair follicles, their lengths were calculated by subtracting the minimum 
axial coordinate Z of the transcript from the maximum axial coordinate Z. The distribution of 
these lengths was then plotted using the Matplotlib hist function. 

Hair follicle pseudotime inference 

To evaluate the developmental trajectory of the identified hair follicles, we applied single-cell 
RNA sequencing analysis techniques using the Seurat and Slingshot pipelines (Satija et al. 2015; 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.24.614640doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.24.614640
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

34 
 

Street et al. 2018). Using the mask images created in the previous section ("Hair follicle 
identification and linear transformation"), the transcripts which belong to each hair follicle were 
identified. This transcripts-hair follicle relationships were converted to a count table. Four genes 
(Crabp1, Ccl2, Bacteria, and Wnt7b) were excluded because they did not meet the confidence 
threshold criteria, which was set to allow a maximum false positive rate of 5%. The count matrix 
was normalized and scaled using the scTransform function in Seurat (Hafemeister and Satija 
2019). Using the normalized count matrix, 10 principal components were computed. The 
dimension reduction plot visually showed one developmental trajectory. In our study, all hair 
follicles were artificially assigned to a single cluster using the FindClusters function in Seurat 
since they are categorically the same organ. The Slingshot pipeline was then used to estimate the 
developmental trajectory within the cluster. The pseudotime was obtained using the 
slingPseudotime function.   

Correlation analysis between pseudotime and hair follicle lengths 

The correlation between pseudotime and hair follicle lengths was examined with the Scipy 
Spearman function. The correlation was plotted with the Matplotib scatter plot. 

Secondary-tertiary classification of hair follicles 

The hair follicles were classified into secondary and tertiary categories based on the Gaussian 
mixture model clustering on pseudotime. Pseudotime distribution showed the bimodal peaks. 
The cluster with higher pseudtime was annotated as secondary hair follicle whereas the cluster 
with lower pseudotime was termed tertiary hair follicle. 

Correlation analysis between pseudotime of neighboring hair follicle pairs 

By using the Scipy KDTree function, the nearest tertiary hair follicles of the secondary hair 
follicles within 100 μm range were determined. Pseudotime correlation of these secondary-
tertiary hair follicle pairs were examined with the Scipy Pearsonr function. The linear fitting 
curve between pseudotime of these pairs was obtained with the Scipy ODR function.  

Squared error analysis 

Linear fitting curves between pseudotime and hair follicle lengths for secondary, tertiary, and all 
hair follicles were obtained with the Sklearn LinearRegression function. With the given linear 
curves, squared errors between the predicted pseudotime from the lengths and the observed 
pseudotime were computed by using the following equation: 

𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝑒𝑟𝑟𝑜𝑟 = >𝑃𝑠𝑒𝑢𝑑𝑜𝑡𝑖𝑚𝑒-./01203 − 𝑃𝑠𝑒𝑢𝑑𝑜𝑡𝑖𝑚𝑒4103!5603A
*
 

The calculated squared errors for the three groups were compared using a two-sided Wilcoxon 
rank sum test.  
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Correlation analysis between gene expressions and pseudotime 

Relationships between normalized expression levels of genes in hair follicles and psuedotime of 
hair follicles were examined. First, the transcript counts in hair follicles were normalized with 
the Seurat scTransform function. Then, correlations between the normalize expressions and 
pseudotime were calculated for each gene with the Scipy Pearsonr function. The normalized 
expressions of the top 40 genes with the lowest p-values were visualized with the Matplotlib 
imshow function. 

Data processing and analysis for Figures 3A-N 
Baysor single cell segmentation 

To establish single-cell level analysis, Baysor was applied to the decoded transcripts to infer cell 
boundaries. Baysor requires the coordinates, gene names, expected radius of the cells, standard 
deviation of the radius, minimum molecules per cell, and the number of cell type clusters. The 
XY coordinates of the transcripts in pixels were scaled to μm before Baysor. The parameters 
used in the study were as follows: radius at 5 μm, standard deviation of the radius at 50%, 
minimum molecules per cell at 3, and the number of cell type clusters at 9. The parameter was 
obtained by measuring the radius of spatially isolated dermal fibroblasts in our dataset. The 
cellular radius observed in our study ranged between 5 to 10  micrometers. 

Distribution analysis of the number of inferred cells per hair follicle 

The number of inferred cells within each hair follicle was quantified and visualized with the 
Matplotlib hist function. 

Correlation analysis between hair follicle lengths and the number of inferred cells 

The correlation between hair follicle lengths and the number of inferred cell using Baysor was 
plotted with the Matplotib scatter plot. 

Distribution analysis of the number of transcripts per inferred cell 

The number of transcripts per inferred cell was quantified and visualized with the Matplotlib hist 
function. 

Sensitivity comparison analysis between 3DEEP-FISH and UMI-based scRNA-seq 

Gene expression levels per cell was compared between the 3DEEP-FISH dataset and publicly 
available UMI-based scRNA-seq data (GSE108097). For this comparison, mean gene 
expressions per cell for a shared set of genes was calculated for both datasets. A box plot was 
used to visualize the comparison, and the statistical significance of differences in methodological 
sensitivity was evaluated using a Wilcoxon signed-rank test. 
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Cell type annotation of hair follicles 

Using the curated marker genes, the inferred cells were classified into fibroblasts, keratinocytes, 
and melanocytes based on their transcriptomes. Cells with fewer than three transcripts were 
excluded from the analysis. The count table of transcripts per cell was log-transformed and 
subsequently z-score transformed. Using the transformed count table, scSorter separated the cells 
into fibroblasts, keratinocytes + melanocytes, and unknowns (Guo and Li 2021). Unknowns were 
excluded from further analysis. Among keratinocyte and melanocyte cells, those cells positive 
for melanocyte markers (Pmel, Dct, and Ptgds) with ≥2 transcripts of any marker gene were 
annotated as melanocytes. This approach was taken due to the high abundance of keratin genes 
mixed with melanocyte marker genes and the inherent 5% false positive rate. The validity of this 
approach was confirmed by examining the spatial distribution of melanocytes shown in Figure 
7A, which is consistent with previous reports (J. Chen et al. 2022). 

Structual annotation of hair follicles 

Using the detailed spatial distributions of marker genes previously reported (Rezza et al. 2016; 
Joost et al. 2020), the structures of developing hair follicles were manually annotated because of 
the limited number of genes available. First, keratinocyte cells were classified into IRS, hair 
shaft, matrix, and outer sheath keratinocytes using density-based spatial clustering (DBSCAN) 
applied to marker gene-positive cells, curated based on their spatial information summarized in 
Table 1. Specifically, 12 genes were used for this classification: Krt35 for hair shaft; Krt25, 
Krt27, Krt28, and Krt71 for IRS; Shh and Mt1 for matrix; Krt79 for uHF; Barx2 and Krt14 for 
uHF-mORS; Krt17 for uHF-ORS; and Krt6a for mORS. DBSCAN was applied to the 3D 
coordinates (axial position Z, radial position R, and rank of hair follicle pseudotime) of the 
marker gene-positive cells. High-density regions of the cells were identified as the structures 
denoted above, including IRS, hair shaft, and matrix. Krt79, Barx2, Krt14, Krt17, and Krt6a+ 
cells spatially overlapped, as they cover parts of the outer sheath keratinocytes, and thus, they 
were summarized as outer sheath keratinocytes. When the same cells were annotated with 
different labels, the quantiles of the expression levels were compared, and the structures of the 
marker genes with relatively high quantiles were assigned to these cells. After the density-based 
annotations, some keratinocyte cells, which were not assigned to any structures, had widely 
expressed keratin genes, such as Krt15, without the expressions of structure-related marker 
genes. These keratinocyte cells were assigned to outer sheath keratinocytes if their nearest cells 
are outer sheath keratinocytes. These neaerest cells were evaluated by using the SciPy KDTree 
function. 

Following the density-based clustering, the outer sheath keratinocytes were further classified into 
uHF, bulge keratinocytes, suprabasal keratinocytes, mOS, and ORS. Krt79, Barx2, Krt14, Krt17, 
and Krt6a+ cells spatially overlapped, displaying spectra of keratin genes featured by the 
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addition and also subtraction of certain genes. Therefore, a transcriptome-based approach was 
applied. Given that the average number of transcripts per cell in our dataset is ~16, and a 
conservative radius parameter was used for Baysor single-cell inference, single-cell 
transcriptome clustering could be biased, possibly producing artifical clusters. To mitigate this 
issue and interpret the spatial representation of hair follicle structures, we generated pseudobulks 
from the outer sheath keratinocytes by applying K-means clustering to the 4D coordinates (axial 
position Z, X, Y, and hair follicle pseudotime) of the outer sheath keratinocytes. From these 
pseudobulks, a transcript count table was generated. Among the geneset, Fibroblast markers 
Col6a1, Col6a2, Trps1, and Fbln2 were excluded from the analysis to prevent confounding 
effects from neighboring fibroblast populations. The count table was transformed using 
scTransform in Seurat, followed by Leiden clustering (Traag et al. 2019). The clustering results 
were visualized using UMAP (McInnes et al. 2020). Based on their spatial distributions and 
enriched marker genes, the clusters were termed uHF, bulge keratinocytes, suprabasal 
keratinocytes, mOS, and ORS. 

Similarly, the fibroblasts were also classified into papillary/IF fibroblast, bulge fibroblast, 
DS/Reticular fibroblast, and DC/DP. Fibroblast pseudobulks were generated by applying K-
means clustering to the 4D coordinates (axial position Z, X, Y, and hair follicle pseudotime) of 
the fibroblasts. A transcript count table was generated after removing keratinocyte marker genes 
( Krt14, Krt17, Krt15, Mt1, Gata3, Barx2, Krt79, Krt28, Krt35, Krt27, Krt71, Krt25, Krt6a, and 
Col17a1) to prevent confounding effects from neighboring keratinocyte populations. The count 
table was transformed using scTransform in Seurat, followed by Leiden clustering. The 
clustering results were visualized using UMAP. Based on their spatial distributions, the clusters 
were termed papillary/IF fibroblast, bulge fibroblast, DS/Reticular fibroblast, and DC/DP. 

Lastly, the melanocytes were classified into epidermis melanoblast, bulge melanoblast, and bulb 
melanoblast. Melanocyte pseudobulks were generated by applying K-means clustering to the 4D 
coordinates (axial position Z, X, Y, and hair follicle pseudotime) of the melanocytes. A transcript 
count table was generated without keratinocyte and fibroblast markers. The count table was 
transformed using scTransform in Seurat, followed by Leiden clustering. The clustering results 
were visualized using UMAP. Based on their spatial distributions, the clusters were termed  
epidermis melanoblast, bulge melanoblast, and bulb melanoblast. 

Data processing and analysis for Figures 4A-P 
Cellular population dynamics analysis in hair follicle development 

Cell number changes over pseudotime were visualized to illustrate the overall dynamics of 
cellular proliferation and migration. The number of cells per hair follicle in different structures 
over pseudotime was visualized using a Matplotlib scatter plot. The statsmodels LOWESS 
function was applied to the scatter data points to smooth the population changes over 
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pseudotime. A stream graph was generated based on the LOWESS results for each structure, 
with the width of the stream reflecting the number of cells. For better visualization, the width for 
melanocyte lineage was slightly adjusted, because melanocyte populations were relatively small 
and their stream changes could be difficult to see. 

Data processing and analysis for Figures 5A-F 
Heatmap visualization of gene enrichment and expression levels 

The cells within each structure were divided into pseudotime bins of 0.1 intervals. Because there 
are a limited number of cells before 0.2, the cells with pseudotime lower than 0.2 were 
categorized as one group. Similarly, for the structures which are derived in the middle of hair 
follicle development, the cells with pseudotime lower than 0.5 were classified as a group. For 
each group of cells, highly expressed genes were identified using permutation tests. For 40 
selected morphogen and signaling molecule genes, the mean expression level in each grouped 
cell set was compared with the mean expression level in all cells. If the expression level in the 
group was higher than the overall average, permutation test was applied. Here, a random sample 
of cells, which is equal in number to the grouped cells, was drawn from the entire dataset, and 
the mean expression level was recalculated. This sampling process was repeated 100,000 times 
to compute statistical significance. Specifically, the observed mean expression in the group and 
its corresponding quantile among the sampled values were used to calculate the p-value. The 
computed p-values were then adjusted to q-values using the Benjamini-Hochberg procedure. To 
visualize the wide range of q-values, log10(1/q-value) was used, with clipping set to a maximum 
of 4. Expression levels were log-transformed to account for the wide variance across genes and 
then converted to z-scores. Z-score values were clipped at 1 to enhance interpretability and 
emphasize significant expression changes. 

Quantification of enriched genes across structures 

To capture dynamic and stable nature of morphogen gene regulations in structures, the number 
of enriched genes were counted for each structure. Genes with a q-value less than 0.05 in at least 
one pseudotime bin as well as in all pseudotime bins were separately counted. The Matplotlib 
scatter plot function was used to visualize the number of enriched genes within each annotated 
structure. The expression levels were log-transformed, followed by z-score transformation. 

Variance analysis of enriched morphogen gene regulations across pseudotime 

The enriched morphogen genes for each structure were selected based on a criterion: a q-value of 
less than 0.05 in at least one pseudotime bin. The variance of morphogen expression levels was 
calculated as follows: 1) transcript counts were log-transformed, followed by z-score 
transformation; 2) for each time bin, the mean z-score was calculated; and 3) the variance of 
mean z-scores across pseudotime bins was determined. This process was repeated for all 
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enriched genes in each structure. The Matplotlib boxplot function was used to visualize the 
calculated variance. Statistical significance between uHF and DC/DP was assessed using a two-
sided Wilcoxon rank-sum test. The mean variance calculated for each structure was used in 
Figure 5D. The structures were grouped into upper and lower parts. The upper structures include 
uHF, suprabasal, bulge keratinocyte, papillary/IF fibroblast, and bulge fibroblast, while the lower 
structures include ORS, IRS, hair shaft, matrix, DS/reticular fibroblast, and DC/DP. The mean 
variance of the two groups was visualized with the Matplotlib boxplot function. Statistical 
significance between the upper and lower parts was assessed using a two-sided Wilcoxon rank-
sum test. 

Density maps of annotated structures 

The cell densities of the annotated structural cells across pseudotime and axial position Z were 
visualized using the Matplotlib 2D histogram function. The boundary lines of the annotated 
structures were determined based on the coordinates of the annotated cells. Specifically, for each 
pseudotime value, the cells in the top and bottom 5% of axial positions were identified. A 
LOWESS fitting curve was then applied to these cells to estimate the boundary lines of the 
structures. 

Correlation analysis between gene expression levels and the number of cells over pseudotime 

To explore the relationship between gene expression and cellular population dynamics, we 
calculated correlation coefficients between the number of cells and the mean expression levels 
over pseudotime. The cells were divided into 50 equal-sized bins based on their pseudotime, and 
the mean expression levels per cell were examined within each bin. These mean expression 
levels were then compared to the number of cells at the corresponding pseudotime. Correlation 
coefficients were computed using the Scipy pearsonr function. Genes with correlation 
coefficients greater than 0.5 or less than -0.5 were visualized using the Matplotlib imshow 
function. 

Data processing and analysis for Figures 6A-I 
Classification of hair follicles by ostia formation 

To classify ostia formation without computational bias, visual assessments were used since 
computational analysis based on trends over pseudotime could overlook the individual shapes of 
hair follicles. Eight representative images of hair follicles were selected to illustrate the 
formation of hair follicle ostia in Figure 6A, illustrating the morphology of hair follicles on 
which their ostia were visually assessed. To evaluate the diameter of growing ostia, the 
distribution of Krt79+ cells ( ≥ 2 Krt79 transcripts) was analyzed along the radial axis R below 
the hair follicle surface (within 100 μm from the surface) and across pseudotime. A scatter plot 
was used to visualize the radial distribution of these cells in relation to pseudotime, with the ostia 
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boundary estimated using LOWESS fitting. To model the trend of the smallest R values over 
time, cells were grouped by time points, and within each group, the mean of the five smallest R 
values was calculated. These values were then smoothed using the LOWESS function. The 
LOWESS output was rescaled by normalizing its range between the minimum and maximum 
values to standardize the curve for visualization. 

Visualization of  cellular distributions of IRS, hair shaft, and outer sheath keratinocyte in 
pseudotime bins 

The distributions of IRS, hair shaft, and outer sheath keratinocyte cells were examined across 
pseudotime bins along both axial and radial coordinates. Cells were binned based on their 
pseudotime, and scatter plots were generated to visualize their spatial distributions within the 
hair follicles. 

Classification of hair follicles by IRS cylindrical shell formation 

To classify IRS cylindrical shell formation without computational bias, visual assessments were 
conducted. Due to the smaller radius of the IRS cylindrical shell compared to the ostia radius, 
computational approaches are less effective for this analysis. Eight representative images of hair 
follicles were selected to illustrate the formation of the IRS cylindrical shell in Figure 6E, 
highlighting the morphology of these structures, which are characterized by green amplicons in 
the images. 

Analysis of structural positions over pseudotime 

Since ostia and canal formation appeared to be related to IRS movement, the movements of these 
structures in relation to others were visualized. The spatial distributions of the annotated 
structural cells across pseudotime and axial position Z were displayed. To illustrate the boundary 
lines of the annotated structures, the coordinates corresponding to the top and bottom 5% of axial 
position values of the annotated cells were used. A LOWESS fitting curve was then applied to 
these coordinates to estimate the boundary lines of the structures. 

Assessment of length of the structures over pseudotime 

The lengths of each structure were determined by subtracting the minimum value from the 
maximum value of the axial coordinate Z for each structure within each hair follicle. The mean 
lengths of the hair follicle structures were then calculated for each pseudotime bin. A Matplotlib 
scatter plot was used to illustrate the temporal changes in these lengths. 

Analysis on gene expression changes associated with ostia and IRS shell formation 

The mean expression levels per cell for each hair follicle were evaluated for genes showing 
temporal changes between pseudotime 0.5 and 1. The mean expression levels per cell for each 
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hair follicle were visualized using box plots. Statistical significance between the time points was 
assessed with a two-sided Wilcoxon rank-sum test. 

Gene expression analysis associated with ostia and IRS cylindrical shell formation 

To analyze gene expression level changes associated with ostia and IRS cylindrical shell 
formation, genes showing temporal variation were selected. The expression levels of morphogen 
genes were compared between adjacent temporal bins (0.5-0.55, 0.55-0.6, 0.65-0.70, 0.70-0.75, 
0.75-0.80, 0.85-0.90, 0.95-1.0) using a two-sided Wilcoxon rank-sum test. The four most 
significant genes were visualized using Matplotlib's box plot function. 

Data processing and analysis for Figures 7A-K 
Tracking melanocyte cell positions over pseudotime 

The axial positions of melanocyte cells were tracked over pseudotime using the Matplotlib 
scatter plot function. A scatter plot was created to visualize the distribution of melanocyte cells 
along the axial axis across pseudotime, with three subtype annotations: epidermis melanocytes, 
bulge melanocytes, and bulb melanocytes. 

Distributions of stem cell marker-positive keratinocytes over pseudotime 

The axial positions of keratinocytes expressing stem cell markers (Cd34, Gli1, Lgr5, Lgr6, and 
Lrig1, with ≥2 transcripts per cell) over pseudotime were visualized using the Matplotlib scatter 
plot function. The color of each data point was adjusted based on the spatial density value of 
each cell, estimated with Scipy's gaussian_kde function. Kernel density estimation was applied 
to the 2D coordinates of the axial position Z and the rank of hair follicle pseudotime to infer the 
density values at the given positions. 

Estimation of representative stem cell positions using local regression 

To determine the representative positions of stem keratinocytes in hair follicles over pseudotime, 
the highest density regions of stem cell marker-positive cells were first identified using the 
density values estimated above. Stem cells with the highest density in each hair follicle were 
extracted. The spatiotemporal positions of these cells were then smoothed using the statsmodels 
LOWESS function, providing the representative positional trajectories of stem marker-positive 
cells. 

Cellular population dynamics analysis of keratinocyte stem cells 

The number of stem cell marker-positive keratinocytes per hair follicle for each stem cell marker 
(Cd34, Gli1, Lgr5, Lgr6, and Lrig1, with ≥2 transcripts per cell) over pseudotime was visualized 
using a Matplotlib scatter plot. The statsmodels LOWESS function was applied to the scatter 
data points to smooth the population changes over pseudotime. 
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Distribution of Col17a1+ keratinocytes over pseudotime 

To visualize the distribution of Col17a1+ keratinocytes (≥2 transcripts per cell) over 
pseudotime, the spatiotemporal coordinates of these cells within the hair follicles were plotted 
using the Matplotlib scatter plot function. The axial positions Z and pseudotime were used as 
coordinates. Kernel density estimation was applied to the 2D coordinates of axial position Z and 
the rank of hair follicle pseudotime to infer density values at the given positions. The estimated 
densities were then superimposed onto the scatter plot data points. 

Differential expression analysis between keratinocyte stem cells and non-stem cells in the bulge 

To examine the expression profiles of bulge stem cells compared to bulge niche keratinocytes, 
all keratinocytes located in the bulge were first identified. Using the coordinates of the bulge 
keratinocytes identified in our study, the boundary lines of the bulge region were determined. 
Specifically, for each pseudotime value, the bulge keratinocytes in the top and bottom 5% of 
axial positions were identified. A LOWESS fitting curve was applied to these cells to estimate 
the boundary lines of the structures. All keratinocytes within these boundary lines were then 
extracted for further analysis. Among the extracted cells, stem cell marker-positive keratinocytes 
(Cd34, Gli1, Lgr5, Lgr6, and Lrig1, with ≥2 transcripts per cell) were classified as stem bulge 
keratinocytes, while the remaining cells were classified as niche bulge keratinocytes. 
Differentially expressed genes between these groups were identified using a two-sided Wilcoxon 
rank sum test. These p-values were then adjusted to q-values using the Benjamini-Hochberg 
procedure. For visualization, the q-values and log2(fold change) were plotted by using the 
Matplotlib scatter function. The q-values were clipped at 3 for consistent visualization. 

Data processing and analysis for Figures S1-3 
Visualization of morphogen gene density distributions 

To analyze the spatial distribution of gene expression over pseudotime and the axial coordinate 
Z, we first extracted the 2D coordinates (pseudotime and axial coordinate Z) of the 
corresponding transcripts for all hair follicles and each structure. Since the distribution of 
pseudotime is not uniform, the estimated density is biased. Therefore, pseudotime was 
transformed to ranks. Using the pseudotime ranks, the axial coordinate Z, and the 
np.histogram2d function, density maps of morphogen genes were generated. The values in the 
generated density maps were then scaled to the original pseudotime. These scaled values were 
plotted using the Matplotlib plt.pcolormesh function. 
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Figure 1. 3DEEP combined with FISH for spatial transcriptomics in depths of intact mouse 
skin. (A) Schematic illustration of 3DEEP-FISH approach. Blue lines: hydrogel; dotted lines: 
RNA transcript, black lines: padlock probe, RCA primer, or RCA amplicon. (B) Side-by-side 
comparison of Apoa2 mRNA detection in 400 μm-thick blocks of liver with and without DNase I 
treatment for gDNA removal. gDNA is stained with DAPI (blue) and Apoa2 amplicons are 
shown in red. (C) Area graphs showing the abundance of Apoa2 detection across the 400 μm-
thick block of liver with and without DNase I treatment. (D) Boxplots showing the SNRs of 
Apoa2 amplicons across different tissue depths. SNRs were calculated by dividing the signal 
intensity of amplicons by the standard deviation of the signal intensity within a 7-10 μm radius 
outer disk surrounding it. (E) Heatmap of expression for 18 representative genes in single cells in 
P0 mouse skin (GSE131498) clustered by cell type, showing enrichment of each gene (rows) in 
each cluster of cells (columns, labeled based on color key on top) according to the color key on 
the right. The vertical white bars demarcate cell type clusters. (F) Heatmap of expression for 24 
morphogen genes in keratinocyte and fibroblasts of P0 mouse skin (GSE131498) clustered by 
cell type, showing enrichment of each gene (rows) in each cluster of cells (columns) according to 
the color key on the right. (G) Schematic representation of the HybISS decoding process. (H) 
Overview of the 3DEEP-FISH raw data (i.e., amplicons) in intact P0.5 mouse skin, showing six 
FOVs. Representative images at different depths are shown with colored masks to visualize each 
hair follicle. The magnified views show the morphological features of hair follicles and decoded 
transcripts. All transcript images correspond to the second cycle. (I) Decoding scheme of 
3DEEP-FISH, with images from one representative amplicon in four channels (columns) and 
five rounds (rows). Detected amplicons were decoded using machine learning based on known 
correspondence between IDs and genes. (J) Stacked bar plots quantifying detected amplicons 
across skin depth and six FOVs. Each bar corresponds to one of 276 optical sections taken 1 
micron apart. (K) Histogram showing the total number of detected amplicons and the number of 
decoded transcripts across 20x20x20 voxels packing the entire scanned volume. (L) Barplots 
showing the number of detected (blue) and decoded (orange) amplicons across skin depth. Black 
line show decoding efficiency, that is the ratio of decoded amplicons to total amplicons in each 
scanned optical section, according to the Y-axis on the right. (M) Line graphs showing the 
distribution of select keratin genes across skin depth. (N) Line graphs showing the distribution of 
select morphogen genes across skin depth. (O) Line graphs showing the distribution of select 
stem cell-related genes across skin depth. (P) Scatter plot showing the correlation between the 
abundance of the 81 targeted transcripts between scRNA-seq (GSE131498) and 3DEEP-FISH 
data across the whole tissue. 
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Figure 2. Reconstructing developmental trajectory of hair follicles using whole-organ 
pseudotime. (A) Raw images from eight hair follicles of different sizes at different depths of the 
skin. Z denotes the Z-stack number of optical image, which approximates depth in microns as 
optical sections were 1 micron apart. The white line marks the manually generated border for the 
follicle. (B) Scatterplot showing the position of all detected hair follicles across the X and Y axes 
of the scanned skin area. Full follicles (green) and partial follicles (brown) which cross FOV 
boundaries are labeled. The rectangles mark the areas within each field of view where hair 
follicle density was calculated to exclude partial or shared follicle, and the numbers in each 
represents the density value. (C) 3D plots showing transcript coordinates of the follicles in A. 
(D) Histogram of the number of decoded transcripts per hair follicle. (E) 3D plots showing 
transcript coordinates for the follicles in C after linearization. (F) Histogram of hair follicle 
length after linearization. (G) Scatterplot showing the values of Principal Component (PC) 1 and 
2 for 371 follicles based on their transcript composition. The color of each point represents 
follicle length according to the color key on the right. The black line is the Slingshot-fitted 
trajectory curve used for estimating pseudotimes. (H) Scatter plot showing the correlation 
between pseudotime (from G) and length for all hair follicles. (I) Histogram of pseudotimes for 
371 hair follicles. Color denotes the classification of the follicle as secondary (blue) or tertiary 
(orange) based on a Gaussian mixture model clustering. (J) Scatter plots showing the spatial 
distribution of hair follicles on the skin surface, colored based on the secondary/tertiary 
classification (left) or pseudotime (right). (K) Scatter plot showing the correlation between the 
pseudotimes of neighboring secondary and tertiary hair follicle pairs. (L) Scatter plot showing 
the relationship between follicle pseudotime and length with lines fitted for secondary-only 
(blue), tertiary-only (orange), and all (black) follicles showing improved agreement between 
pseudotimes and length when tertiary and secondary classes are separated. Fitting was done 
using the least-squares method. (M) Boxplots showing the distribution of squared errors for the 
linear fits in panel L. P-values were calculated using a two-sided Wilcoxon rank sum test. ***: P 
< 0.001. (N) Heatmap showing normalized gene expression for genes (rows) in all hair follicles 
ordered based on pseudotime (columns). Only the top 40 genes with the most significant 
correlation are shown. scTransform (Hafemeister and Satija 2019) was used for normalizing 
expression. (O) 2D projection of eight representative genes for all 371 hair follicles, ordered by 
estimated pseudotime from top left to bottom right. Genes are colored based on the color-code on 
the right.  
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Figure 3. Annotating cell types and structures within hair follicles. (A) 3D image of all 
HF245 transcripts colored by their single-cell assignment based on Baysor. (B) Histogram of the 
number of inferred cells per hair follicle. (C) Scatter plot showing the correlation between hair 
follicle lengths and their number of cells. (D) Histogram of the number of transcripts per cell. (E) 
Box plots comparing the number of unique transcripts detected per cell between 3DEEP-FISH 
and scRNA-seq (GSE108097) for the shared gene set. P-value was calculated using Wilcoxon 
signed-rank test. (F) Schematic illustration of hair follicle, with various cell types and structures 
identified according to the color key on the bottom (by Jennifer E. Fairman, CMI, FAMI, © 
2024 JHU AAM). (G) Scatter plot showing the spatial coordinates of hair follicle cell types and 
structures faceted by cell type groups (rows) and pseudotime bins. Color key the same as panel 
F. For each pseudotome bin, all hair follicles within that bin were overlayed and a cross section 
is shown. (H) Cell type/structure annotation workflow with the number of cells at each step. (I) 
Scatter plot of the spatiotemporal coordinates (pseudotime and axial position Z) of Krt35+ 
keratinocytes. Krt35 marks the hair shaft. Density-based clustering was used to separate the main 
hair shaft cluster of cells (orange) from those expressing it sporadically in the background. (J) 
Scatter plot of the spatiotemporal coordinates of Krt28+ keratinocytes which mark the IRS. 
Density-based clustering was used to separate the main IRS cluster (orange) cells expressing it 
sporadically in the background. (K) Scatter plot of the spatiotemporal coordinates of Shh+ 
keratinocytes. Shh marks the matrix. Density-based clustering was used to separate the matrix 
cluster (orange) cells expressing it sporadically in the background. (L–N) UMAP scatter plot of 
spatiotemporal pseudobulks for outer sheath keratinocytes (L), fibroblasts (M), and melanocytes 
(N). Colors signify the different clusters as identified using Leiden and based on the key on top.   
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Figure 4. Cell population dynamics during hair follicle development. (A-Q) Scatter plots of 
each cell type’s count per follicle over pseudotime. Corresponding cell type is labeled on the top 
each panel. Colors are based on Fig. 3F. Locally weighted scatterplot smoothing (LOWESS) is 
shown as solid line. (P) Stream plot summarizing the growth of different cell populations in hair 
follicles over pseudotime.  
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Figure 5. Morphogen expression over space and time. (A) Top: Heatmaps of q-values for 
enriched morphogen genes (rows) across pseudotime bins (columns) faceted by different hair 
follicle structure. Log10(1/q-value) was capped at 4 to facilitate visualization. Bottom: Heatmaps 
of z-scores of log-transformed mean expression levels for enriched morphogen genes (rows) 
across pseudotime bins (columns) faceted by hair follicle structure. Z-score values were capped 
at 1 to facilitate visualization. Gene labels are colored in red for Igf pathway, green for Wnt 
pathway, blue for Edn pathway, purple for Tgf superfamily pathway, and yellow for Notch 
pathway. (B) Cleveland Dot Plots of the number of significantly enriched morphogens genes for 
different hair follicle structures. Blue: number of genes enriched in at least one pseudotime bin in 
panel A with q-value < 0.05; Orange: number of genes enriched in all pseudotime bins in panel 
A with q-value < 0.05. (C) Boxplots showing the variance of mean Z-scores across pseudotimes 
from panel A for enriched morphogens in each structure. Structures are ordered based on being 
in the upper or lower parts of the follicle. P-values from two-sided Wilcoxon rank sum test. ***: 
P < 0.001. (D) Boxplot showing the average variance of mean Z-scores for all upper and lower 
hair follicle structures calculated from the values in panel D. P-values from two-sided Wilcoxon 
rank sum test. * : P < 0.05. (E) Heatmaps showing the density of each cell type/structure in hair 
follicles over pseudotime and along the hair follicle's axial coordinate Z faceted by the cell 
type/structure. The pseudotime and Z position were split into 50 bins each. Color key for cell 
density per bin is shown to the right of each plot. (F) Heatmap of Pearson correlation coefficients 
between the number of cells and mean expression level over pseudotime for each morphogen 
gene (rows) in seven different hair follicle structures (columns).  
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Figure 6. Structural changes leading to hair follicle ostia and canal formation. (A) Raw 
fluorescence images from eight hair follicles, each representing the pseudotime range denoted 
above the image, near the skin surface, depicting ostia and canal formation. The four colors 
correspond to fluorescence channels (AF488, AF546, Cy5, and AF750) and correspond to the 
second round of imaging. (B) Stacked barplots showing the fraction of open (light blue) and 
closed (dark blue) hair follicles in each pseudotime bin. (C) Scatter plot showing the distribution 
of Krt79+ cells at the hair follicle surface along the radial axis (R) and over pseudotime. Krt79+ 
cells from all follicles within the pseudotime window are overlayed. Black lines mark the 
receding edge of the opening and red numbers quantify its diameter in microns. (D) Scatter plots 
of the axial (Z) and radial (R) positions of IRS (orange), hair shaft (purple), and outer sheath 
keratinocyte (grey) cells in hair follicles, faceted by pseudotime range. For each facet, all 
follicles within the pseudotime range have been overlayed. Wedges show the opening of Krt79+ 
keratinocyts; arrows mark the opening of the IRS; horizontal dashed lines mark the top edge of 
the IRS and highlight its downward movement. (E) Raw fluorescent images from eight hair 
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follicles, each representing the pseudotime range denoted above the image, showing 
transformation of the IRS into a cylindrical shell. The four colors correspond to fluorescence 
channels (AF488, AF546, Cy5, and AF750). The image is from the second round of 
hybridization where IRS markers (Krt27 and Krt71) are labeled in green (AF488). (F) Stacked 
barplots showing the fraction of hair follicles with their IRS in a cylindrical (dark blue) or 
cylindrical shell (light blue) configuration or in transition between the two states (brown) in each 
pseudotime bin. (G) Region plot showing the positions and boundaries of uHF (light orange), 
bulge keratinocytes (blue), IRS (orange), and mOS (red) in axial position and pseudotime. (H) 
Line charts of length over pseudotime for various hair follicle structures as denoted in the color 
key on top. (I) Box plots of morphogen gene expression level changes associated with ostia and 
IRS cylindrical shell formation over pseudotime. P-values from two-sided Wilcoxon rank sum 
test. *: P < 0.05, **: P < 0.01.  
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Figure 7. Tracking stem and niche cells during hair organogenesis. (A) Scatter plot showing 
the axial positions of melanocyte cells over pseudotime. Black line marks the lowest edge of 
follicles at each pseudotime. (B) Scatter plot showing the axial positions of epidermal 
melanoblasts (blue), bulge melanocytes (pink), and bulb melanocytes (green) over pseudotime. 
(C-G) Scatter plots of the axial positions of Cd34+ (C), Gli1+ (D), Lgr5+ (E), Lgr6+ (F), Lrig1+ 
(G) keratinocyte stem cells over pseudotime overlayed with their kernel density estimation to 
visualize the spatiotemporal concentrations of marker gene-positive cells. (H) Scatter plot of the 
number of cells positive for each stem cell marker over pseudotime. Colored lines are LOWESS 
for each marker. (I) Line graphs of the highest-density axial position of keratinocytes positive for 
different stem cell markers over pseudotime. Local regression was used to estimate stem cell 
positions in hair follicles. (J) Scatter plots of the axial positions of Col17a1+ cells over 
pseudotime overlayed with their kernel density estimation. (K) Volcano plot showing up- and 
down-regulated genes in stem cell marker-positive (Cd34, Gli1, Lgr5, Lgr6, and Lrig1) 
keratinocytes in the bulge compared to marker-negative keratinocytes in the same region, with q-
values calculated using a two-sided Wilcoxon rank sum test followed by the Benjamini-
Hochberg procedure. Log10(1/q-value) values were capped at 3 to facilitate visualization.  
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Figure 8. Timeline and molecular stages of hair follicle organogenesis. Illustration 
summarizing a new model of hair follicle organogenesis in three stages. Hair follicle structure at 
the end of each of the three molecular stages is shown. Colored circles on the pseudotime axis 
represent the emergence of each structure.  
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Table 1. List of gene used for characterizing new-born mouse skin. Each gene is listed 
together with its functional classification, associated cell lineage, associated hair follicle 
structure, related references, and basis of selection for this study. 
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Supplementary Figures 

Figure S1. Related to Figure 5: Characterizing morphogen gene expression over space and 
time. (A) Density maps of keratin and morphogen genes across pseudotime and arong the axial 
coordinate Z. 

Figure S2. Related to Figure 5: Characterizing morphogen gene expression over space and 
time. (A-H) Density maps of morphogen genes in keratinocyte structures, including uHF, bulge 
keratinocyte, suprabasal keratinocyte, mOS, ORS, IRS, hair shaft, and matrix, across pseudotime 
and arong the axial coordinate Z. 

Figure S3. Related to Figure 5: Characterizing morphogen gene expression over space and 
time. (A-D) Density maps of morphogen genes in fibroblast structures, including papillary/IF 
fibroblast, bulge fibroblast, DS/Reticular fibroblast, and DC/DP, across pseudotime and arong 
the axial coordinate Z.  
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Supplementary Tables 

Table S1. List of padlock oligo sequences and thermodynamic characteristics. The file 
separated submitted as an auxiliary supplementary material because of the data size. 

Table S2. List of bridge probes and assigned ID sequences. The file separated submitted as an 
auxiliary supplementary material because of the data size. 

Table S3. Summary of hair follicle positions. The file separated submitted as an auxiliary 
supplementary material because of the data size. 
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