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Abstract
SIPL1 (Sharpin) or Sharpin plays a role in tumorigenesis. However, its involvement in breast

cancer tumorigenesis remains largely unknown. To investigate this issue, we have systemi-

cally analyzed SIPL1 gene amplification and expression data available from Oncomine

datasets, which were derived from 17 studies and contained approximately 20,000 genes,

3438 breast cancer cases, and 228 normal individuals. We found a SIPL1 gene amplifica-

tion in invasive ductal breast cancers compared to normal breast tissues and a significant

elevation of SIPL1 mRNA in breast cancers in comparison to non-tumor breast tissues.

These results collectively reveal that increases in SIPL1 expression occur during breast

cancer tumorigenesis. To further investigate this association, we observed increases in the

SIPL1 gene and mRNA in the breast cancer subtypes of estrogen receptor (ER)+, proges-

terone receptor (PR)+, HER2+, or triple negative. Additionally, a gain of the SIPL1 gene cor-

related with breast cancer grade and the levels of SIPL1 mRNA associated with both breast

cancer stages and grades. Elevation of SIPL1 gene copy and mRNA is linked to a decrease

in patient survival, especially for those with PR+, ER+, or HER2- breast cancers. These re-

sults are supported by our analysis of SIPL1 protein expression using a tissue microarray

containing 224 breast cancer cases, in which higher levels of SIPL1 relate to ER+ and PR+

tumors and AKT activation. Furthermore, we were able to show that progesterone signifi-

cantly reduced SIPL1 mRNA and protein expression in MCF7 cells. As progesterone en-

hances breast cancer tumorigenesis in a context dependent manner, inhibition of SIPL1

expression may contribute to progesterone's non-tumorigenic function which might be

countered by SIPL1 upregulation. Taken together, we demonstrate a positive correlation of

SIPL1 with BC tumorigenesis.

Introduction
SIPL1 (Shank-Interacting Protein-Like 1), also known as Sharpin (Shank-associated RH do-
main interacting protein), was identified in 2001 as a Shank-binding protein in the postsynap-
tic density and later in 2003 was reported shown to be expressed in the gastric fundus [1,2].
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SIPL1/Sharpin is a major component of an E3 ubiquitin-protein ligase complex, the linear ubi-
quitin chain assembly complex (LUBAC); the complex consists of HOIL-1, HOIP, and SIPL1/
Sharpin, and adds a linear polyubiquitin chain to protein substrates [3–7]. The most thorough-
ly investigated function of SIPL1/Sharpin is the modification of NEMO, an adaptor protein fa-
cilitating NF-κB activation, via linear polyubiquitination, resulting in NF-κB activation [8]. In
accordance with the essential roles of NF-κB signalling in the immune system, loss of SIPL1/
Sharpin compromises a variety of immunoreactions [9–11], and causes chronic proliferative
dermatitis in mice, which is largely attributable to abnormalities in the inflammatory response
[3,5,7,12].

The essential contribution of SIPL1 to the activation of NF-κB support the possibility that
SIPL1 promotes tumorigenesis, as NF-κB signalling possesses well-demonstrated tumorigenic
properties [13]. This prospect is further supported by SIPL1/Sharpin-mediated suppression of
apoptosis in keratinocytes and hepatocytes [14,15], and repression of cisplatin, a widely-used
drug in cancer therapy, induced apoptosis [16]. Additionally, SIPL1 promotes the migration of
CHO cells in vitro and lymphocytes in vivo, and enhances the lung metastasis of osteosarcoma
in vivo (in immunocompromised mice) [10,17,18]. Upregulation of SIPL1 was observed in
ovarian cancer, renal cell carcinoma, and cervical cancer [17,19,20]. Furthermore, SIPL1 was
reported to inhibit PTEN via a physical interaction [20]. Collectively, evidence demonstrates a
role of SIPL1 in promoting tumorigenesis.

Whether SIPL1 plays a role in breast cancer (BC) tumorigenesis remains unknown. BC is the
most common malignancy diagnosed and the second leading cause of cancer-related deaths in
women [21]. BC is a highly heterogeneous group of diseases, which can express ER (ER+), PR
(PR+), HER2+, or none of them (ER-, PR-, and HER2-/triple negative) [22]. The HER2+ and
triple negative (TN) BCs have poor outcomes [21,23] and comprise 20–25% and 10–25% of the
reported cases, respectively [24–27].

To study a possible association of SIPL1 and BC tumorigenesis, we have taken advantage of
the rich resources of cancer genome data and gene expression profiles deposited in the Onco-
mine database, and thoroughly analyzed the association of SIPL1 gene amplification and ex-
pression during BC tumorigenesis. This analysis together with our studies of the SIPL1 protein
in primary BCs reveals a positive correlation of SIPL1 with BC tumorigenesis.

Materials and Methods

Tissue microarray immunohistochemistry
A breast cancer tissue microarray (TMA) was obtained from the Cancer Diagnosis Program
(formerly the Cooperative Breast Cancer Tissue Resource; CBCTR) which is funded by the Na-
tional Cancer Institute [28]. The TMA was organized to examine markers associated with BC
progression, and contained 239 breast carcinomas, including 80 cases each for node negative
and positive tumor tissues and 79 cases of distant metastatic BC cancers. There was no follow-
up information available for these patients.

The slides were first deparaffinized and rehydrated using successive washes in Xylene and
EtOH baths. The slides were then heat treated in a sodium citrate buffer (10 mM) for 20 min-
utes in a food steamer. The slides were blocked using a buffer containing goat serum, and incu-
bated with anti-SIPL1 antibody (1:100) [20] or anti-AKT pS473 (1:100, Rockland
Immunochemicals Inc., Gilbertsville, PA) overnight at 4°C. Biotinylated goat anti-rabbit IgG
was then incubated with the slides for one-hour followed by an incubation with Avidin-Biotin
Complex (ABC) for one-hour (Vector Laboratories, Burlington, ON). Chromogen detection
was carried out using diaminobenzidine (DAB; Vector Laboratories, Burlington, ON) and
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counterstained with Haematoxylin (Sigma Aldrich, Oakville, ON). The staining was repeated
in duplicate.

The slides were scanned at the Advanced Optical Microscopy Facility (AOMF) at the Uni-
versity of Toronto using a ScanScope. All slide images were analyzed using ImageScope soft-
ware (Leica Microsystems Inc., Concord, ON). All cores were visually examined. Damaged
cores were excluded, leaving 206 total cancer samples in the analysis. The intensity values ob-
tained from the Imagescope software after analyses were converted to an HScore using the for-
mula [HScore = (% Positive) x (intensity) + 1] [20]. The HScore was normalized using a
background subtraction and averaged between the two replicates. The TMA contained
MCF10A cells. Based on our western blot analysis of SIPL1 and pAKT expression in various
breast cancer cells lines (data not shown), MCF10A cells were found to express low levels of
both events. With this understanding, we determined the respective average HScore for SIPL1
and pAKT in the MCF10A cores of our TMA. These scores were subsequently used as a respec-
tive threshold to define the status (positive versus negative) of SIPL1 and pAKT in TMA tis-
sues. All tissue cores classified as positive and negative were confirmed by visual inspection.

Cell culture
MCF7 cells were obtained from American Type Culture Collection (ATCC; Manassas, VA),
and cultured in DMEMmedia supplemented with 10% Foetal Bovine Serum (FBS; Sigma Al-
drich; Oakville, ON) and 1% Penicillin-Streptomycin (Life Technologies; Burlington, ON).
Prior to hormone treatment the cells were washed with PBS three times and grown in phenol-
red free DMEM (GE Healthcare; Logan, Utah) supplemented with 5% dextran-charcoal treated
FBS (Life Technologies; Burlington, ON); and 1% Penicillin-Streptomycin for 72 hours. The
cells were treated with 10 nM 17β-estradiol (E2; Sigma Aldrich; Oakville, ON), a combination
of 10 nM E2 and 10 nM progesterone (P4; Sigma Aldrich; Oakville, ON) or a vehicle control
(EtOH) for 24 hours.

Real-time PCR analysis
After treatment with the respective hormones, the cells were lysed and total RNA was collected
using TRIzol (Life Technologies, Burlington, ON) following the manufacturers protocol. Re-
verse transcription and qRT-PCR was carried out as previously described [29]. Briefly, 2 μg of
RNA was converted to cDNA, followed by qRT-PCR, where 1 μL of cDNA was used in each re-
action. Real time PCR primers used for actin (Forward: 5’- ACC GAG CGC GGC TAC AG -3’;
Reverse: 5’- CTT AAT GTC ACG CAC GAT TTC C -3’), SIPL1 (Forward: 5’- GCT ATT GCA
GGT GGA GAC GA -3’; Reverse: 5’- GCC TCC TGA AGC TGA ACA CT -3’), BCL2 (For-
ward: 5’- GGT GGG GTC ATG TGT GTG G -3’; Reverse: 5’- CGG TTC AGG TAC TCA GTC
ATC C -3’) and MYC (Forward: 5’- GGC TCC TGG CAA AAG GTC A -3’; Reverse: 5’- CTG
CGT AGT TGT GCT GAT GT -3’).

Western blot analysis
Western blot analysis was carried out using our established protocol [29]. Briefly, 50 μg of pro-
tein lysate was separated on SDS-PAGE gels and transferred onto Amersham Hybond ECL ni-
trocellulose membranes (Amersham, Baie d’Urfe, QC). Blots were blocked with 5% skim milk
and incubated at 4°C overnight with either an anti-SIPL1 [20] or anti-GAPDH (1:5000, Cell
Signalling, Danvers, MA). The blots were then incubated with the corresponding HRP-conju-
gated secondary antibodies for one hour at room temperature. Signals were detected using an
ECLWestern Blotting Kit (Amersham, Baie d’Urfe, QC). Protein bands were quantified using
ImageJ software (National Institutes of Health).
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Oncomine
Oncomine (Compendia Bioscience, Ann Arbor, MI; www.onocomine.org) is an online data-
base consisting of previously published and publicly available microarray data. Using the
search term “SIPL1” and isolating for datasets representing Ductal Breast Carcinoma and Inva-
sive Ductal Breast Carcinoma, we identified 21 datasets which contained DNA or RNA expres-
sion data. Four datasets did not contain information relevant to this study and were thus
excluded. The detailed dataset information was exported and analyzed in terms of clinical-
pathological information and SIPL1 expression. The follow-up period for these patients was up
to 25 years with an average of 8–10 years.

Seven datasets contained normal breast tissue controls and these were used to compare
the expression of SIPL1 in normal and cancer tissues. In order to score cancers as SIPL1 posi-
tive (high expression) or SIPL1 negative (low expression), the Log2 Median-Centered ratio,
as reported in the Oncomine database, for all the normal samples in a particular dataset were
averaged. RNA expression values above and below this average were considered SIPL1 posi-
tive and negative, respectively. Likewise, for the DNA copy number data, the Log2 copy num-
ber units reported in Oncomine were converted to a copy number value using the formula
[2 x 2(Log2 Copy Number Value)]. Values above 2 were considered to be SIPL1 positive (SIPL1
amplified) and those below were considered to be SIPL1 negative (no SIPL1 amplification).

Statistical analysis
All statistical analysis was carried out using GraphPad Prism 5 software. A p<0.05 was consid-
ered statistically significant.

Results

Amplification of the SIPL1 gene in breast cancer
The SIPL1 gene is located at 8q24.3, a region that is gained (or amplified) in 40% of breast can-
cers [30–35], indicating a possible gain of the SIPL1 gene during the course of the disease. The
recent characterization of many cancer genomes has accumulated a rich source of data regard-
ing aneuploidy, copy number variations, and somatic mutations. This information has been de-
posited into the Oncomine database. In taking advantage of the characterized genome for 639
breast cancers and 111 normal controls, we observed increases of the SIPL1 gene copy number
in breast cancer in comparison to normal breast tissues, and this gain was detected in all sub-
types of breast carcinomas, including those of ER+, ER-, PR+, PR-, HER2+, and triple negative
(Fig 1A). Additionally, receiver-operating characteristic (ROC) analysis shows that SIPL1 gene
amplification is able to differentiate BC from benign breast tissues (Fig 1B).

Upregulation of SIPL1 mRNA in breast cancer
The observed amplification of the SIPL1 gene indicates that SIPL1 expression may be increased
in breast cancer. To examine this scenario, we analyzed SIPL1 mRNA in 7 datasets available
from Oncomine, in which both carcinoma and normal tissues are available (S1 Table). In-
creases in SIPL1 mRNA were observed in all breast cancer subtypes (ER+, PR+, HER2+, and
triple negative BCs) in the two large datasets (Fig 2A and 2B). The elevation of SIPL1 mRNA
levels in both datasets differentiated BC from normal breast tissues based on their respective
ROC analysis (Fig 2C and 2D). Additionally, this upregulation was also largely detected in
other smaller datasets (S1 Fig). Collectively, the above observations reveal an upregulation of
SIPL1 mRNA in breast cancer.
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Elevation of SIPL1 expression correlates with breast cancer progression
Cancer progression is commonly measured by staging (Tumour stage I, II, III, IV) and grading
(Grade 1, 2, 3) [36]. The above observations of increased SIPL1 gene copy and upregulation of
SIPL1 mRNA suggest that these alterations may associate with breast cancer progression. To
determine this possibility, we analyzed the variations of the SIPL1 gene copy number in three
Oncomine datasets (Table 1). SIPL1 gene copy number (GCN) increases associated with grad-
ing in the Curtis dataset but not in the Nikolsky dataset (Table 1). As the size of patient popula-
tion in the Curtis dataset was more than 13 fold larger than it in the Nikolsky dataset, we
preferred a positive correlation between an increase in SIPL1 GCN and advancing BC grade.
Although increases in SIPL1 GCN were not significantly associated with BC staging in the Cur-
tis dataset, a significant association could be established in the TCGA dataset (Table 1). A likely
cause for this discrepancy is attributable to the limited number of stage III (n = 69) and stage
IV (n = 9) tumors among the 1556 total cases in the Curtis dataset. Despite the TCGA dataset
containing fewer than half of total BC cases in the Curtis dataset (Table 1), it had 138 stage III
and 14 stage IV cases among its population of 639 tumours (Table 1). To attempt to compen-
sate for the low number of advanced cases in the Curtis dataset, we performed a statistical anal-
ysis on stage I+II vs. stage III+IV cancers; this resulted in a decrease of the p-value from 0.437
(Table 1) to 0.1827. The same analysis also decreased the p-value from 0.016 (Table 1) to
0.0039 for the TCGA dataset. This analysis thus supports the likelihood that the Curtis dataset
does not have a sufficient number of higher stage tumors to determine an association between
increased SIPL1 GCN and advancing BC stage. Collectively, the available evidence as a whole
supports a correlation between SIPL1 gene amplification and breast cancer progression.

In accordance with this possibility, the examination of SIPL1 mRNA levels in 16 datasets of
Oncomine containing 3127 cases (Table 2) indicates that upregulation of SIPL1 mRNA signifi-
cantly associates with breast cancer staging and grading based on the data presented in the
Curtis study, which is the largest dataset (Table 2). While a reduction of SIPL1 mRNA in stage

Fig 1. Amplification of SIPL1 in breast cancer.Data from the TCGA 2 dataset was extracted from Oncomine (Compendia Bioscience, Ann Arbor, MI) and
analyzed with respect to SIPL1 gene copy number variation (GCN) in cancer vs. normal tissues. Statistical analysis was conducted using an unpaired, two-
tailed, welch-corrected t-test. Asterisks indicate p<0.0001 in comparison the normal breast tissues. A Log2 copy number unit of 0 equates to a gene copy
number of 2 (A). (B) A receiver-operating characteristic (ROC) curve of normal versus primary breast cancer was calculated based the data extracted from
the TCGA dataset. AUC: area under the curve.

doi:10.1371/journal.pone.0127546.g001
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IV breast cancers was observed in the largest dataset (Curtis), only 8 cases of stage IV tumors
were included versus the large number of tumors of other stages (n = 257 for stage I, n = 446
for stage II, and n = 69 for stage III tumors) and called for precautious in interpretation of this
decrease. Nonetheless, the results generally support a positive association between SIPL1
mRNA levels and breast cancer progression. This association is also consistent with the exami-
nation of the relationship between SIPL1 gene copy number and breast cancer progression, in
which amplification of the SIPL1 gene associates with breast cancer grading within this same
study (Table 1). Similar observations were also obtained using the TCGA datasets, as SIPL1
mRNA levels correlate with breast cancer staging (Table 2) as do the gains of the SIPL1 gene
(Table 1). However, this correlation was not observed in most of smaller studies (Table 2).

Fig 2. Increases in SIPL1mRNA in breast cancer.Data from the Curtis (A) and TCGA datasets (B) were extracted from Oncomine and analyzed with
respect to SIPL1 mRNA expression in cancer vs. normal tissues. Statistical Analysis was conducted using an unpaired, two-tailed, welch-corrected t-test.
Asterisks indicate p<0.0001 in comparison the normal breast tissues. (C), (D) A receiver-operating characteristic (ROC) curve of normal versus primary
breast cancer was calculated based the data extracted from the Curtis dataset (C) and the TCGA dataset (D).

doi:10.1371/journal.pone.0127546.g002
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Taken together, available data reveals a linkage between SIPL1 expression and breast cancer
progression.

SIPL1 expression predicts reduction in the survival of patients with ER
+ or PR+ breast cancers
To consolidate the association of SIPL1 upregulation (gene copy number increases and mRNA
elevation) with BC progression, we have analyzed the relationship between BC patients’ surviv-
al with either SIPL1 gene copy number or SIPL1 mRNA levels using the Curtis dataset which
contains 816 surviving patients with breast cancer and 429 patients who died from the disease
(Table 3). In comparison to the survivors, those who died of breast cancer displayed a signifi-
cantly higher gain of the SILP1 gene and increase in the SIPL1mRNA (Table 3). Further

Table 1. SIPL1 DNA copy number variation (CNV) in ductal breast carcinoma.

Stage Grade

Dataset BCa Cases I II III IV pc 1 2 3 p Ref.

Curtis 2 Ductal 1556 0.144 b 0.159 0.196 0.214 0.4370 0.075 0.11 0.18 <0.0001 [58]

Nikolsky Ductal 115 0.228 -0.029 0.057 0.2181 [66]

TCGA 2 Ductal 639 0.296 0.316 0.439 0.39 0.016

a Invasive ductal carcinoma
b The Log2 copy number units reported within Oncomine, a Log2 copy number unit of 0 is converted to a gene copy number value of 2 according to the

formula 2 X 2(Log2 Copy Number Units)

c Statistical analysis was conducted using a One-Way ANOVA.

doi:10.1371/journal.pone.0127546.t001

Table 2. SIPL1 mRNAExpression in Ductal Breast Carcinoma.

Stage Grade

Dataset BCa Cases I II III IV pc 1 2 3 p Ref.

Bittner Ductal 161 0.918b 1.424 1.417 1.591 0.0357 0.729 1.304 1.445 0.0016
Bonnefoi Ductal 112 2.805 2.48 2.49 0.506 [67]

Curtis Ductal 1556 1.396 1.493 1.528 1.396 0.0198 1.385 1.454 1.52 0.0018 [58]

Desmedt Ductal 158 0.325 0.65 0.707 0.1221 [68]

Esserman Ductal 93 -0.036 -0.33 -0.092 0.1261 [69]

Lu Ductal 95 0.117 0.559 0.354 0.4078 [70]

Ma 3 Ductal 47 0.273 0.68 0.993 0.109 [71]

Pollack 2 Ductal 33 0.577 1.149 0.947 0.3438 [31]

Radvanyi Ductal 30 1.594 2.084 1.795 0.5484 [72]

Sorlie Ductal 65 0.349 0.954 0.99 0.1819 [24]

Sorlie 2 Ductal 90 -0.3 0.059 0.135 0.3348 [25]

Sotiriou 2 Ductal 97 0.37 0.316 0.291 0.5685 [73]

Tabchy Ductal 163 0.738 0.714 0.668 0.6383 [74]

TCGA Ductal 389 -0.043 0.171 0.276 0.151 0.0578

Zhao Ductal 38 -0.052 0.148 0.741 0.0293 [75]

a Invasive ductal carcinoma
b The Log2 Median-Centered Ratio reported within Oncomine
c Statistical analysis was conducted using a One-Way ANOVA.

doi:10.1371/journal.pone.0127546.t002
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analysis revealed that both increases in SIPL1 GCN and mRNA level predicted worsening sur-
vival for patients with PR+ or ER+ but not those with HER2+ or triple negative BCs (Table 3).

This conclusion was further supported by our analysis of the time-to-decease endpoints
(Kaplan-Meier analysis). Amplification of the SIPL1 gene associates with decreased patient sur-
vival (Fig 3A), and this association is attributable to ER+ or PR+ breast cancers but not to
those of HER2+ and triple negative (Fig 3B–3H). These results are in line with the linkage of
SIPL1 mRNA levels with the decreased survival of breast cancer patients (Fig 4A) and in the
patients with PR+ breast cancer (Fig 4D). The difference in survival of ER+ BC patients with el-
evated SIPL1 mRNA versus those without SIPL1 elevation approached statistical significance,
but did not reach the 95% significance level (Fig 4B). This trend together with the observed as-
sociation of SIPL1 copy number increase with reducing survival of patients with ER+ BC (Fig
3B) support the notion that elevation of SIPL1 expression compromised the survival of patients
with PR+ and ER+ breast cancer. Taken together, the above analyses demonstrate an inverse
correlation of gain of the SIPL1 gene or high levels of SIPL1 mRNA levels with decreasing sur-
vival in patients with PR+ or ER+ breast cancer.

SIPL1 protein expression associates with ER+ and PR+ breast cancer
To consolidate the above analyses using the Oncomine datasets, we examined SIPL1 protein
expression by immunohistochemistry (IHC) using a tissue microarray containing 206 cases of
primary breast cancers (S2 Table). IHC staining clearly detected the SIPL1 protein in some pri-
mary breast carcinomas (Fig 5). Quantification of SIPL1 staining by HScore detected higher
levels of SIPL1 in ER+ and PR+ tumors versus those of ER- and PR- (Fig 5B). To examine
whether SIPL1 expression correlates with ER+ or PR+ breast cancer, we divided the cancers
into a group of strong SIPL1 expression (SIPL1+) and a group of weak SIPL1 expression
(SIPL1-) based on an HScore of 40 (see Materials and Methods for justification). Fisher’s exact
test revealed a correlation of SIPL1+ with ER+ and PR+ status (Table 4). These observations to-
gether with the association of increased SIPL1 GCN and upregulation of the SIPL1 mRNA
with reduction in the survival of patients with ER+ and PR+ breast cancer in the Oncomine
datasets demonstrate a positive association between SIPL1 expression and ER+ and PR+ can-
cers. While SIPL1+ does not correlate with tumor size, tumor scores, node status, and metasta-
sis, SIPL1+ correlates with tumor stage (Table 4), an observation that is consistent with the
association of SIPL1 gene copy number with BC stage detected in our analysis of the TCGA
dataset (Table 1).

Supporting SIPL1's role in facilitating AKT activation in cervical cancer [20], we observed
the co-existence of the SIPL1 protein with AKT activation in breast cancer (Fig 6A), although

Table 3. Differential Expression of SIPL1 correlates with survival in Ductal Breast Carcinoma within the Curtis dataset.

SIPL1 mRNA level SIPL1 gene copy number

Survivor Deceased Fold p Fold p

Overall 816 429 1.088 <0.0001 1.255 0.0162

ER+ 622 280 1.094 <0.0001 1.305 0.0209
ER- 183 147 1.082 0.0116 1.149 0.4066

PR+ 449 180 1.108 <0.0001 1.343 0.0512

PR- 367 249 1.067 0.0086 1.139 0.2793

Her2+ 184 134 1.045 0.1858 1.000 0.9976

Her2- 629 293 1.092 <0.0001 1.327 0.0172

TNBC 101 81 1.068 0.11054 1.070 0.7267

doi:10.1371/journal.pone.0127546.t003
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AKT activation was also detected in SIPL1- BC (Fig 6A). Quantification analysis revealed
higher levels of AKT activation in SIPL1-positive breast cancer in comparison to those which
were SIPL1-negative (Fig 6B). To examine a correlation of AKT activation with SIPL1 expres-
sion, in addition to the separation of BC into SIPL1+ and SIPL1- groups, BC were also cata-
logued into those of AKT+ or AKT- (see Materials and Methods for defining the threshold
level). The co-existence of SIPL1+ and AKT+ (with AKT activation) in breast cancer could be
evidently demonstrated (Fig 6C). Fisher’s exact test revealed a trend of correlation between
SIPL1+ and AKT+ (Table 4).

Fig 3. Increases in SIPL1 gene copy number correlate with decreased survival for patients with breast cancer.Data was extracted from the Curtis
dataset within Oncomine and analyzed with respect to gene copy number variation. Specifically, SIPL1 copy number above 2 was labelled as SIPL1+ and
those below 2 were indicated as SIPL1-. Kaplan–Meier analysis of survival for a subset of patients with SIPL1 amplified breast cancer vs. those with breast
cancer without SIPL1 amplification (A, n = 1118 for SIPL1+ BCs, n = 127 for SIPL1- BCs), ER+ (B, n = 810 for SIPL1+ BCs, n = 92 for SIPL1- BCs), ER- (C,
n = 295 for SIPL1+ BCs, n = 35 for SIPL1- BCs), PR+ (D, n = 565 for SIPL1+ BCs, n = 64 for SIPL1- BCs), PR- (E, n = 553 for SIPL1+ BCs, n = 63 for SIPL1-
BCs), HER+ (F, n = 291 for SIPL1+ BCs, n = 27 for SIPL1- BCs), HER- (G, n = 822 for SIPL1+ BCs, n = 100 for SIPL1- BCs), and TNBC (F, n = 163 for SIPL1+
BCs, n = 21 for SIPL1- BCs). Only patients with follow up survival data were included. Any patients whose death was not related to the disease or with a non-
specified cause were excluded. Statistical Analysis was conducted using a Log-Rank test. A p-value of <0.05 was considered statistically significant.

doi:10.1371/journal.pone.0127546.g003
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Progesterone negatively regulate SIPL1 expression
In view of the correlation of SIPL1 with ER and PR status observed above, we have analyzed
the effects of estrogen and progesterone on SIPL1 expression. MCF7 cells are both ER and PR
positive [37]. These cells were cultured in hormone free conditions for 72 hours, followed by
stimulated with estrogen or estrogen plus progesterone. Because of estrogen-dependent PR ex-
pression, examination of PR-regulated genes was performed in the presence of estrogen. In
comparison with estrogen alone, progesterone plus estrogen would identify genes whose

Fig 4. Increases in SIPL1mRNA correlate with decreased survival for patients with breast cancer.Data was extracted from the Curtis dataset within
Oncomine and analyzed with respect to gene copy number variation. Specifically, SIPL1 mRNA in normal breast tissues was averaged, which was used to
determine if the cancer samples were with SIPL1 (positive) or without (negative) mRNA upregulation. Kaplan–Meier analysis of survival for a subset of
patients with SIPL1+ amplified breast cancer vs those with SIPL1- breast cancer (A, n = 1039 for SIPL1+ BCs, n = 547 for SIPL1- BCs), ER+ (B, n = 751 for
SIPL1+ BCs, n = 423 for SIPL1- BCs), ER- (C, n = 269 for SIPL1+ BCs, n = 111 for SIPL1- BCs), PR+ (D, n = 510 for SIPL1+ BCs, n = 306 for SIPL1- BCs),
PR- (E, n = 529 for SIPL1+ BCs, n = 241 for SIPL1- BCs), HER+ (F, n = 258 for SIPL1+ BCs, n = 96 for SIPL1- BCs), HER- (G, n = 776 for SIPL1+ BCs,
n = 451 for SIPL1- BCs), and TNBC (F, n = 168 for SIPL1+ BCs, n = 52 for SIPL1- BCs). Only patients with follow up survival data were included. Any patients
whose death was not related to the disease or with a non-specified cause were excluded. Statistical Analysis was conducted using a Log-Rank test. A p-
value of <0.05 was considered statistically significant.

doi:10.1371/journal.pone.0127546.g004

Association of SIPL1 with Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0127546 May 19, 2015 10 / 19



expression is regulated by progesterone [38–41]. Both BCL2 and MYC genes are regulated by
estrogen and progesterone, respectively [39,42–44]. As expected, estrogen showed a trend of
BCL2 induction and progesterone significantly induced MYC expression (Fig 7A). Interesting-
ly, addition of both estrogen and progesterone significantly downregulated SIPL1 mRNA,
while estrogen alone had no effect (Fig 7A); this reduction was also confirmed at the protein

Fig 5. SIPL1 protein expression is associated with ER+ and PR+ tumours. (A) A TMA was examined for
SIPL1 protein expression using IHC. Typical images of SIPL1+ and SIPL1- tumors are shown. The marked
regions were enlarged 2.5 fold and placed underneath of the individual images. (B) SIPL1 staining was
quantified (see Materials and Methods for details); means ± SEM (standard error mean) are graphed.
* p<0.05 (unpaired, two-tailed, welch-corrected t-test).

doi:10.1371/journal.pone.0127546.g005
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level (Fig 7B). Collectively, these results are in line with the theme that SIPL1 plays a role in the
tumorigenesis of PR+ breast cancer (see Discussion for details).

We subsequently examined SIPL1 upregulation in the course of breast cancer tumorigene-
sis. Ductal carcinoma in situ (DCIS) is widely regarded as the precancerous lesion [45]. By tak-
ing advantage of the presence of 425 DCIS cases in the Curtis dataset (Oncomine), our analysis
revealed a significant increase of SIPL1 mRNA in DCIS in comparison to normal breast tissue
and that the SIPL1 mRNA levels remained high in invasive carcinoma (Fig 8), suggesting a crit-
ical role of SIPL1 in early stages of cancer formation.

Table 4. The correlation of SIPL1 expression with the clinical-pathological parameters provided in the
TMA.

SIPL1 Expression

- + p-value

Total (n = 206) 33 173

Tumour Size

<20 mm 19 51

>20 mm; <50 mm 28 86 Pearson r: 0.1632

>50 mm 8 14 0.7931 (Pearson’s Correlation)

Tumour Stage

I 26 65

II 21 68

III 4 6 Pearson r: 0.9741

IV 4 12 0.0259 (Pearson’s Correlation)

Node Status

N0 19 53

N1+ 28 71 0.8629 (Fisher’s exact test)

Metastasis

M0 37 102

M1 18 49 1.0000 (Fisher’s exact test)

Tumour Score

1 6 26

2 20 71 Pearson r: 0.1073

3 28 49 0.8637 (Pearson’s Correlation)

Age

<50 15 39

>50 40 112 0.8589 (Fisher’s exact test)

ER

(+) 29 112

(-) 26 38 0.0037 (Fisher’s exact test)

PR

(+) 18 76

(-) 37 74 0.0268 (Fisher’s exact test)

AKT Activation

(-) 12 18

(+) 42 133 0.0753 (Fisher’s exact test)

doi:10.1371/journal.pone.0127546.t004
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Discussion
Breast cancer is a heterogeneous disease, consisting of tumors expressing either ER or PR, which
are the majority of breast cancers, and carcinomas classified as HER2+ or triple negative. It is
well documented that the ER signalling plays an important role in the tumorigenesis of ER+
breast cancer, which is the scientific basis of the anti-estrogen therapy (tamoxifen and aromatase
inhibitors). Recent evidence has also revealed that progesterone signalling plays an important

Fig 6. SIPL1 protein expression correlates with increased AKT activation in primary BC. (A) A TMA was examined for SIPL1 protein and Phospho-AKT
Ser473 (pAKT). Typical images of tumors with pAKT in the presence of SIPL1+ and SIPL1- are shown. (B) AKT activation (pAKT) in SIPL1+ (n = 151) and
SIPL1- (n = 54) was quantified; means ± SEM (standard error mean) are graphed. * p<0.05 (unpaired, two-tailed, welch-corrected t-test).

doi:10.1371/journal.pone.0127546.g006
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role in promoting breast cancer tumorigenesis under specific conditions [46]. During the men-
strual cycle, breast epithelial cells proliferate at the luteal phase, in which progesterone is at high
levels [46,47]. In postmenopausal women undergoing hormone replacement therapy (HRT),
the combination of estrogen with medroxyprogesterone acetate (MPA, a synthetic progestin) re-
sulted in elevation of breast epithelial cell proliferation and breast density compared to those re-
ceiving estrogen alone [48]. High breast density, as detected by mammography, strongly
associates with breast cancer risk [49–51]. In line with these discussions, the combination of es-
trogen and synthetic progestins increases breast cancer risk in postmenopausal women receiving
HRT [52–54]. However, high levels of serum progesterone does not increase breast cancer risk
in premenopausal women [55–57]. Collectively, evidence indicates that progesterone-associated
risk of breast cancer depends on a woman’s age among other factors [46]. Nevertheless, the un-
derlying mechanisms contributing to PR-facilitated breast cancer tumorigenesis remain essen-
tially unclear.

Our analysis of the publicly available microarray datasets in Oncomine collectively demon-
strates a common gain of the SIPL1 gene and associated increases in SIPL1 mRNA expression

Fig 7. Progesterone reduces SIPL1 expression in MCF7 cells. (A) MCF7 cells cultured in estrogen and progesterone free conditions for 72 hours, treated
with 10 nM E2 or a combination of 10 nM E2 and 10 nM P4 for 24 hours, and examined for changes in SIPL1 gene expression. The BCL2 andMYC are E2
and P4 responsive respectively, and were used as positive controls for the treatments. * p<0.05 in comparison to the ethanol (Etoh) control (2-tailed student
t-test). (B) Likewise, changes in SIPL1 protein expression were examined upon treatment with E2 or a combination of E2 and P4 (inset) and quantified using
ImageJ. * p<0.05 in comparison to the ethanol (Etoh) control (2-tailed student t-test).

doi:10.1371/journal.pone.0127546.g007

Fig 8. Comparison of SIPL1 mRNA expression in normal, DCIS and Invasive cancers.Utilizing the
samples present in the Curtis dataset (Oncomine), the SIPL1 gene expression level was compared between
normal, DCIS (Stage 0) and Invasive tumors. Means ± SEM (standard error mean) are graphed. * p<0.05
(unpaired, two-tailed, welch-corrected t-test) compared to normal tissues.

doi:10.1371/journal.pone.0127546.g008
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in BC patients irrespective of receptor expression (Fig 1 and Fig 2). Comprehensive analysis of
the largest dataset (1556 cases) of patients [58] revealed a reverse association between elevated
SIPL1 expression with reduced patient survival in PR+ BC (Fig 3 and Fig 4). This possibility is
supported by the linkage of the SIPL1 protein expression with PR+ BC observed in our own
analysis of a BC TMA (Fig 5).

SIPL1 expression is also correlated with ER status. Gain of the SIPL1 gene is associated with
reduced survival for patients with ER+ breast cancer in our Oncomine analysis (Fig 3B). Like-
wise, a trend was observed in which high levels of SIPL1 mRNA was linked with poorer surviv-
al for ER+ BC patients (Fig 4B). Furthermore, our examination of SIPL1 protein expression
demonstrated that SIPL1 associates with ER+ status (Fig 6B). Taken together, evidence sup-
ports a relationship between SIPL1 and ER+ BC.

The involvement of SIPL1 in the tumorigenesis of PR+ BCs was further supported by the
progesterone-mediated downregulation of SIPL1 (Fig 7). These observations are intriguing
considering the knowledge that PR signalling does not promote BC tumorigenesis in premeno-
pausal women [55–57] and that PR functions differently in normal versus neoplastic tissues
[59]. It is thus tempting to propose that suppression of SIPL1 may be a mechanism responsible
for non-tumorigenic PR signalling and that SIPL1 upregulation may thus contribute to the re-
moval of PR’s negative impact on BC tumorigenesis.

The correlation of SIPL1 expression with poor survival for patients with PR+ or ER+ breast
cancer does not exclude the possible contributions of SIPL1 to the tumorigenesis of HER2+
and triple negative breast cancer, as gain of the SIPL1 gene and increases in the SIPL1 mRNA
were demonstrated in these BC types in comparison with normal breast tissues. Collectively,
this investigation provides the first evidence of SIPL1 contributions to BC tumorigenesis.

While detailed mechanisms governing SIPL1-mediated BC tumorigenesis has yet to be elu-
cidated, it is possible that multiple pathways may be involved. One of them is the induction of
AKT activation (Fig 6), which is consistent with the reported role of SIPL1 in inhibiting PTEN
activity [20]. Additionally, as a component of LUBAC, SIPL1/Sharpin activates NF-κB, which
is known to promote tumorigenesis at multiple levels [60–62]. Despite this appealing mecha-
nism, a PubMed search failed to uncover publications on the involvement of the LUBAC nor
HOIL-1 or HOIP (two major components of the LUBAC) on breast cancer. Based on our anal-
ysis and work documented here, it will be intriguing to investigate whether LUBAC contributes
to breast tumorigenesis. The recent characterization of LUBAC-mediated linear chain ubiquiti-
nation and the recently acquired knowledge of SIPL1/Sharpin structure will facilitate this in-
vestigation [63–65].
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with respect to SIPL1 mRNA expression in cancer vs. normal tissues. Statistical Analysis was
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comparison to normal breast tissues.
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