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Increased apoptosis sensitivity of alveolar type 2 (ATII) cells and increased apoptosis resistance of
(myo)fibroblasts, the apoptosis paradox, contributes to the pathogenesis of idiopathic pulmonary
fibrosis (IPF). The mechanism underlying the apoptosis paradox in IPF lungs, however, is unclear. Aging
is the greatest risk factor for IPF. In this study, we show, for the first time, that ATII cells from old mice
are more sensitive, whereas fibroblasts from old mice are more resistant, to apoptotic challenges,
compared with the corresponding cells from young mice. The expression of plasminogen activator
inhibitor 1 (PAI-1), an important profibrogenic mediator, was significantly increased in both ATII cells
and lung fibroblasts from aged mice. In vitro studies using PAI-1 siRNA and active PAI-1 protein
indicated that PAI-1 promoted ATII cell apoptosis but protected fibroblasts from apoptosis, likely
through dichotomous regulation of p53 expression. Deletion of PAI-1 in adult mice led to a reduction in
p53, p21, and Bax protein expression, as well as apoptosis sensitivity in ATII cells, and their increase in
the lung fibroblasts, as indicated by in vivo studies. This increase was associated with an attenuation of
lung fibrosis after bleomycin challenge. Since PAI-1 is up-regulated in both ATII cells and fibroblasts in
IPF, the results suggest that increased PAI-1 may underlie the apoptosis paradox of ATII cells and
fibroblasts in IPF lungs. (Am J Pathol 2021, 191: 1227e1239; https://doi.org/10.1016/
j.ajpath.2021.04.003)
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Apoptosis of alveolar type II (ATII) epithelial cells is evident in
idiopathic pulmonary fibrosis (IPF).1e3 In contrast, (myo)fi-
broblasts, the major producers of extracellular matrix proteins,
from IPF lungs, are resistant to apoptosis.3e5 Recurrent injury
to alveolar epithelium (apoptosis), followed by sustained
activation of (myo)fibroblasts (resistance to apoptosis), is a key
factor in the initiation and progression of IPF. However, the
mechanism underlying the increased apoptosis sensitivity of
ATII cells and increased apoptosis resistance of lung fibro-
blasts in IPF, referred to as the apoptosis paradox,6 is unclear.
As broadly targeting apoptosis may worsen fibrosis, identi-
fying the pathways that control the apoptosis paradox in IPF
lungswill be critical not only for elucidation of the etiology but
also for the development of effective treatments for IPF.

The incidence of and mortality due to IPF increases with
advanced age,7e9 suggesting that aging is a major risk factor
for IPF. The mechanism underlying the age-related
stigative Pathology. Published by Elsevier Inc
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susceptibility to IPF is unclear. Plasminogen activator in-
hibitor 1 (PAI-1) is a primary inhibitor of urokinase-type
and tissue-type plasminogen activators, which convert
plasminogen into plasmin, a serine protease involved in
fibrinolysis. Besides inhibition of fibrinolysis, PAI-1 is also
involved in the regulation of cell adhesion, migration,
senescence, and apoptosis, dependent and independent of its
anti-protease activity. More importantly, PAI-1 expression
increases with age in humans and in wild-type and aging
model mice as well as in aging-related diseases, including
IPF.10e13 An increased PAI-1 expression is also detected in
experimental fibrosis models induced by different
.
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stimuli.13e15 Deletion of PAI-1 or inhibition of PAI-1 ac-
tivity attenuates, whereas overexpression of PAI-1 en-
hances, lung fibrotic responses.13,15e20 Together, these data
suggest that increased PAI-1 may contribute to the age-
related susceptibility to IPF, although the underlying
mechanism remains elusive.

As PAI-1 modulates the sensitivity of different types of
cells to apoptosis13,15,21e25 and PAI-1 expression is
increased in both ATII cells20 and lung fibroblasts22 in IPF,
we hypothesize that increased PAI-1 expression underlies
the apoptosis paradox of ATII cells and fibroblasts in IPF
lung. Whether ATII cells from old mice were more sensi-
tive, and fibroblasts from old mice were more resistant, to
apoptotic stimuli, compared with the corresponding cells
from young mice, was investigated. Whether increased PAI-
1 plays a role in the apoptosis paradox of ATII cells and
fibroblasts was tested using genetic and pharmacologic ap-
proaches to modulate PAI-1 expression/activity in vitro and
in vivo. Our results provide new insights into the potential
mechanisms underlying the apoptosis paradox observed in
IPF and aging lungs.

Materials and Methods

Isolation of Fibroblasts and ATII Cells from Mouse
Lung

Mouse lung fibroblasts and ATII cells were isolated
following the protocol described previously.20 Briefly,
mouse lungs were instilled with protease solution (300 U/
mL collagenase type I, 4 U/mL elastase, 5 U/mL dispase,
and 100 mg/mL DNase I in Hanks’ balanced salt solution),
minced by razor, and incubated at 37�C for 25 minutes.
Digestion was stopped with 50% Dulbecco’s modified Ea-
gle’s medium (DMEM)/50% F12 containing 3% fetal
bovine serum (FBS). The suspension was washed and then
incubated with Hanks’ balanced salt solution containing
0.1% trypsin-EDTA and 100 mg/mL DNase I for 20 minutes
at 37�C. Following tissue dissociation, cell suspensions
were filtered through a 40-mm nylon mesh, washed, and
treated with ACK (150 mmol/L NH4Cl, 10 mmol/L
KHCO3, and 0.1 mmol/L EDTA) solution to lyse red blood
cells and then suspended in DMEM/F12 medium containing
1% FBS. Macrophages and lymphocytes were removed by
incubation with biotinylated rat anti-mouse CD45 and rat
anti-mouse CD16/32 (BD Biosciences, San Jose, CA). The
cells were then cultured in DMEM/F-12 medium containing
10% FBS in 100-mm culture dishes at 37�C overnight. The
suspended ATII cells were transferred to new plates for
further treatment. Mouse lung fibroblasts were isolated, as
we have described previously.13 Briefly, mouse lungs were
minced and incubated with the digestion solution (1 mg/mL
collagenase and 0.05% trypsin in Hanks’ balanced salt so-
lution) at 37�C for 60 minutes. The digested tissues were
passed through 100-mm cell strainers, and cells were spun
down and cultured in DMEM/F12 culture medium
1228
supplemented with 10% FBS. Cells between passages 2 and
4 were used for all of the experiments.

Treatment of Cells with Hydrogen Peroxide and
Bleomycin

After isolation, lung fibroblasts and ATII cells were cultured
in the DMEM/F12 medium containing 10% FBS in the
plates coated with matrix protein fibronectin (50 mg/mg),
collagen (50 mg/mL), or vitronectin (5 mg/mL) for 24 to 48
hours. Cells were then treated with 600 mmol/L H2O2 or 50
mU bleomycin in FBS-free medium for 1 day. Human lung
fibroblasts (CCL-210 cells) and rat ATII (L2) cells were
treated with hydrogen peroxide or bleomycin at the con-
centrations indicated in the figure legends for 24 hours in the
serum-free medium with or without human PAI-1 (hPAI-1;
1 mg/mL) or 25 mmol/L TM5275. Alternatively, L2 cells
and fibroblasts were transfected with PAI-1 siRNA or
nontargeted siRNA and then treated with hydrogen peroxide
or bleomycin for 24 hours.

Flow Cytometry Analysis of Apoptotic Cells

Apoptosis of fibroblasts and ATII cells was analyzed by
flow cytometry techniques using Alexa Fluor 488
Annexin V/Dead Cell Apoptosis Kit (Invitrogen, Carls-
bad, CA), as described previously.15 Briefly, after treat-
ment, the cells were trypsinized, spun down, and
incubated with 1� annexin-binding buffer for 15 minutes,
then with Alexa Fluor 488 annexin V and propidium
iodide (PI) working solution at room temperature for
another 15 minutes. Annexin-binding buffer was added,
and the cells were kept on ice for 15 minutes. Apoptotic
cells were analyzed with flow cytometry at University of
Alabama at Birmingham (UAB) Flow Cytometer facility.
The results are expressed as the percentages of early
(quadrant 2) plus later (quadrant 4) apoptotic cells relative
to the corresponding controls.

Measurement of Caspase 3/7 Activity in the
Conditional Medium

The activity of caspase 3/7 in the cultured medium was
assessed using an assay kit from Promega (Madison, WI;
Caspase-Glo 3/7 Assay), according to the manufacturer’s
protocol.

Western Blot Analysis

Lung tissues were homogenized in 0.25 mol/L sucrose
buffer, whereas cells were lysed with cell lysis buffer
containing protease inhibitor (Sigma, St. Louis, MO;
P8340) and phosphatase inhibitor cocktails (Sigma;
P5726). For tissue samples, the homogenates were
centrifuged at 3000 � g, 4�C, for 10 minutes, followed
by a centrifugation at 100,000 � g for 60 minutes.
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


PAI-1 and ATII Cell/Fibroblast Apoptosis
Protein concentrations were measured using a bicincho-
ninic acid protein assay kit (Pierce, Rockford, IL). Protein
(50 mg) was resolved onto a 10% SDS-PAGE gel and
electrophoretically transferred onto polyvinylidene
difluoride membranes, which were probed with the
following antibodies: PAI-1 (Molecular Innovation, Novi,
MI; ASMPAI-GF), p53 (Santa Cruz Biotechnology, Dal-
las, TX; SC-6243), p21 (Santa Cruz Biotechnology; SC-
397), procollagen 1a1 (Santa Cruz Biotechnology; SC-
8784-R), fibronectin (BD Biosciences; 610077), and b-
actin (Sigma; A5441; protein loading control), and then
with the corresponding horseradish
peroxidaseeconjugated secondary antibodies. The protein
bands were visualized using the electrochemiluminescence
detection system (Amersham, Piscataway, NY), semi-
quantified using ImageJ version 1.53c software (NIH,
Bethesda, MD: https://imagej.nih.gov/ij, last accessed
October 29, 2020), and normalized by b-actin.

Generation of Whole Body PAI-1 CKO Mice and
Induction of Lung Fibrosis

Mice bearing the conditional PAI-1 knockout allele (PAI-
1flox) were generated as described previously.20 Homozy-
gous PAI-1 floxed (PAI-1fl/fl) mice were crossed with
tamoxifen (Tmx)einducible chicken b-actin promoter/
enhancer-driven Cre recombinase expressing mice (Cag-
CreER, JAXMICE) to generate tamoxifen-inducible whole
body PAI-1 conditional knockout (PAI-1 CKO) mice.
Enzyme-linked immunosorbent assay and Western blot
analysis were conducted to confirm Tmx-inducible PAI-1
conditional knockout phenotype in different tissues/organs
and in isolated fibroblasts as well as ATII cells after mice
were injected with tamoxifen or oil. For induction of lung
fibrosis, 6- to 8-weekeold wild-type (PAI-1fl/fl) and PAI-1
CKO mice were injected with Tmx (100 mg/kg, intraperi-
toneally) for 7 consecutive days and then challenged with 2
U/kg of bleomycin or saline, as we have described previ-
ously.20 Mice were sacrificed 14 days after bleomycin
challenge. Bronchoalveolar lavage (BAL) was performed
and then pulmonary artery vascular beds were perfused. Left
lung was fixed with 10% phosphate-buffered saline buffered
formalin, and the rest of the lung was frozen immediately in
liquid nitrogen. All procedures involving animals were
approved by the Institutional Animal Care and Use Com-
mittees at the University of Alabama at Birmingham and
conducted at the UAB animal facilities under specific
pathogen-free conditions.

Total and Differential Cell Counts in BAL Fluid

BAL fluid was spun down at 400 � g for 10 minutes, and
the cells were uniformly suspended in saline. Total cell
numbers were counted using a hemocytometer, whereas
differential cell counts were determined after the cells were
centrifuged onto a microscope slide using a CytoSpin
The American Journal of Pathology - ajp.amjpathol.org
(HemoCue, Brea, CA) and stained with Protocol HEMA3
(Fisher Scientific, Kalamazoo, MI, Protocol catalog number
123-869). Five hundred cells were counted on each slide
using oil immersion (�100) lens of Zeiss microscope (Carl
Zeiss, San Diego, CA), and the differential cell count was
performed. The percentages of neutrophils, lymphocytes,
and monocytes were calculated.

Collagen Staining

Collagen deposition was measured by Masson’s trichrome
staining, as described previously.15

Measurement of Hydroxyproline

The hydroxyproline content in mouse lung was measured
using the Hydroxyproline Assay Kit from Chrondrex, Inc.
(Woodinville, WA; catalog number 6017), according to the
protocol provided by the manufacturer. The results were
calculated on the basis of the standard curves derived from
4-hydroxy-L-proline.

Statistical Analysis

Data are presented as means � SD and evaluated by
one-way analysis of variance. Statistical significance
was determined post hoc by Fisher least significant
difference test, wherein P < 0.05 was considered
significant.

Results

Aging Is Associated with Increased Resistance of Lung
Fibroblasts but Increased Sensitivity of ATII Cells to
Apoptosis

To explore the mechanism underlying the aging-related
susceptibility to IPF, apoptosis sensitivities of mouse
lung fibroblasts and ATII cells from young (3 months)
and old (18 months) mice were assessed by flow
cytometry and caspase 3/7 activity after being chal-
lenged with hydrogen peroxide or bleomycin in vitro.
Treatment of lung fibroblasts with hydrogen peroxide
(Figure 1, A and B, and Supplemental Figure S1A) or
bleomycin (Figure 1, C and D, and Supplemental
Figure S1B) stimulated apoptotic cell death and
increased the activity of caspase 3/7, an apoptosis in-
dicator, in fibroblasts from both young and old mice.
However, the apoptotic response was significantly lower
in fibroblasts from old mice compared with those from
young mice. Both stimuli also increased apoptotic cell
death in ATII cells from young and old mice (Figure 1,
EeH, and Supplemental Figure S1, C and D). In
contrast to fibroblasts, ATII cells from old mice were
more sensitive to hydrogen peroxide- (Figure 1, E and
F, and Supplemental Figure S1C) and bleomycin-
1229
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Figure 1 Aging is associated with increased resistance of lung fibroblasts but increased sensitivity of ATII cells to apoptotic challenges. Lung fibroblasts
and ATII cells were isolated from 3-montheold and 18-montheold mice and treated with 600 mmol/L H2O2 or 50 mU/mL bleomycin in fibronectin-coated
plates for 24 hours (four wells per age per treatment group). Apoptotic cell death (A, C, E, and G) and caspase 3/7 activity (B, D, F, and H) were
assessed by flow cytometry and an Apoptosis Kit from Invitrogen. The results are expressed as percentages of saline-treated controls. n Z 4 (AeH).
***P < 0.001.
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Figure 2 Plasminogen activator inhibitor 1 (PAI-1) protein content
increases with age in mouse fibroblasts and ATII cells. Lung fibroblasts (A
and C) and ATII cells (B and D) were isolated from 3-montheold and 18-
montheold mice (three mice per group), and PAI-1 protein was assessed
by Western blot analysis. n Z 3 (AeD). **P < 0.01.
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(Figure 1, G and H, and Supplemental Figure S1D)
induced apoptosis than ATII cells from young mice.
These data suggest that the apoptosis paradox is a
feature of aging lung.

PAI-1 Protein Levels Are Increased with Age in Lung
Fibroblasts and ATII Cells in Mice

To elucidate the potential mechanisms underlying the
divergent regulation of apoptosis sensitivity of lung fibro-
blasts and ATII cells in aged mice, PAI-1 protein content
was measured in lung fibroblasts and ATII cells isolated
from young and old mice. PAI-1 protein levels increased
with age in both lung fibroblasts and ATII cells in mice
(Figure 2).

PAI-1 Suppresses p53 Phosphorylation/Expression and
Reduces the Apoptosis Sensitivity in Human Lung
Fibroblasts

To determine whether increased PAI-1 is responsible for
apoptosis resistance of fibroblasts, human lung fibroblasts
(CCL-210; ATCC, Manassas, VA) were treated with
hydrogen peroxide in the presence of active hPAI-1 or a
small-molecule PAI-1 inhibitor, TM5275, and the corre-
sponding vehicle. Additionally, CCL-210 cells were trans-
fected with PAI-1 siRNA or nontargeted siRNA and then
treated with hydrogen peroxide. Treatment of CCL-210
1230
cells with hPAI-1 suppressed, whereas treatment with
TM5275 stimulated, p53 phosphorylation at serine 15, and
p53 expression (Figure 3A). Silencing PAI-1 with PAI-1
siRNA also induced p53 in fibroblasts (Figure 3B).
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PAI-1 and ATII Cell/Fibroblast Apoptosis
Associated with the suppression of p53 phosphorylation/
expression, hPAI-1 reduced the sensitivity of CCL-210 cells
to hydrogen peroxideeinduced apoptosis (Figure 3, C and
D). Treatment with TM5275 (Figure 3, E and F) or silencing
PAI-1 (Figure 3, G and H), on the other hand, enhanced the
sensitivity of CCL-210 cells to hydrogen peroxideeinduced
apoptosis. These results suggest that increased PAI-1
expression/activity may underlie the apoptosis resistance
observed in aged fibroblasts.
PAI-1 Induces p53 and Enhances the Sensitivity of Rat
ATII (L2) Cells to Bleomycin and Hydrogen
PeroxideeInduced Apoptosis

To delineate the potential relationship between increased
PAI-1 and the augmented sensitivity of ATII cells to
apoptosis, rat ATII (L2) cells, stably transfected with PAI-
1 shRNA or nontargeted shRNA, were treated with
bleomycin. Alternatively, L2 cells were treated with
hydrogen peroxide in the presence or absence of hPAI-1.
Silencing PAI-1 with PAI-1 shRNA led to decreases in
p53 phosphorylation and p53 protein expression
(Figure 4A). This was associated with a reduced
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Figure 3 Plasminogen activator inhibitor 1 (PAI-1) reduces p53 phosphorylat
apoptosis in human lung fibroblasts. A and B: Human lung fibroblasts (CCL-210 cel
1)] or 25 mmol/L TM5275 for 24 hours or transfected with PAI-1 siRNA or nontar
p53 were performed with cell lysates. b-Actin was used as protein loading control.
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sensitivity of L2 cells to bleomycin-induced apoptosis
(Figure 4, B and C). Treatment of L2 cells with hPAI-1
alone, on the other hand, stimulated p53 phosphoryla-
tion, the expression of p53 and p21 proteins (Figure 4D),
and L2 cell apoptosis (Figure 4, E and F). Treatment with
hPAI-1 also augmented the apoptosis sensitivity of L2
cells to hydrogen peroxide (Figure 4, E and F) and
bleomycin (Figure 4, G and H).
Silencing p53 Blocks PAI-1 Protein-Induced L2 Cell
Apoptosis

The effect of silencing p53 on PAI-1 protein-induced L2
cell apoptosis was tested to delineate the role of PAI-1 in
promoting L2 cell apoptosis through p53 induction.
Silencing p53 with p53 siRNA partially reduced hydrogen
peroxideeinduced L2 cell apoptosis (Figure 5, A and B),
but completely eliminated hPAI-1einduced L2 cell
apoptosis (Figure 5, C and D). Together, these results sug-
gest that PAI-1 promotes ATII cell apoptosis through
increasing p53, whereas hydrogen peroxide causes ATII cell
apoptosis, in part, through induction of PAI-1 followed by
that of p53.
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Knockout of the PAI-1 Gene in Adult Mice Leads to
Increased p53, p21, and Bax in Lung Fibroblasts, but
Decreased p53, p21, and Bax in ATII Cells

To determine whether deletion of PAI-1 in adult mice
divergently regulates apoptosis sensitivity of lung fi-
broblasts and ATII cells, we developed a Tmx-
inducible whole body PAI-1 conditional knockout
mouse model (PAI-1 CKO) by crossing PAI-1fl/fl

mice20 with tamoxifen-inducible chicken b-actin
promoter/enhancer-driven Cre recombinase-expressing
mice. Administration of Tmx to PAI-1 CKO mice, but
not PAI-1fl/fl (wild-type) mice, led to an almost com-
plete elimination of PAI-1 protein from the plasma and
lung tissue (Figure 6, A and B), as indicated by the
enzyme-linked immunosorbent assay. Additionally,
Western blot data showed that Tmx injection dramati-
cally reduces the amounts of PAI-1 protein from lung
fibroblasts and ATII cells (Figure 6, CeF). Notably,
deletion of PAI-1 led to an increase in the expression
of p53, p21, and Bax proteins in fibroblasts, but a
decrease in ATII cells (Figure 6, CeF). These data
suggest that PAI-1 divergently regulates the expression
of p53 in lung fibroblasts and ATII cells in vivo.
1232
Knockout of the PAI-1 Gene in Adult Mice Increases
the Sensitivity of Lung Fibroblasts to Apoptosis, but
Protects ATII Cells from Apoptotic Challenges

The role of extracellular matrix proteins in response of cells to
stimuli is well-documented. Collagen, fibronectin, and
vitronectin are three major types of extracellular matrix pro-
teins. PAI-1 modulates cell attachment and activity by bind-
ing to vitronectin. However, whether it binds to other matrix
proteins, thereby affecting other cell functions, is unclear. To
determine whether deletion of PAI-1 affects the sensitivity of
lung fibroblasts and ATII cells to apoptosis stimuli, and
whether these effects depend on the matrix proteins, lung fi-
broblasts and ATII cells were isolated from adult PAI-1fl/fl

(wild-type) and PAI-1 CKO mice after Tmx injection. The
isolated cells were treated with bleomycin or hydrogen
peroxide in vitro in collagen-, fibronectin-, or vitronectin-
coated plates. Deletion of PAI-1 enhanced the sensitivity of
fibroblasts to hydrogen peroxidee and bleomycin-induced
apoptosis when cultured on fibronectin-coated plates
(Figure 7, A and B, and Supplemental Figure S2A). The flow
cytometry results showed no significant difference between
PAI-1þ/þ and PAI-1�/�

fibroblasts to hydrogen peroxidee or
bleomycin-induced apoptosis on collagen-coated plates and
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Figure 5 Silencing p53 blocks plasminogen activator inhibitor 1 (PAI-1)einduced L2 cell apoptosis. L2 cells were transfected with p53 siRNA or non-
targeted (NT) siRNA and then treated with 150 mmol/L H2O2 (A and B) or 1 mg/mL active human PAI-1 (hPAI-1; C and D) for 24 hours (three wells per
treatment group). Apoptotic cells were assessed by flow cytometry. n Z 3 (AeD). **P < 0.01, ***P < 0.001.
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hydrogen peroxideeinduced apoptosis on vitronectin-coated
plates (Figure 7, A and B). On the other hand, the caspase 3/7
activity data indicate that knockout of the PAI-1 gene
significantly increased the sensitivity of fibroblasts to
apoptosis induced by both agents when cultured on collagen-
or vitronectin-coated plates (Supplemental Figure S2, A and
B). These results suggest that the caspase 3/7 activity is more
sensitive than annexin V labeling for the apoptotic response.
In contrast to fibroblasts, deletion of PAI-1 significantly
reduced the sensitivity of ATII cells to hydrogen peroxidee
and bleomycin-induced apoptosis in three types of matrix
protein-coated plates (Figure 7, C and D, and Supplemental
Figure S2, C and D). Together, these results suggest that
PAI-1 protects fibroblasts from apoptosis and promotes ATII
cell apoptosis independent of matrix proteins.
Knockout of the PAI-1 Gene in Adult Mice Attenuates
Bleomycin-Induced Inflammatory Responses and Lung
Fibrosis

As shown in Figure 8, A and B, bleomycin instillation
significantly increased the total BAL cell counts (Figure 8A)
The American Journal of Pathology - ajp.amjpathol.org
as well as the neutrophils and lymphocytes (Figure 8B) in
BAL fluid. While deletion of PAI-1 significantly attenuated
bleomycin-induced neutrophil infiltration, it had no signifi-
cant effect on bleomycin-induced lymphocyte infiltration
(Figure 8, A and B). Ablation of PAI-1 in adult mice also
significantly attenuated bleomycin-induced lung fibrosis, as
indicated by trichrome staining (Figure 8C), Western blot
analysis (Figure 8, D and E), and hydroxyproline mea-
surement (Figure 8F).
Discussion

The apoptosis paradox, which is the increased apoptosis
resistance of (myo)fibroblasts, but increased apoptosis
sensitivity of ATII cells, is a pathologic feature of IPF.1e5,26

The mechanism underlying the apoptosis paradox in IPF is
unclear. IPF is considered as a disease of aging27,28; the
mechanism underlying the aging-related susceptibility to
IPF is also unknown. In this study, we show for the first
time that ATII cells from old mice are more sensitive,
whereas lung fibroblasts from old mice are more resistant, to
apoptotic stimuli, compared with the corresponding cells
1233
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Figure 6 Knockout of the plasminogen activator inhibitor 1 (PAI-1) gene in adult mice leads to increased p53 and Bax expression in lung fibroblasts but
decreased p53 and Bax expression in ATII cells. Adult whole body PAI-1 conditional knockout (CKO) and PAI-1fl/fl [wild-type (WT) control] mice were
intraperitoneally injected with tamoxifen (Tmx) or corn oil (vehicle control) for 7 consecutive days and then sacrificed. A and B: Enzyme-linked immunosorbent
assay of PAI-1 in plasma and in lung tissue. C and D: Western blot analysis of the proteins of interest in isolated lung fibroblasts and ATII cells from PAI-1 CKO
and PAI-1fl/fl mice after Tmx injection. E and F: Semiquantitation of the band intensities of Western blots, normalized with b-actin bands. nZ 6 to 7 mice per
group (A and B); n Z 3 (C-F). **P < 0.01, ***P < 0.001.
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from young mice. These results suggest that the apoptosis
paradox is per se a feature of aging lung, and further support
the notion that aging is a risk factor for IPF. As indicated by
genetic and pharmacologic experiments, PAI-1 promoted
ATII cell apoptosis, but protected lung fibroblasts from
apoptotic challenges, suggesting that increased PAI-1 may
contribute to the apoptosis paradox observed in aging lung
and fibrotic lung.

Old animals are more sensitive to bleomycin-induced
lung fibrosis.5,13,29 The mechanism underlying the aging-
related sensitivity to lung fibrosis, however, is unclear. In
this study, we show, for the first time, that PAI-1 expres-
sion is increased in both fibroblasts and ATII cells from
aged mice, which is associated with an increased apoptosis
resistance of lung fibroblasts, but increased apoptosis
sensitivity of ATII cells from old mice, compared with the
corresponding cells from young mice. The in vitro and
in vivo studies further showed that inhibition of PAI-1 ac-
tivity or silencing/deletion of PAI-1 increases, whereas
treatment with active PAI-1 protein reduces, the sensitivity
of fibroblasts to apoptosis. In contrast, silencing/deletion of
PAI-1 reduced, whereas treatment with active PAI-1 protein
increased, the sensitivity of ATII cells to apoptosis. PAI-1
differentially regulated the sensitivity of fibroblasts and
1234
ATII cells to apoptosis, which promotes ATII cell
apoptosis, but protects lung fibroblasts from apoptosis.
These results further support previous observations in lung
fibroblasts from old mice, although no ATII cells were
studied at the time.13 Similar results showing promotion of
ATII cell apoptosis by PAI-1 have been reported by other
investigators in young mice.30,31 Because PAI-1 expression
is increased in lung fibroblasts and ATII cells in IPF
lungs,20,22 the current results suggest that increased PAI-1
expression/activity may be responsible for the apoptosis
paradox observed in IPF lungs.
The mechanism underlying the divergent regulation of

PAI-1 on apoptosis sensitivity of lung fibroblasts and ATII
cells is unclear. p53 is a master regulator of cell cycle and
plays a critical role in the control of cell senescence and
apoptosis. However, the mechanisms governing the effects
of p53 on cell senescence and apoptosis remain elusive.
PAI-1 is involved in cell senescence of cardiomyocytes,
fibroblasts, and endothelial cells, and inhibition of PAI-1
activity with a small-molecule PAI-1 inhibitor, TM5441,
suppresses p53 expression and cell senescence induced by
different stimuli.32,33 Knockdown of PAI-1 with PAI-1
shRNA or inhibition of PAI-1 activity with tiplaxtinin in-
creases p53 expression and arrests cells in G0 phase in
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Fibroblasts/bleomycin

Col

sisotpopA
)enilaslf/lffo

%( 100

200

300

400

500

fl/fl-saline
fl/fl-Bleomycin
CKO-saline
CKO-bleomycin

Fn Vn

*

*****
**

***
†

***

††

††
††

†††

B

ATII cells/bleomycin

Col

sisotpopA
)enilaslf/lffo

%( 100

200

300

400

500

fl/fl-saline
fl/fl-Bleomycin
CKO-saline
CKO-bleomycin

Fn Vn

***
***

***

***

†††
***

**††

DATII cells/H2O2

Col

sisotpopA
)enilaslf/lffo

%(

100

200

300

fl/fl-saline
fl/fl-H2O2

CKO-saline
CKO-H2O2

Fn Vn

***

†††*

*** ***

* *††† †††

C

Fibroblasts/H2O2

Col

sisotpopA
)enilaslf/lffo

%(

100

200

300

fl/fl-saline
fl/fl-H2O2

CKO-saline
CKO-H2O2

Fn Vn

***
†

**
**

*** ***
†

†

A

Figure 7 Knockout of the plasminogen activator inhibitor 1 (PAI-1) gene in adult mice promotes lung fibroblast apoptosis, but protects ATII cells from
apoptotic challenges. Lung fibroblasts (A and B) and ATII cells (C and D) were isolated from PAI-1 conditional knockout (CKO) and PAI-1fl/fl mice after
tamoxifen injection and treated with 600 mmol/L H2O2 (A and C) or 50 mU/mL bleomycin (B and D) for 24 hours on collagen (Col)e, fibronectin (Fn)e, or
vitronectin (Vn)ecoated plates (four wells per matrix per treatment). Apoptotic cells were assessed by flow cytometry, and the results are expressed as
percentages of saline-treated PAI-1fl/fl fibroblasts/ATII cells. n Z 4 (A-D). *P < 0.05, **P < 0.01, and ***P < 0.001 (significantly different from the
corresponding saline-treated fibroblasts/ATII cells); yP < 0.05, yyP < 0.01, and yyyP < 0.001 (significantly different from the corresponding PAI-1fl/fl

fibroblasts/ATII cells).
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human urothelial cells.34 Moreover, PAI-1 binds to a3
subunit of proteasome and inhibits p53 degradation.35 PAI-1
activity leads to an increases in p53 expression and
apoptosis in human lung fibroblasts,15 whereas deletion of
PAI-1 in mouse ATII cells or silencing PAI-1 with PAI-1
siRNA/shRNA in rat ATII (L2) cells attenuates
bleomycin-induced p53 expression.20 Together, these data
strongly suggest that PAI-1 can positively or negatively
regulate p53 expression, depending on cell types and stim-
uli. The current study indicates that inhibition of PAI-1
activity, silencing PAI-1, or deletion of PAI-1 protein
leads to increases in p53 protein as well as the sensitivity of
fibroblasts to hydrogen peroxidee or bleomycin-induced
apoptosis. Treatment of fibroblasts with active PAI-1 pro-
tein, on the other hand, reduced p53 protein and the sensi-
tivity of fibroblasts to hydrogen peroxideeinduced
apoptosis. In contrast to fibroblasts, silencing PAI-1 sup-
pressed p53 phosphorylation and expression and attenuated
bleomycin-induced apoptosis in rat lung ATII (L2) cells.
Treatment of L2 cells with active PAI-1, on the other hand,
The American Journal of Pathology - ajp.amjpathol.org
increased p53 phosphorylation, p53 expression, and the
sensitivity of L2 cells to hydrogen peroxideeinduced
apoptosis. Deletion of PAI-1 in adult mice also led to
divergent regulation of p53 expression as well as apoptosis
sensitivity in mouse ATII cells and lung fibroblasts.
Together, these data suggest that the increase in PAI-1
divergently affects the apoptosis sensitivity of lung fibro-
blasts and ATII cells, at least in part through dichotomous
regulation of p53 expression in these cells. More impor-
tantly, p53 expression is increased in ATII cells but
decreased in fibroblasts,2,36e38 whereas PAI-1 expression is
increased in both ATII cells and fibroblasts,20,22 in IPF
lungs. These observations further support our hypothesis
that increased PAI-1 expression may contribute to the
apoptosis paradox of ATII cells and lung fibroblasts in IPF
through divergent regulation of p53 expression.

Of note, instead of regulation of p53 expression by PAI-
1, several studies have shown p53 regulation of PAI-1
expression in different cell types.31,39e42 PAI-1 expression
is low in p53�/� H1299 lung carcinoma cells, and
1235
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Figure 8 Knockout of the plasminogen activator inhibitor 1 (PAI-1) gene in adult mice attenuates bleomycin (Bleo)einduced inflammatory responses and
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overexpression of p53 significantly increases PAI-1.40 p53
up-regulates PAI-1 expression by binding to the 30-un-
translated region of PAI-1 mRNA, thereby stabilizing the
PAI-1 mRNA.40 As indicated in cigarette- or bleomycin-
induced lung injury and fibrosis models, increased p53
induces PAI-1 during ATII cell popotosis.31,43 Gene
silencing, ablation, and pharmacologic inhibitor studies
indicate that p53 mediates transforming growth factor
(TGF)-b1einduced PAI-1 expression in human renal tumor
epithelial cells and keratinocytes. Silencing p53 reduces
PAI-1 protein-induced PAI-1 expression in rat ATII (L2)
cells,20 confirming p53 regulation of PAI-1 expression in
ATII cells. Together, these results suggest that there are
bidirectional cross talks between p53 and PAI-1. p53 posi-
tively regulates PAI-1 expression in different types of cells,
whereas PAI-1 may have differential effects on p53
expression in different types of cells and/or under different
challenges.

The mechanisms underlying the dichotomous regulation
of p53 by PAI-1 in fibroblasts and ATII cells are unknown.
Phosphorylation of p53 at serine 15 and 20 (serine 18 and
23 in rodents) prevents the binding of p53 to murine double
minute 2, a major E3 ubiquitin ligase involved in p53
degradation, and thereby stabilizes the p53 protein.44,45

PAI-1 induces in ATII cells, but suppresses in fibroblasts,
1236
p53S15/18 phosphorylation and p53 expression.15,20 In the
current study, treatment with human PAI-1 reduced,
whereas that with TM5275 increased, p53 phosphorylation
at serine 15 and p53 expression in human lung fibroblasts
(Figure 3A). In contrast to fibroblasts, silencing PAI-1 with
PAI-1 shRNA reduced, whereas treatment with human PAI-
1 increased, p53 phosphorylation at serine 18 (equal to
human p53 serine 15) and p53 expression in rat ATII (L2)
cells (Figure 4A). These data suggest that one of the po-
tential mechanisms whereby PAI-1 dichotomously regulates
p53 expression in ATII cells and fibroblasts is divergent
modulation of the expression/activity of protein kinase(s)
involved in p53 phosphorylation.
Prostaglandin E2 (PGE2) has antifibrotic effects in the

lung, and PGE2 levels are decreased in IPF.3,46,47 Fibro-
blasts from IPF lungs are more resistant to apoptosis
compared with fibroblasts from control lungs.3 Additionally,
treatment of fibroblasts from fibrotic lungs with PGE2 in-
creases their apoptosis sensitivity. Conversely, treatment
with PGE2 protects ATII cells from FasL-induced
apoptosis.3 Therefore, PGE2 deficiency is speculated to
contribute to the increased sensitivity of ATII cells to
apoptosis and the decreased sensitivity of fibroblasts to
apoptosis in IPF lungs. Interestingly, there is a cross talk
between plasminogen activation system and PGE2
ajp.amjpathol.org - The American Journal of Pathology
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synthesis/function.47e49 PGE2 suppresses PAI-1 expression
in human articular chondrocytes.48 Antifibrotic effects of
plasmin occur via PGE2 synthesis in human and mice,47

whereas serpine1 (PAI-1) disrupts PGE2 production.49

Whether increased PAI-1 in IPF and/or aged mouse lung
results from decreased PGE2 or whether PAI-1 divergently
regulates the sensitivity of fibroblast and ATII cells to
apoptosis through suppressing PGE2 synthesis in these cells
warrants further investigation.

Because PAI-1 protein was deleted in whole body in PAI-
1 CKO mice, the protective effect of PAI-1 is not limited to
fibroblasts and ATII cells. Several functions of PAI-1, be-
sides inhibition of urokinase-type and tissue-type plasmin-
ogen activator activities, are well-documented, including
modulation of cell adhesion and migration. The current
study indicates that bleomycin-stimulated increase in the
total cell number, especially the number of neutrophils, in
BAL fluid is attenuated in PAI-1 CKO mice, further sup-
porting the role of PAI-1 in modulation of cell adhesion and
migration. These results also suggest that deletion of PAI-1
may attenuate bleomycin-induced lung fibrosis, in part,
through reducing infiltration of inflammatory cells, a
conclusion supported by the following observations. Treat-
ment of experimental glomerulonephritis rats with mutant
noninhibitory PAI-1 protein reduces extracellular matrix
deposition in glomeruli, which is associated with a 46%
decrease in the number of monocytes/macrophages.50

Additionally, neutrophil influx is significantly lower in
PAI-1 knockout than in wild-type mice in an acute pyelo-
nephritis model.51

Finally, PAI-1 may be an ideal therapeutic target for the
treatment of fibrotic lung disease. Numerous studies have
shown that PAI-1 expression is increased in IPF and in
experimental lung fibrosis models and that this increased
PAI-1 contributes to the development of lung
fibrosis.13,15,17e20 However, no therapeutic drug targeting
PAI-1 has been developed yet. In a previous study, oral
administration of TM5275, 4 days after intranasal instilla-
tion of AdTGF-b1223/225, an adenovirus expressing consti-
tutively active TGF-b1, almost completely blocked TGF-
b1einduced lung fibrosis in mice.15 Furthermore, admin-
istration of TM5275, 25 days after challenge with oval-
bumin, significantly reduces ovalbumin-induced
inflammation and airway fibrosis,52 suggesting that TM5275
may slow down or reverse the preformed fibrosis. In a recent
study, TM5275 was shown to block bleomycin-induced rat
ATII (L2) cell senescence,20 another pathologic feature of
IPF lung. In a previous study13 and in this study, TM5275
promoted apoptosis in human and mouse lung fibroblasts.
Together, these studies strongly suggest that PAI-1 may
serve as an ideal therapeutic target for IPF and that small-
molecule PAI-1 inhibitors may have therapeutic potential
for the treatment of fibrotic lung diseases.

In summary, the data presented in this study suggest that
increased PAI-1 expression may contribute to the apoptosis
paradox observed in IPF and aging lungs through
The American Journal of Pathology - ajp.amjpathol.org
dichotomous regulation of p53 expression in these cells.
The results from this study further support a critical role of
PAI-1 in IPF pathophysiology and suggest that small-
molecule PAI-1 inhibitors may have therapeutic potential
for IPF.
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