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REVIEW

A Review of Mathematical Models for Tumor Dynamics 
and Treatment Resistance Evolution of Solid Tumors

Anyue Yin1,2, Dirk Jan A.R. Moes1,2, Johan G.C. van Hasselt3, Jesse J. Swen1,2 and Henk-Jan Guchelaar1,2,*

Increasing knowledge of intertumor heterogeneity, intratumor heterogeneity, and cancer evolution has improved the un-
derstanding of anticancer treatment resistance. A better characterization of cancer evolution and subsequent use of this 
knowledge for personalized treatment would increase the chance to overcome cancer treatment resistance. Model-based 
approaches may help achieve this goal. In this review, we comprehensively summarized mathematical models of tumor 
dynamics for solid tumors and of drug resistance evolution. Models displayed by ordinary differential equations, algebraic 
equations, and partial differential equations for characterizing tumor burden dynamics are introduced and discussed. As for 
tumor resistance evolution, stochastic and deterministic models are introduced and discussed. The results may facilitate a 
novel model-based analysis on anticancer treatment response and the occurrence of resistance, which incorporates both 
tumor dynamics and resistance evolution. The opportunities of a model-based approach as discussed in this review can be 
of great benefit for future optimizing and personalizing anticancer treatment.

Drug resistance is one of the major reasons for patients 
experiencing treatment failure in the area of oncology.1 
Increasing knowledge of intertumor and intratumor hetero-
geneity that suggests distinct cells exist in different or the 
same tumors as well as cancer evolution have improved 
the understanding of anticancer treatment resistance.2 It 
thereby pushes forward the necessity of precision medi-
cine rather than a one-size-fits-all approach.2 To rationalize 
the treatment personalization and address treatment fail-
ure, the use of modeling and simulation, which can quanti-
tatively characterize and predict the relationships between 
drug exposure/pharmacokinetics (PK), drug effects/phar-
macodynamics (PD), and disease progression, is widely 
accepted to support drug decision making.3–6

Mathematical models that characterize the effects of anti-
cancer drug treatment for solid tumors based on tumor size 
dynamics, which is typically quantified with measurements 
of tumor diameter and volume, represent one key class of 
models applied in cancer pharmacology. Various tumor 
growth modeling strategies have been previously reviewed, 
including agent-based models,7 image-based models,8 mul-
tiscale models,9 and PK/PD models.10,11

Currently, an increasing number of studies concerning 
the gene sequencing of tumor biopsies in different cancer 
types have demonstrated the dynamics of cancer evolu-
tion.2,12 Intratumor heterogeneity that results from cancer 
evolution and an evolving adaption of heterogeneous tumor 
to treatment are also increasingly acknowledged as key fac-
tors related to the development of resistance.2,12 To better 
characterize this process and to account for tumor hetero-
geneity, mathematical models that consider the evolution of 
tumors have been proposed.13–17 Potentially, such evolution 

models in conjunction with tumor growth models could be 
of benefit to interpret both tumor size change and evolving 
tumor progression during treatment and thereby ultimately 
rationalize adaptive treatments for individual patients and 
overcome treatment resistance.

To identify the challenges and opportunities of charac-
terizing tumor size change and resistance evolution simul-
taneously with a model-based approach that can facilitate 
anticancer treatment optimization and personalized medi-
cine, an overview of the current available model structures 
is needed. Thus, in the current review, we comprehensively 
summarized mathematical models for the characterization 
of tumor growth (inhibition) dynamics in solid tumors and 
the relevant clonal evolution of drug resistance by a sys-
tematic search and study of previous literature. The focus in 
this review lies particularly on models that are applicable for 
clinical data.

LITERATURE SEARCH

Studies that characterized tumor growth (inhibition) dy-
namics and clonal evolution of drug resistance with math-
ematical models were systematically retrieved and studied 
from the PubMed database to provide a comprehensive 
and unbiased review. In total, 274 and 85 publications 
were obtained, respectively, for studies of tumor dynam-
ics and tumor resistance evolution based on established 
search terms. Details of the literature search are described 
in Supplementary Material S1 and Figure S1. Ultimately, 
61 and 25 papers, among which 13 and 2 papers were ob-
tained from the publications’ references, which introduced 
corresponding original models or demonstrated application 
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examples of certain model structures, were included, re-
spectively, for tumor dynamics and resistance evolution 
modeling. Model structures, cancer types, treatments, and 
the ways of reporting tumor sizes were extracted from the 
included papers. The identified model structures were clas-
sified by equation types in later sessions and were summa-
rized in Tables 1 and 2. Data input, knowledge requirement, 
study type, and objectives related to different model struc-
tures were summarized in Table 3 to provide a reference of 
the selection of different model structures. The information 
of software that was used to perform the corresponding 
modeling and simulation analysis was also obtained and  
are summarized in Supplementary Material S1 and  
Table S1.

TUMOR DYNAMICS MODELING
Ordinary differential equation
Basic growth model. A majority of the included studies 
applied ordinary differential equations (ODEs) to describe 
tumor burden change. The natural growth of a tumor without 
treatment is commonly characterized with several basic 
functions, including linear, exponential, logistic, Gompertz, 
and combined exponential and linear models (Table  1). 
The time curves of different models were simulated and are 
presented in Figure 1. Differential equations were solved with 
the RxODE package implemented in R software (version 3.4.1; 
R Foundation for Statistical Computing, Vienna, Austria). 

The linear tumor growth assumes a constant zero-or-
der growth rate (Eq. 1; Figure 1).10 It has been applied to 
describe the natural tumor growth of metastatic renal cell 
carcinoma18 based on the measurements of sum of longest 
diameters (SLD) of the target lesions in patients.

The exponential growth assumes the growth rate of a 
tumor is proportional to tumor burden (first-order growth; 
Eq. 3; Figure 1).10,19 It has been adopted in a widely used 
tumor growth inhibition (TGI) model developed by Claret 
et al. to describe nature tumor growth.11,20

The linear and exponential growth models have also been 
expanded by introducing a first-order shrinkage term de-
scribing natural tumor death. For example, a model with a 
linear growth and a first-order shrinkage (Eq. 2) was applied 
to describe the natural tumor growth in patients with ad-
vanced solid malignancies based on SLD measurements.21 
An exponential growth with a first-order shrinkage (Eq. 4) 
was also used as part of the model structure to describe the 
natural growth of pediatric neuroblastoma based on tumor 
volume measurements.22 The same model structure was 
also adopted for the description of the change of prostate 
cancer burden reflected by the level of prostate-specific an-
tigen (PSA).23

When compared with the unlimited growing pattern of 
linear and exponential growth models, the logistic and 
Gompertz growth models provide a biologically realistic 
change of the growth rate as the tumor burden increases6 
(Figure  1). The logistic growth model assumes that the 
growth is limited by a carrying capacity (Eq. 5)10 whereas 
the Gompertz model assumes the growth rate of tumor de-
creases over time (Eqs. 6 and 7).10,11 Many clinical studies 
have applied the logistic24–26 and Gompertz models11,27 as 
well as simulation studies.28,29

Finally, a combination of exponential and linear growth mod-
els (Eq. 8) has also been introduced to describe tumor growth 
in patients, although it was proposed primarily for characteriz-
ing xenograft tumor dynamics.30 This combined model struc-
ture assumes that an exponential (first-order) growth switches 
to a linear (zero-order) growth after reaching a threshold 
(Figure 1). It was well used to describe the natural growth of 
vestibular schwannoma volume in patients with neurofibroma-
tosis type 2.31 Setting the power term as 20 allows the switch 
between two growth patterns sharply enough.30

Tumor heterogeneity. As a result of the increasing awareness 
of the relevance of considering tumor heterogeneity, model 
structures displayed by ODEs that incorporate tumor 
heterogeneity and mutations have been developed for the 
characterization of tumor dynamics as was described in 
a simulation study.32 The general used model structures 
concerning tumor heterogeneity are shown in Table 1.

Proliferative and quiescent cells. One frequently made 
assumption when modeling the growth of heterogeneous 
tumors is to separate total tumor mass into proliferative 
and quiescent cells.22,25,33 The increase of quiescent tumor 
cells is assumed to result from a first-order conversion from 
proliferative tumor cells instead of their own proliferation 
(Eq. 9). A reversed conversion can also be assumed to 
be present (Eq. 10). The growth of proliferative cells may 
follow the patterns as were introduced in the Basic growth 
model section Based on these assumptions, the time 
courses of mean tumor diameter (MTD) in patients with 
low-grade glioma25 and that of tumor volume in pediatric 
neuroblastoma patients were successfully described.22 A 
similar model structure was also used to predict the effect 
of different treatment regimens taking tumor cell number as 
a target.33 Drug treatment effect could work on both kinds 
of tissues,25 only on the proliferative tissue,22 or on targeted 
tissues depending on the types of drug.33

Sensitive and resistant cells. Another commonly made 
assumption is that tumors are composed of drug-sensitive 
and drug-resistant cells.24,34 These two cell types both 
proliferate, but drug treatment can only decrease the 
amount of drug-sensitive cells. Primary and acquired 
resistance can both be taken into consideration. For 
illustrating the acquired resistance, the resistant cells are 
mostly assumed to mutate from sensitive cells because 
of the treatment with a first-order process23,24,34,35 (Eqs.  
12–13). By separating tumor mass into sensitive and resistant 
cells, the dynamics of low-grade glioma measured with 
MTD in patients was well described with models assuming 
that primary resistant cells or both primary and acquired 
resistant cells are present in the tumor.24 In the study, the 
natural growth of drug-sensitive and primary-resistant  
cells were described separately without any conversion  
(Eq. 11). The acquired resistant cells are assumed to emerge 
exponentially from damaged sensitive cells as a result of 
treatment. Also, by assuming that resistant cells can also 
convert back to sensitive cells (Eq. 13), the dynamics of the 
PSA level in prostate cancer patients was well described, 
where the rate constants of cell proliferation, apoptosis, 
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Table 1 Modeling frameworks for characterizing tumor dynamics 

Models/assumptions Equations Refs.

Ordinary differential equations

Basic functions describing natural tumor growth

Linear growth dT

dt
=kg

Eq. 1 18

dT

dt
=kg−d ⋅T

Eq. 2 21

Exponential growth dT

dt
=kg ⋅T

Eq. 3 20

dT

dt
=kg ⋅T −d ⋅T Eq. 4 22,23

Logistic growth dT

dt
=kg ⋅T ⋅

(
1−

T

Tmax

)
Eq. 5 24,25

Gompertz growth dT

dt
=kg ⋅T ⋅ ln

(
Tmax

T

)
Eq. 6 27,29

dlnT

dt
=a−b lnT Eq. 7 28

Combination of exponential and linear growth dT

dt
=

�0 ⋅T

[
1+

(
�0

�1

⋅T

)20
] 1

20

Eq. 8 31

Model structures integrating tumor heterogeneity

Tumor burden(T) = Proliferative component  
(P) + Quiescent component (Q)

{ dP

dt
= f (P)−m1 ⋅P

dQ

dt
=m1 ⋅P

Eq. 9 25

{ dP

dt
= f (P)−m1 ⋅P+m2 ⋅Q

dQ

dt
=m1 ⋅P−m2 ⋅Q

Eq. 10 22,33

Tumor burden (T) = Sensitive component  
(S) + Resistant component (R)

{ dS

dt
= f (S)

dR

dt
= f (R)

Eq. 11 24

{ dS

dt
= f (S)−m1 ⋅S

dR

dt
= f (R)+m1 ⋅S

Eq. 12 23,35

{ dS

dt
= f (S)−m1 ⋅S+m2 ⋅R

dR

dt
= f (R)+m1 ⋅S−m2 ⋅R

Eq. 13 34,36

Model structures integrating tumor biology process

Angiogenesis dT

dt
= f (T )−k ⋅

BM0−BMt

BM0

⋅T

= f (T )−k ⋅

(
1−

BMt

BM0

)
⋅T

Eq. 14 31,39

{
dT

dt
=kg ⋅T ⋅

(
1−

T

E

)

dE

dt
=k2 ⋅T

1

2

Eq. 15 40

{
dT

dt
=kg ⋅V ⋅ log

(
E

T

)

dE

dt
=k2 ⋅T −d ⋅T

2

3 ⋅E

Eq. 16 41,42

Immune system {
dT

dt
= f (T )− f (I) ⋅T ⋅

(
h

T+h

)

f (I)=d ⋅ I

Eq. 17 44

{ dT

dt
= f (T )− f (I) ⋅T ⋅

(
h

T+h

)

f (I)=
(
d1 ⋅ I1+d2 ⋅ I2

)
⋅

(
I3

I3+g

)
Eq. 18 43

dT

dt
= f (T )−d1 ⋅ I ⋅T −d2 ⋅N ⋅T Eq. 19 46

dT

dt
= f (T )−d ⋅ I ⋅T Eq. 20 47

Empirical model structures describing therapeutic effect

First-order treatment effect (“log-kill” pattern) dT

dt
= f (T )−kd ⋅T

Eq. 21 18

Exposure-dependent treatment effect dT

dt
= f (T )−kd ⋅Exposure ⋅T

Eq. 22 22,25

Exposure-dependent treatment effect with resistance (TGI model) dT

dt
= f (T )−kd ⋅e

−�⋅t
⋅Exposure ⋅T Eq. 23 20,48,49

Introducing a damaged cell compartment ⎧
⎪
⎨
⎪
⎩

dS

dt
= f (S)−kd ⋅Exposure ⋅S

dD

dt
=kd ⋅Exposure ⋅S−d ⋅D

T =S+D

Eq. 24 24,25

(Continues)
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and conversion are expressed as functions of intracellular 
concentration of androgen receptors.34

In addition, the treatment sensitivity of both proliferative 
and quiescent cells can also be considered when modeling 
tumor growth, leading to a combination of previous intro-
duced model structures. One example can be seen from a 
study that assumed proliferative and quiescent cells form 
a tumor and the proliferative cells could mutate from drug 
sensitive to drug resistant, which is biologically plausible.33

Androgen-dependent cells and androgen-independent 
cells. Studies regarding prostate cancer often consider 
prostate tumors consists of androgen-dependent (AD) 
and androgen-independent (AI) cells.23,36–38 PSA levels are 
commonly used to represent tumor burden in this case. 
Two frequently reported model structures for describing the 
growth of prostate cancer were proposed by Ideta et al.23 
and Hirata et al.36

The former model structure assumes that prostate can-
cer consists of AD and AI cells, and AD cells can mutate 
exponentially to AI cells when treatment alters the androgen 
level. The model structure is shown in Eq. 12. The natural 
proliferation and apoptosis rate constants of AD and AI cells 
were expressed as functions of the androgen level.23 The 
net growth rate of AD decreases when the androgen level 
decreases because of treatment, whereas that of AI cells in-
creases. When the androgen level is normal, three cases of 
the net growth rate of AI cells were considered: larger than 
0, equal to 0, and smaller than 0. This model was recently 

extended by accounting for competition between two kinds 
of cells and the finite carrying capacity environment.35

The latter model structure assumes that besides AD 
cells, reversible and irreversible AI cells exist. All types of 
cells are assumed to proliferate and convert to each other 
exponentially. It is assumed that AD cells convert to both 
types of AI cells during on-treatment status and revers-
ible AI cells convert back to AD cells during off-treatment 
status. The model structure is expressed with Eq. 13. This 
model has been applied to adequately describe patient 
data.37,38

Integration of biology process. Tumor growth models 
displayed by ODEs that additionally incorporate biological 
factors and processes have also been developed,6 such as 
integration of angiogenesis biomarkers and the dynamics 
of components in the immune system (Table 1). To apply 
these methods, apart from tumor burden measurements, 
knowledge related to the biological processes is also 
needed.

Angiogenesis. Concentration of vascular endothelial growth 
factor (VEGF) or soluble VEGF receptor may serve as 
biomarkers indicating the treatment effect for patients treated 
with angiogenesis inhibitors.11 Incorporating the dynamics of 
angiogenesis biomarkers in tumor growth modeling enables 
better understanding and prediction of tumor progression. 
A model structure showed as Eq. 14, where the change of 
biomarkers from baseline affects the tumor decay rate, was 

Models/assumptions Equations Refs.

Nonlinear drug exposure–effect relationship
kg

�
=kg ⋅

(
1−

Emax ⋅Exposure
IC50+Exposure

) Eq. 25 21

Algebraic equations

Two-phase model T =
(
e−kd ⋅t +ekg ⋅t −1

)
⋅BASE Eq. 26 50,51,55

T =
(
e−kd ⋅t +ekg ⋅(t−�) −1

)
⋅BASE Eq. 27 50

T =
(
� ⋅e−kd ⋅t +

[
ekg ⋅t −�

])
⋅BASE Eq. 28 55

Model proposed by Wang et al. T = BASE · e−A·t + B · t Eq. 29 52,56

An extension of Eq. 30 T = BASE · e−A·t + B · t + C · t2 Eq. 30 53

A=�1+�2 ⋅

(
Dose

100mg

)
Eq. 31 53

Simplified TGI model
T =BASE ⋅e

kg ⋅t−
(

kd
�

)
⋅(1−e−�⋅t) Eq. 32 54,57–60

Partial differential equations

Proliferation-invasion model �c(x,t)

�t
=Dif ⋅∇2c (x,t)+ f (c (x,t)) Eq. 33 61,63,64,69,70

v=2
√
Dif ⋅� Eq. 34

�c(x,t)

�t
=Dif ⋅∇2c (x,t)+ f (c (x,t))−kd ⋅c (x,t)

Eq. 35 67

Surv=e
−

(
�⋅Dose+�⋅Dose

2
)

Eq. 36 64

�c(x,t)

�t
=Dif ⋅∇2c (x,t)+ f (c (x,t))−(1−Surv) ⋅ f (c (x,t) Eq. 37

�c(x,t)

�t
=Dif ⋅∇2c (x,t)+ f (c (x,t))−G (x,t) Eq. 38 74

α, β, radio sensitivity parameters; A, exponential shrinkage rate constant as a result of treatment; a, b, constants; B, linear growth rate constant; BASE, baseline 
of tumor burden; BM0, baseline of biomarkers; BMt, biomarker amount at time point t, which could be assumed to remain constant and equal to baseline in the 
absence of treatment; C, coefficient of quadratic growth term; c (x,t), tumor cell concentration/density at location x at time t; D, damaged cells; d, death rate 
constant;  d1, d2, rate constants; Dif, diffusion coefficient; E, vessel endothelial cells; Emax, maximal fraction of inhibition; f(P), f(S), f(R), f(T), growth function of 
proliferative cells (P), sensitive cells (S), resistant cells (R), and tumor tissue (T), respectively; G(x,t), surgical term; h, g, constants; I, I1, I2, I3 components in the 
immune system; IC50, the drug exposure that produces 50% of Emax; k, k1, rate constants; kd, shrinkage rate constant of tumor as a result of drug treatment; kg, 
growth rate/growth rate constant; kgʹ, tumor growth rate constant under treatment; m1, m2, conversion rate constants that can be set as 0; N, normal cells; Surv, 
the probability of tumor cell survival; T, tumor burden; TGI, tumor growth inhibition; Tmax, carrying capacity; λ, treatment efficacy decay rate constant; λ0, expo-
nential growth rate; λ1, linear growth rate; τ, delayed time of tumor regrowth; ϕ, sensitive fraction of the tumor; ρ, growth rate constant; ∇2, a Laplacian operator; 
f (c (x,t)), tumor proliferation function.

Table 1 (Continued)
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applied in two studies.31,39 One study characterized the 
time course of SLD in patients with gastrointestinal stromal 
cancer undergoing sunitinib treatment. The natural growth 
of the tumor was described with the exponential model, 
and the model-predicted relative change of the biomarker’s 
amount was incorporated to affect the shrinkage of the 
tumor.39 The other study well characterized the dynamics 
of tumor volume measured in neurofibromatosis patients 
undergoing bevacizumab and everolimus. The natural tumor 
growth was described by the combined exponential and 
linear model (Eq. 8), and the amount of unbound VEGF was 
considered to affect a first-order apoptosis of the tumor.31

Another way to account for angiogenesis effect on tumor 
growth is by assuming the carrying capacity of the tumor is 
determined by the effective tumor vascular support that is 
in turn affected by the tumor volume (Eqs. 15 and 16).40,41 
Logistic and Gompertz model structures were applied under 
this assumption. A model structure displayed by Eq. 15 was 
applied to well characterize the tumor growth in renal cell 
carcinoma (RCC) patients based on SLD measurements.40 
The carrying capacity in this study was assumed to expand 
because of proangiogenic factors. Another similar model 
structure is shown by Eq. 16. Although as far as we know 

there is no clinical study that utilized this model framework, 
it has been used to perform simulations to optimize the de-
livery of therapeutic agents for enhancing targeted therapies 
for liver cancer41 and to investigate the optimization of anti-
angiogenic treatment.42

Immune system. Apart from angiogenesis, the effect of 
the immune system has also been incorporated in the 
tumor growth model when patients were undergoing 
immunotherapy.43,44 The proposed model structure is 
presented in Eqs. 17 and 18, where the rate of first-order 
decline of tumor burden was assumed to depend on the 
amount of immune component and decrease while tumor 
burden was increasing. This model structure was adopted 
to characterize the growth of prostate cancer by accounting 
for the dynamics of the immune system. Tumor cells were 
assumed to proliferate exponentially, and the amount of 
cytotoxic T lymphocytes affected the cell decline rate (Eq. 
17).44 The applicability of this model was validated by the 
results of a clinical trial where PSA measurements were 
obtained from prostate cancer patients treated with a 
vaccine. Considering the effect of more than one immune 
component, another study developed a model structure 

Table 2 Modeling frameworks for characterizing tumor resistance evolution

Models Equations Refs.

Stochastic models

Probability model assuming branching 
process

⎧
⎪
⎪
⎨
⎪
⎪
⎩

P (n+1,m�n,m)=bs ⋅ (1−u) ⋅n ⋅Δt

P (n−1,m�n,m)=ds ⋅n ⋅Δt

P (n,m+1�n,m)=br ⋅m ⋅Δt+bs ⋅u ⋅n ⋅Δt

P (n,m−1�n,m)=dr ⋅m ⋅Δt

P (n,m�n,m)=1−
��
bs+ds

�
⋅n ⋅Δt+

�
br+dr

�
⋅m ⋅Δt

�

Eq. 39 76,81,83

Stochastic differential equation {
dS=kg ⋅S ⋅

(
1−

(S+R)

Tmax

)
⋅dt−u ⋅S ⋅dt−kd

�
⋅S ⋅dt+�1 ⋅S ⋅dW1−qM ⋅K ⋅S ⋅dN1

kd
�
=kd ⋅

CD

KD+CD

Eq. 40 90

Deterministic models

Ordinary differential equation { dS

dt
=
(
kg−d−kd

)
⋅S

dR

dt
=
(
kg−d

)
⋅R+u ⋅S

Eq. 41 91

{ dS

dt
=
(
kg ⋅ (1−u)−d−kd

)
⋅S

dR

dt
=
(
kg−d

)
⋅R+kg ⋅u ⋅S

Eq. 42 88

{ dS

dt
=
(
kg−kd ⋅Dose

)
⋅S

dR

dt
=kg ⋅R+kg ⋅u ⋅S

Eq. 43 92

{ dS

dt
=
(
kg1−u1−kd1 ⋅CD

)
⋅S+u2 ⋅R

dR

dt
=
(
kg2−u2

)
⋅R+u1 ⋅R

Eq. 44 93

Game theory W (i)=
∑
pj ⋅Payoff (ij)=1− ri −di +

�
1−pi

�
⋅Xi Eq. 45 94

W̄ =
∑
pi ⋅W (i) Eq. 46

dpi

dt
=pi ⋅

(
W (i)−W

)
Eq. 47

Integral-differential equation { �n(x,t)

�t
=
[
r (x) ⋅ (1−�)−c (x)−G (� (t)) ⋅d (x)

]
⋅n (x,t)+� ⋅ ∫ 1

0
r (y) ⋅M (y,x) ⋅n (y,t) ⋅dy

� (t)= ∫ 1
0
n (x,t)dx

Eq. 48 95,96

n, numbers of sensitive cells; m, numbers of resistant cells; bs, birth rate of sensitive cells; ds, death rate of sensitive cells; u, mutation probability in one cell 
division; bs, birth rate of resistant cells; ds, death rate of resistant cells; P, probability of cell number changing from current generation to the next; S, sensitive 
cells, R, resistant cells, kg, kg1, kg2, growth rate constant; d, death rate constant; kd, shrinkage rate constant as a result of drug treatment; CD, drug concentra-
tion; KD, drug concentration that produces 50% of maximum treatment effect; dW1, stochastic cell diffusion in a small time interval (Wiener process); dN1, 
stochastic dissemination in a small time interval (Poisson process); σ1, diffusion rate; qM, dissemination rate; K, angiogenesis; u1, u2, mutation rate; W (i), fit-
ness of type i cell; Payoff (ij), payoff of type i cells when they meet cell type j; pi, pj, proportion of cells; ri, cost of resistance; di, cost as a result of treatment; Xi, 
benefit for resistant cells when interacting with susceptible cells; x, y, resistance levels; n (x,t), cell density with resistance level x at time t; r (x), r (y), cell divi-
sion rate; c(x), treatment effect; d (x), cell death rate; G (� (t)), a density dependence term; θ, mutation fraction; M (y,x), probability that cell y mutates to cell x.
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Table 3 Data input and knowledge requirement, study type, and objectives (besides characterizing treatment effect in cancer patients) for 
applying different model structures 

Models Data input and knowledge requirement Study types Study objective

Tumor growth models

Models considering tumor heterogeneity (ODEs)

Proliferative + Quiescent 
(Eqs. 9 and 10)

Longitudinal TS measurement Estimation-based study and 
simulation study

Optimize treatment

Mechanism of treatment (cell-cycle specific or not) Mixed-effect model possible

Applicable for different treatments and cancer types

Applicable for monotherapy or combination therapy

Sensitive + Resistant 
(Eqs. 11–13)

Longitudinal TS measurement Estimation-based study and 
simulation study

Identify resistance type 
(acquired or primary) and 

mechanismApplicable for different treatments and cancer types Mixed-effect model possible

Applicable for monotherapy (or combination therapy)

Model developed by 
Ideta et al.23 (Eq. 12)

IAS and CAS Simulation study Describe and predict PSA 
change under treatmentProstate cancer

Model developed by 
Hirata et al.36 (Eq. 13)

Longitudinal PSA measurement Estimation-based study Describe and predict PSA 
change under treatment

IAS and CAS Estimate parameters for each 
subject

Optimize treatment

Prostate cancer Individualize treatment

Models incorporating biological factors (ODEs)

Angiogenesis biomarkers 
(Eq. 14)

Longitudinal TS measurement Estimation-based study Identify clinically relevant 
outcome predictors and 

optimal time to measure the 
biomarkers

Longitudinal biomarkers measurement or previously reported 
models for treatment–biomarker interaction

Mixed-effect model possible

Mechanism of treatment

Applied mainly for antiangiogenesis treatment, monotherapy, or 
combination therapy

Applicable for different cancer types

Tumor vascular support 
(Eqs. 15 and 16)

Longitudinal TS measurement Estimation-based study and 
simulation study

Optimize treatment

Mechanism of treatment

Applicable for different treatments and cancer types Mixed-effect model possible

Applicable for monotherapy (or combination therapy)

Immune system  
(Eqs. 17 and 18)

Longitudinal TS/PSA measurement Estimation-based study and 
simulation study

Optimize treatment

Immunotherapy Estimate parameters for each 
subjectMechanism of treatment

Applicable for different cancer types

Immune system (Eqs. 19 
and 20)

General cancer Simulation study Optimize treatment

Chemotherapy

Treatment effect model (ODEs)

First-order treatment  
effect (Eq. 21)

Drug dependent Estimation-based study and 
simulation study

Characterize treatment 
effect

Parameter can be different for different dose group Mixed-effect model possible

Exposure-dependent 
treatment effect  
(Eqs. 22–25)

Longitudinal concentration data Estimation-based study and 
simulation study

Mixed-effect model possible

Characterize relationship 
between tumor-size change 

and treatment exposure
Optimize treatment

Or PK model (newly developed or previously published) for 
simulating drug exposure or dose (as a metric of drug exposure)

Applicable for different treatments and cancer types

Applicable for monotherapy or combination therapy

A compartment for damaged cells (Eq. 24) applied mainly for 
chemotherapy and/or radiotherapy

Algebraic equation

Two-phase model  
(Eqs. 26–28)

Longitudinal TS/PSA data Estimation-based study Investigate the relationship 
between tumor growth rate 

and survival
PK information is not necessary Estimate parameters for each 

subjectApplicable for different treatments and cancer types

Applicable for monotherapy or combination therapy

(Continues)
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Models Data input and knowledge requirement Study types Study objective

Model developed by 
Wang et al.52 (Eq. 29)

Longitudinal TS data Estimation-based study Elucidate relationship 
between metrics of tumor 

size and survival
PK information is not necessary Mixed-effect model possible

Applicable for different treatments, monotherapy  
or combination therapy

Mainly in NSCLC patients

Extension of model de-
veloped by Wang et al.52 
(Eqs. 30 and 31)

Longitudinal TS data Estimation-based study —

Mainly in RCC patients treated with pazopanib Mixed-effect model possible

Dose-depended treatment effect can be incorporated

Simplified TGI model 
(Eq. 32)

Longitudinal TS data Estimation-based study Elucidate relationship 
between metrics of tumor 

size and survival

PK information is not necessary Mixed-effect model possible

Applicable for different treatments and cancer types

Applicable for monotherapy or combination therapy

Partial differential equation

Proliferation–invasion 
model (Eq. 33–38)

Two pair of T1-Gd and T2 MRI data before treatment Estimation-based study and 
simulation study

Predict patient survival and 
tumor size after treatment

Or one pair of T1-Gd and T2 MRI data before treatment,  
with available parameters in previous studies

Estimate parameters for each 
subject

Simulate patient outcome 
under different treatments

Glioblastoma Personalize treatment

Resection, radiotherapy, or without treatment Investigate the application 
of a novel model

DW-MRI data, one before and two after treatment, for  
tumor cell number calculation

Estimate parameters for each 
subject (the growth rate is the 
net growth rate considering 

both tumor growth and 
death)

Predict tumor burden at the 
conclusion of treatment

Breast cancer patients with neoadjuvant therapy

Consider mass effect

Tumor resistance evolution models

Probability model (Eq. 39) Parameter values (from previous studies or by estimating  
clinical or preclinical data)

Simulation study Elucidate the resistance 
evolution of cancer

If available, longitudinal or static ctDNA measurement  
can be used to estimate parameters or evaluate simulation 

results

Apply proposed equations 
in data obtained in clinical 

study (mainly in lung 
cancer, colorectal cancer, 
and leukemia treated with 

targeted treatment)

Propose equations for 
estimating and investigating 

ER, PR, total tumor cells, 
and treatment success rate

Estimate the detection time

General cancer and treatment No mixed-effect model 
applied yet

Predict treatment outcome 
and optimize treatment

Single drug or multidrug resistance Demonstrate if resistance 
exist at the start of treatment

Stochastic differential 
equation (Eq. 40)

Parameter values (from previous studies or by estimating  
clinical or preclinical data)

Simulation study Connect cellular 
mechanisms underlying 

cancer drug resistance to 
patient survival

Mechanism of treatment No mixed-effect model 
applied yetIf available, longitudinal ctDNA measurement  

can be used to evaluate simulation results

Mainly in melanoma patients treated with BRAF and MEK 
inhibitor

ODEs (Eqs. 41–44) General cancer and treatment Simulation study Predict treatment outcome 
and optimize treatment

Single drug or multidrug resistance No mixed-effect model 
applied yet

Propose model

Game theory  
(Eqs. 45–47)

Payoff matrix Simulation study To understand experimental 
resultsCombination treatment No mixed-effect model 

applied

Integral-differential  
equation (Eq. 48)

General cancer and treatment Simulation study Describing multidrug 
resistance

Single drug or multidrug resistance No mixed-effect model 
applied

Demonstrating the evolving 
resistance under treatment

BRAF, B-Raf kinase; CAS, continuous androgen suppression; ctDNA, circulating tumor DNA; DW-MRI, diffusion-weighted MRI; ER, expected number of resistant 
cells; IAS, intermittent androgen suppression; MEK, mitogen-activated protein kinase kinase; MRI, magnetic resonance images; NSCLC, non–small cell lung 
cancer; ODEs, ordinary differential equations; PK, pharmacokinetics; PR, probability of resistance; PSA, prostate-specific antigen; RCC, renal cell carcinoma; 
T1-Gd, gadolinium-enhanced T1 weighted; T2, T2 weighted; TS, tumor size.

Table 3 (Continued)
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to simulate the growth of bladder cancer undergoing 
immunotherapy.43 The growth of tumor cells was described 
with a logistic model, and the cell decline rate was set to 
be linearly or nonlinearly related to the amount of immune 
components (Eq. 18).

Another concept model structure described tumor burden 
dynamics by a logistic growth, a first-order damage resulting 
from immune cells, and a first-order competition with normal 
cells (Eq. 19).45 This model structure was recently adopted 
to obtain an optimal dosing regimen for cancer patients 
based on simulation.46 A model structure that omits the 
competition with normal cells (Eq. 20) was also proposed to 
investigate treatment optimization.47

Treatment effect. Empirical method. Tumor shrinkage 
resulting from drug treatment is typically quantified with an 
empirical drug-induced shrinkage term as has previously 
been summarized.10 Commonly used equations identified 
from included papers are presented in Table  1. The time 
curves of these equations were simulated with R and are 

shown in Figure 2, assuming an exponential growth with the 
growth rate constant kg = 0.1. 

A log-kill pattern is commonly used for modeling treatment 
effect, which assumes that the shrinkage rate of the tumor as 
a result of drug treatment is proportional to tumor burden.6 The 
simplest way to adopt this pattern is using Eq. 21, where kd 
is the drug-induced tumor shrinkage rate constant. Such an 
equation has been used to well described the treatment effect 
of everolimus on metastatic RCC patients.18 The estimates of 
kd in that study were different between two dose groups.

The rate of drug-induced shrinkage can also be considered 
to depend on drug exposure, i.e., drug concentration and 
area under the concentration-time curve or drug dose. A lin-
ear drug exposure–effect relationship can be quantified using 
Eq. 22.22,25 Meanwhile, drug resistance can also be taken into 
consideration by introducing a e-λ·t term on the basis of Eq. 22  
to quantify the decline of drug effect over time (Eq. 23; Figure 2). 
This model structure has been applied to characterize the 
effect of pazopanib on RCC patients.40 Setting f (T )=kg ⋅T,  
an exposure-driven TGI model was developed based on 

Figure 1 Simulated time curves of tumor burden (T ) with tumor natural growth models displayed by Eqs. 1–6 and 8. kg is the  
tumor growth rate / growth rate constant, d is the tumor death rate constant, Tmax is the carrying capacity, λ0 is the exponential growth 
rate, and λ1 is the linear growth rate. The baseline of tumor burden is 5. Parameter values used for the simulations are as follows: 
Models 1 and 2 (Eqs. 1 and 2), kg = 2; Model 2 (Eq. 2), d = 0.01; Models 3–6 (Eqs. 3–6), kg = 0.1; Model 4 (Eq. 4), d = 0.01; Models 5 and 
6 (Eqs. 5 and 6), Tmax = 120; Model 7 (Eq. 8), λ0 = 0.1, λ1 = 2. 
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SLD measurements from colorectal cancer patients receiv-
ing capecitabine and fluorouracil.20 It has then been widely  
applied to various cancer types and drugs as was reviewed 
previously.11 Two more recent studies also adopted this 
model structure to characterize the tumor SLD change in 
metastatic breast cancer patients treated with eribulin48 and 
in metastatic ovarian cancer patients receiving carboplatin or 
gemcitabine plus carboplatin,49 respectively.

In addition, a damaged cell compartment (D) has also 
been introduced in studies to account for the damage on 
cell DNA as a result of the treatment, as is displayed by Eq. 
24, which can result in a delay on drug onset (Figure 2). This 
model structure was used in two studies that characterized 
the MTD change in low-grade glioma patients treated with 
chemotherapy or radiotherapy.24,25 In these two studies, the 
damaged cell compartment was used to characterize the 
treatment effects on drug-sensitive cells24 and quiescent 

cells25 respectively. Part of the damaged cells eventually 
died, and the rest were assumed to become drug-resistant 
cells24 and proliferative cells25 respectively.

Apart from the linear drug exposure–effect relationship, 
a nonlinear drug exposure–effect relationship can also be 
considered to characterize treatment effect particularly for 
targeted anticancer treatment.21 An Emax model is commonly 
used in this circumstance.  An example equation is showed 
as Eq. 25, which was derived from a model where the stud-
ied medicine was assumed to inhibit the zero-order growth 
rate of advanced solid malignancies following the nonlinear 
drug exposure–effect relationship.21

Considering biomarkers. When biomarkers that represent the 
drug-targeting system are incorporated in the tumor dynamic 
models, treatment effect can be added on the dynamics of 
biomarkers according to corresponding mechanisms.

Figure 2 Simulated time curves of total tumor burden (T ) with tumor dynamic models incorporating treatment effect with Eqs. 21–25 
and assuming an exponential growth (growth rate constant kg = 0.1). kd is the tumor shrinkage rate constant due to drug treatment, λ is 
the treatment efficacy decay rate constant, S is the drug sensitive cells, D represents the damaged cells, d is the death rate constant, 
Emax is the maximal fraction of inhibition, and IC50 is the drug exposure that produces 50% of Emax. The baseline of total tumor burden 
is 30. Parameter values used for the simulations are as follows: Model 1 (Eq. 21), kd = 0.4; Models 2–4 (Eqs. 22–24), kd = 0.04; Model 
3 (Eq. 23), λ = 0.1; Model 4 (Eq. 24), d = 0.1; Model 5 (Eq. 25), Emax = 2, IC50 = 5. Drug exposure was simulated with Hill’s equation: 
Exposure=Epmax ⋅

t0.5

Ept
0.5

50
+t0.5

=30 ⋅
t0.5

100.5+t0.5
, where Epmax represents the maximum exposure at steady state and Ept50 represents the time 

when the exposure reaches half maximum value.
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In the study where neurofibromatosis patients were treated 
with bevacizumab and everolimus, the decrease of the un-
bound VEGF amount because of the binding with bevaci-
zumab was considered in the model.31 Meanwhile, the 
inhibition of the zero-order production rate of total VEGF be-
cause of everolimus was described with a nonlinear expo-
sure–effect relationship: k� =k ⋅

(
IC50

IC50+Exposure

)
, where IC50 is 

the drug exposure that produces 50% of the maximal inhibi-
tion effect. As a result of the quantity decrease of biomark-
ers, the shrinkage rate of tumor burden increased (Eq. 14). 
The delayed activation of tumor proliferation result from the 
continuous use of everolimus was also integrated in their 
model structure.31 In the study where gastrointestinal stromal 
cancer patients were treated with sunitinib, the effect of suni-
tinib was described by a nonlinear inhibition on the zero-or-
der production rate or first-order decline rate of biomarkers 
using k� =k ⋅

(
1−

Imax⋅Exposure

IC50+Exposure

)
, where Imax is the maximal 

fraction of inhibition.39 The negative item in Eq. 23 was also 
included to quantify the treatment effect and resistance.39

In addition, the effect of angiogenesis inhibition treatment 
can also be incorporated by introducing a first-order drug expo-
sure dependent decline term (Eq. 22) on the dynamics of tumor 
vascular support,40,41 when the vascular support was assumed 
to determine the carrying capacity of tumor (Eqs. 15 and 16).

Studies where patients were treated with immunother-
apy have also considered drug interaction with the immune 
system. The presence of immunotherapeutic agents is fre-
quently assumed to affect the dynamics of components in 
the immune system, and the amount of those components 
can affect the decrease rate of tumor burden (Eqs. 17 and 
18).43,44 For example, the model structure proposed to de-
scribe PSA change in prostate cancer patients treated with 
a vaccine assumed that the presence of the vaccine upreg-
ulated the zero-order production rate of mature dendritic 
cells and therefore increased the number of cytotoxic T 
lymphocytes, which increased the decay of tumor tissue.44

Algebraic equation
Besides using ODEs, model structures displayed by alge-
braic equations have also been developed to characterize the 
dynamics of tumor directly as is summarized in Table 1.50–54  
The simulated time curves of tumor dynamics given by 
these models are shown in Figure 3. Although these equa-
tions could be treated as analytical solutions of ODEs, they 
provided different shapes of time curves when compared 
with what was introduced previously.

A novel two-phase model that combines exponential 
tumor regrowth and regression was developed to interpret 
serial PSA measurements from AI prostate cancer patients50 
and metastatic castration–resistant prostate carcinoma pa-
tients undergoing combination therapy.51 The corresponding 
model equation is shown in Eq. 26, where kg is the tumor re-
growth rate constant and kd is the drug-dependent tumor re-
gression rate constant. The same model structure was also 
utilized to assess the therapeutic efficacy of bevacizumab in 
patients with RCC using the sum of perpendicular diameter 
measurements.55 On the bases of this model structure, an 
extra parameter τ has been introduced to account for the 
delayed tumor regrowth as presented in Figure 3 (Eq. 27).50 

In addition, a parameter ϕ has also been introduced on the 
basis of Eq. 26 to differentiate the sensitive and resistant 
part of the tumor (Eq. 28),55 which results in a less degree 
of tumor shrinkage at the early phase (Figure 3). This model 
structure was found to be applicable when sufficient data 
points were available, and the estimation of growth rate con-
stant was similar to what was obtained by the original equa-
tion (Eq. 26).

Another model structure was proposed by Wang et al. to 
describe the time courses of tumor SLD data of non–small 
cell lung cancer (NSCLC) patients from four clinical trials 
treated with eight treatments/placebos,11,52 as shown by 
Eq. 29. A and B represent the rate constants of exponen-
tial shrinkage as a result of treatment and linear growth, re-
spectively. The treatment effect was also characterized as 
a drug-dependent manner. This model structure has been 
successfully applied afterward11 and was recently applied to 
analyze SLD measurements collected from NSCLC patients 
from three clinical studies to identify the obstacles to wider 
use of quantitative measures.56

A quadratic growth term with a coefficient C was later in-
troduced to this model structure as is shown in Eq. 30.53 This 
model structure was demonstrated to have the best perfor-
mance on characterizing the SLD measurements in RCC 
patients receiving pazopanib or placebo, and predictive pa-
tient-specific covariates were also identified.53  Treatment 
effect, which is reflected by parameter A, was described in a 
dose-depended manner for one group of the patients in this 
case (Eq. 31).

In addition, a simplified version of the previously in-
troduced TGI model, which was displayed by an alge-
braic equation, was also developed (Eq. 32).54 This model 
structure also assumes an exponential tumor growth with 
growth rate (kg) while the treatment effect is described in a 
drug-dependent manner with parameters account for tumor 
growth inhibition (kd) and drug resistance (λ). By applying 
this model structure, the tumor size change in metastatic 
colorectal cancer patient treated with bevacizumab and 
chemotherapy was described satisfactorily.54 This model 
structure has been well applied to describe tumor size 
change in metastatic RCC patients treated with cytokine, 
mammalian target of rapamycin inhibitor, and VEGF recep-
tor inhibitors;57 in NSCLC patients undergoing treatment 
of carboplatin/paclitaxel combining motesanib or not;58 in 
NSCLC patients treated with bevacizumab and erlotinib;59 
and in gastric cancer patients treated with bevacizumab 
and chemotherapy.60

Partial differential equation
Natural growth. Partial differential equations (PDEs), 
which take the change of a dependent variable in time and 
space into consideration, have also been adopted in the 
modeling of solid tumor dynamics in clinical research. One 
common application is known as a proliferation–invasion 
model or a reaction–diffusion model, which hypothesize 
that it is the net proliferation and invasion that contribute 
to the growth of cancer.61 This model formation has been 
typically used in studies where imaging observations of 
tumor, especially brain tumors, were available to describe 
and predict tumor expansion.8 The equation of this model 
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structure is shown as Eq. 33 in Table 1, where the dynamics 
of tumor cell concentration/density at location x at time  
t (c(x,t)) is described.8,61 The tumor proliferation in this model 
can be expressed by exponential, logistic, or Gompertz 
functions.8,61 Moreover, this model mathematically regards 
the expansion of imaging detectable tumor edge as a 
“traveling wave,” and the velocity of tumor expansion is a 
constant that is determined by the diffusion coefficient (Dif) 
and growth rate constant ρ (Eq. 34).61 This linear radius/
diameter expansion was confirmed in a group of grade II 
gliomas patients with magnetic resonance image (MRI) 
measurements before any oncological treatment.62

Studies applying the proliferation–invasion model to char-
acterize tumor dynamics typically have interest in estimat-
ing the rate constants of net proliferation and invasion. An 
application of this model structure can be found in a study 
where the tumor volumes obtained from the MRI imaging 
were available for 70 patients with previously untreated 

glioblastoma.61 The tumor proliferation was described by a 
logistic function (Eq. 5) with a growth rate constant ρ. The 
ratio Dif/ρ was estimated for each patient based on MRI 
observations. Subsequently, setting ρ as a reported mean 
value and estimating Dif, the velocity of tumor radial expan-
sion was estimated, and the survival time of patients un-
derwent tumor resection were satisfactorily predicted by the 
estimated time of reaching a target radius. The same model 
structure was also applied on serial available MRI data from 
32 glioblastoma patients before treatment.63 The net prolif-
eration and invasion rates they quantified were significantly 
associated with the survival of patients. Another study char-
acterized tumor natural growth for nine patients with glio-
blastoma with the same model.64 This study demonstrated 
that the parameter estimated based on pretreatment MRIs 
had high prediction accuracy for responses after treatment 
for these patients. Using the same model structure, the 
correlation between proliferation rate and hypoxic volumes 

Figure 3 Simulated time curves of tumor burden (T ) with tumor dynamic models displayed by algebraic equations that describe both 
tumor natural growth and treatment effect (Eqs. 26–30 and 32). kg is the tumor growth rate constant, kd is the tumor shrinkage rate 
constant due to drug treatment, τ is the delayed time of tumor regrowth, ϕ is the sensitive fraction of the tumor, A is the exponential 
shrinkage rate constant due to treatment, B is the linear growth rate constant, C is the coefficient of quadratic growth term, BASE is 
the baseline of tumor burden, and λ is the treatment efficacy decay rate constant. Parameter values used for the simulations are as 
follows: Models 1–3 (Eqs. 26–28), kg = 0.1, kd = 0.4, BASE = 30; Model 2 (Eq. 27), τ = 10; Model 3 (Eq. 28), ϕ = 0.6; Models 4 and 5 (Eqs. 
29 and 30), A = 0.4, B = 2, C = 0.05, BASE = 30; Model 6 (Eq. 32), kg = 0.1, kd = 0.4, λ = 0.1. 
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based on imaging data from newly diagnosed glioblastomas 
patients was demonstrated.65 This model structure was also 
recently used to investigate the personalization of radiother-
apy strategy for brain cancer patients.66

Setting f (c (x,t))=� ⋅c (x,t), a similar model structure was 
also used to simulate the growth of glioblastoma based on 
previous reported parameters estimated from patients and 
estimated the survival times of patients under different pa-
rameter settings.67

Likewise, the proliferation–invasion model with logistic 
growth function was also successfully applied in breast can-
cer patients to characterize and predict their tumor burden.68 
The model developed based on MRI data that were avail-
able from the early treatment phase was demonstrated to be 
able to predict patient response at the end of treatment.69,70 
In these studies, an apparent diffusion coefficient was esti-
mated based on diffusion-weighted MRI data and was then 
transformed to an estimate of tumor cell number, which was 
the dependent variable in the model. Moreover, the inhibitory 
effect of tumor diffusivity resulting from the stress and the 
deformation of surrounding tissue forced by the tumor cells 
were also considered in these studies,69,70 which is called 
“mass effect”.8 More examples of the application of the pro-
liferation–invasion model can be found in a previous review.8

Apart from taking the diffusion coefficient as a constant, 
the difference between diffusion rates in gray and white 
matter can also be considered, such as setting Dif as two 
different constants for the cells in gray and white matter,  
respectively.71 The proportions of white and gray matter  
(i.e., Pw (x) ,Pg (x)) have also been taken into account when 
computing the diffusion coefficient with the following  equation: 
Dif (x)=Pg (x) ⋅Difg+Pw (x) ⋅Difw. The prediction of the model 
was validated with clinical imaging data from one glioma 
 patient case.72

Recently, a threshold and a necrosis rate were also intro-
duced into the proliferation–invasion model structure, which 
assumes an exponential decay will occur once the tumor 
cell amount exceeds the threshold.73

Treatment effect. When using the proliferation–invasion 
model, the treatment effect can also be expressed by 
subtracting an extra term (corresponding equations are 
shown in Table  1). The effect of chemotherapy can be 
expressed with Eq. 35, where kd is the drug effect rate 
constant.67 For radiotherapy, a linear-quadratic equation has 
been used to estimate the probability of tumor cell survival 
(Surv) after the administration of radiation with dose Dose 
(Eq. 36). The effect of radiotherapy can thus be incorporated 
as presented by Eq. 37.64 In addition, it is also possible to 
incorporate the effect of resection in the proliferation–
invasion model to describe tumor growth after surgery. The 
resection can be simulated by setting the cell concentration 
in the resected region as zero at the time point of surgery.61 
Subtracting a surgical term (Eq. 38) was also found to be 
applied to simulate the resection of tumor.74

TUMOR RESISTANCE EVOLUTION MODELING
Tumor clonal evolution
Theoretically, three models of tumor evolution have been 
reported. One is a selective sweep model, which is also 

known as “linear” model.14,75 It holds that during cancer 
initiation, mutations with fitness advantage are raised and 
then selectively take over the whole population sequen-
tially.14,75 However, because intratumor heterogeneity was 
identified and evidence of branching growth was found 
from multibiopsy and genomewide studies, a branching 
evolution theory where multiple subclones are considered 
to present and compete was developed.14,75 Another “big 
bang” model of tumor evolution was observed in colorec-
tal tumors, which suggests that advantage mutations arise 
and cumulate during the early phase of cancer development 
and the tumor then grows as a neutral single clonal.14,75

Mathematical models that characterize tumor initiation 
and progression as an evolving process, including stochas-
tic models and deterministic models, were sufficiently intro-
duced in previous reviews.13,14 A well-mixed cell population 
is typically assumed.13 Modeling strategies that focus on 
describing the evolution of cancer resistance have also been 
discussed.15,17 In the following sections, we will mainly give 
an introduction about different mathematical modeling strat-
egies that were used to characterize cancer resistance with 
the tumor evolution principle.

Stochastic model
Probability model assuming the branching process. 
The branching process, which is also called the birth–death 
process, is a commonly adopted stochastic process that 
is used to characterize the evolving dynamics of cancer 
resistance.13,15,17 The Markov property is adopted in this 
model. Normally, at least two cell types, i.e., sensitive cells 
and resistant cells, are considered. It assumes that a tumor 
grows exponentially and that each sensitive cell has a 
certain birth rate, death rate, and a mutation probability in 
one cell division, and each resistant cell also has a certain 
birth rate and death rate. The probability of cell number 
change from current generation to the next could therefore 
be expressed with these parameters, as is shown in Eq. 39 
(Table 2). n and m represent the numbers of sensitive cells 
and resistant cells, respectively. Substantially, stochastic 
simulation could be performed and the probability of 
resistance (the probability of at least one resistant cell is 
present; PR) and the expected number of resistant cells (ER) 
could be calculated with probability-generating function.

Resistance evolution before treatment. By applying 
the branching process, the resistance evolution before 
treatment can be investigated. One study estimated the PR 
and ER of a cell population reached a certain size through 
the branching process starting with one sensitive cell.76 The 
fitness of the resistant cells that is relative to sensitive cells 
was also taken into consideration.76 The derived equations 
were later adopted to estimate the resistance probability of 
colorectal cancer prior to endothelial growth factor receptor 
(EGFR) antibody treatment, where the parameters were 
estimated based on longitudinal KRAS mutation amount 
measurements.77  The results indicated that the resistant 
mutation was highly likely to be present prior to the initiation 
of treatment. The same process has also been applied to 
investigate the evolution of drug resistance in chronic 
lymphocytic leukemia before treatment,78 where the growth 



732

CPT: Pharmacometrics & Systems Pharmacology

Tumor Dynamics and Resistance Evolution Models
Yin et al.

and death rates of cancer cells were set based on patient 
results. In this case, besides estimating PR and ER at the 
time of treatment start, a time needed for the resistant 
population to reach a detectable level after treatment was 
also estimated based on which disease progression was 
analyzed and compared with real patient data.

Another study proposed functions for estimating the ex-
pected and median cell numbers for each resistant subclone 
in a metastatic lesion containing a certain number of cells 
with the branching process starting with a single sensitive 
cell.79 The predictions of relative cell numbers of resis-
tant subclones assuming resistant cells were neutral were 
demonstrated to be in agreement with what was estimated 
based on the mutation concentrations in circulation tumor 
DNA (ctDNA) obtained from colorectal cancer patients 
treated with an EGFR blockade.79

Resistance evolution during treatment. The branching 
process has also been applied to simulate the evolving 
resistance during treatment. Regarding treatment initiation 
as the starting point, the dynamics of resistance evolution 
has been investigated with branching stochastic processes. 
Starting with a group of drug-sensitive cells, Foo and 
Michor80 proposed functions of PR and ER during treatment 
depending on the length of treatment on and break time 
for continuous and pulsed dosing strategies.  Treatment 
effect was incorporated by setting different birth and death 
rates for sensitive and resistant cells, if considering partial 
resistance, at on-treatment and off-treatment periods, 
respectively. They also estimated PR, ER, and variance 
of resistance cell number during treatment as functions 
of time considering with or without preexisting resistant 
cells.81 Treatment effect in this study was incorporated 
by making the birth and death rates of both sensitive and 
(partial) resistant cells affected by drug concentration. 
The treatment schedule could therefore be optimized by 
minimizing resistance risk or limiting the size of resistant 
clones. Corresponding equations were later adopted 
to simulate the time curve of ER and PR, and thereby to 
identify a relatively best treatment strategy for EGFR-
mutant NSCLC patients receiving erlotinib.82 In that study, 
the birth and death rates of different types of cells were 
obtained from in vitro experiments, and the birth rates were 
affected by drug concentration.82 Three cases of mutation 
rate change because of drug dose were also considered in 
the study. 

Cancer progression under combination therapies has also 
be investigated with evolution models to predict the out-
come of multiple treatment strategies in EGFR-mutant lung 
cancer patients treated with two drugs.83 Tumor evolution 
after treatment initiation was modeled as a branching pro-
cess with at least three types of cells considered: one type of 
sensitive cell and two types of preexisting resistant cells that 
are resistant to only one of the two drugs, respectively. The 
expected numbers of each type of cells were thereby esti-
mated and the sum of which was the total expected cancer 
cell number (treatment outcome). The treatment effect was 
described by decreasing the birth rates of cells depending 
on drug concentration, and drug interaction was also taken 
into consideration.83

Besides separating tumor cells as being sensitive and 
resistant to treatment, one study also separated cells (sub-
clones) according to resistant status and the number of ac-
cumulated drivers.84 In the stochastic branching process of 
tumor progression, subclones were assumed to have prob-
abilities of raising a driver mutation and a resistant muta-
tion during division. The accumulation of driver mutations 
resulted in an increase in the fitness of cells, whereas resis-
tance was related to a fitness cost, and the fitness of nonre-
sistant cells decreased because of treatment. By modeling 
the probability change of each cell type, the expected tumor 
size and the average frequency of resistant cells were esti-
mated as functions of time. Subsequently, tumor detection 
time was calculated and used to compare the effect of pre-
vention and postdiagnostic interventions.84

Tumor eradication. Considering that resistant mutations 
may die out as a result of stochastic drift during branching 
evolution, tumor eradication (treatment success) probability 
has also been investigated. One study modeled tumor 
progression as the following three phases: expansion with 
decreasing division rate until steady state, maintaining 
steady state, and treatment phase, starting with a single 
sensitive cell.85 Treatment was assumed to decrease 
the division rate and increase the death rate of sensitive 
cells. A formula of the probability of resistant cells arising 
but becoming extinct by the end of the treatment in each 
phase was then proposed, and the overall probability of 
treatment success was estimated as the product of the 
three probabilities.85

Multidrug resistance. The evolution of multidrug resistance 
has also been elucidated by a stochastic model where 
drug-sensitive and drug-resistant cells can divide, die 
(naturally and as a result of treatment), and mutate with 
certain probabilities.86,87 In this model, cells accumulate 
one mutation that leads to resistance to one drug each 
time, and all mutations must be accumulated to make a cell 
resistant to all drugs. The treatment success probability 
(probability of extinction) as well as the probabilities of 
resistance when resistant cells generated exclusively 
before and during treatment were estimated, respectively. 
Based on the derived equations, the tumor size at which 
a certain percentage of patients were treated successfully 
were investigated under various numbers of drugs, 
mutation rates, and the turnover rates of cancer cells.86,87 
This model structure and the derived equation of treatment 
success probability were later utilized to optimize cyclic 
treatment scheduling.88 Moreover, taking the contribution 
of quiescent tumor cells into consideration by incorporating 
the branching process of both cycling cells and quiescent 
cells, the effect of quiescent cells on the treatment outcome, 
such as the resistance probability, of chronic myelogenous 
leukemia patients has also been investigated.89

Stochastic differential equation. In addition of the 
probability models, another stochastic modeling strategy 
that has been applied to characterize the development 
of resistance during treatment is by using stochastic 
differential equations. An example can be found in a study 
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on melanoma cancer patients.90 Three types of cancer 
cells, including sensitive, resistant, and metastasis cells, 
and angiogenetic cells were considered. The dynamics of 
the number of drug-sensitive cells is described by Eq. 40 
(Table 2). In this differential equation, cell growth, mutation, 
and death were described deterministically, whereas cell 
diffusion and dissemination were considered as stochastic 
processes. Logistic growth function was used to describe 
the growth of cells, and the mutation from sensitive to 
resistant cells is described with a first-order process. The 
death of sensitive cells was caused by drug treatment, 
and the nonlinear drug exposure–effect relationships was 
adopted (Eq. 40). Wiener process and Poisson process 
were incorporated to account for stochastic cell diffusion 
and dissemination, respectively. The effect of angiogenesis 
was also included. A drug-induced resistance factor, 
which depends on drug concentrations, was integrated to 
increase the growth and dissemination rates. The model 
predictions of the progression-free survival and number 
of metastasis cells were demonstrated to be, respectively, 
comparable with the observed progression-free survival 
and ctDNA level obtained from melanoma patients treated 
with B-Raf kinase and mitogen-activated protein kinase 
kinase inhibitors.90

Deterministic model
ODEs. Other than stochastic models, deterministic 
differential equations have also been used to study the 
evolution toward drug resistance, especially for a population 
with a large size that often behaves nearly deterministically.13 
The dynamics of sensitive cells and resistant cells can be 
modeled with ODEs similar to what were introduced in the 
“Tumor Heterogeneity” section, but the transition from 
resistant to sensitive cells is often neglected. The model 
structures that have been identified are shown in Table 2.

One model of resistance evolution displayed by ODEs is 
shown as Eq. 41, where drug resistance is considered to 
raise due-to-point mutations.91 When considering multiple 
drug resistance, multiresistant cells were assumed to only 
be mutated from single-resistant cells. Starting with a cer-
tain number of sensitive cells, the resistance amount by the 
time of treatment initiation and during treatment was esti-
mated under different conditions. The authors demonstrated 
that the simpler ODE model provided comparable results to 
previous models that were derived from more complicated 
stochastic models.91 Another example can be seen in Eq. 42. 
This model was used to investigate the preferable treatment 
by controlling the total amount of fully resistant mutants, 
which can be acquired from sensitive cells and single-resis-
tant cells.88 In addition, a model with treatment effect being 
proportional to drug dose has also been used to model 
evolving tumor resistance (Eq. 43).92 Multiresistant cells were 
also considered and were assumed to mutate only from sin-
gle-resistant cells. Based on this model structure, the sur-
vival of patients undergoing different treatment strategies, 
such as the strategy of minimizing the total cell population or 
minimizing the multiresistant population, was investigated.92 
Another model structure of resistance evolution that includes 
the transition from resistant to sensitive cells (Eq. 44) has also 
been adopted to investigate the optimization of treatment.93

Game theory. Evolutionary game theory has also been  
used to investigate the evolution of cancer resistance, 
especially under combination therapy.94 It assumes the 
fitness of one type of cell, which can be understood as the 
growth rate, changes when the cells interact with different 
types of other cells. This can be expressed with a payoff 
matrix, and the final fitness of one type of cell is their expected 
payoff of this “game”.13 An example was found from a study 
where a well-mixed population and a deterministic dynamic 
of the evolving process were considered.94 The evolutionary 
game theory was adopted to investigate and understand the 
evolving resistance for small cell lung cancer patients under 
a combination of chemotherapy and tumor suppressor p53 
vaccine treatment.94  Three cell populations, including cells 
that are sensitive to both treatments and cells that are 
resistant to one of the treatments but sensitive to the other, 
were considered to constitute the total tumor population. 
As presented in Table 2, the fitness of type i cell can be 
expressed as a sum of the product of the payoff of type i cell 
interacting with type j cell and the proportion of type j cell 
(Eq. 45), where a cost of resistance and a cost as a result of 
treatment was considered.94 In addition, to account for the 
influence of cell interaction on cell sensitivity and fitness, 
an extra benefit for resistant cells when interacting with 
susceptible cells under treatment was also introduced (Eq. 
45).94 The average fitness was expressed with Eq. 46, where 
pi is the proportion of each type of cells. The dynamics of 
each cell type under sequencing treatment was described 
using a replicator equation (Eq. 47), and the time curve of 
the proportion and fitness of each cell type are two main 
outcomes of the simulations in this study.

Integral-differential equation. An integral-differential 
equation, where the states of cancer resistance are 
described in a continuous way ranging from complete 
sensitivity to complete resistance, has also been used 
to characterize the evolution of cancer resistance.95,96 A 
model structure shown as Eq. 48 has been used to describe 
the dynamics of cancer cell density with resistance level 
x at time t,95,96 where cell division, cell death, treatment 
effect, and cell mutation were all incorporated (Table  2). 
Simulations were performed in these studies to illustrate 
the evolution of resistant level during treatment, but it has 
not yet been applied in clinical studies.

MODEL SELECTION

Applying different model structures to characterize tumor 
dynamics and tumor resistance evolution may achieve 
different objectives and require different data input and 
knowledge (Table 3). The target cancer type and treatment 
option may also influence the selection of model structure 
(Table 3).

As for the tumor dynamics models displayed by ODEs 
and algebraic equations, most models are applicable to de-
scribe tumor size change in patients with various kinds of 
solid tumors and under different kinds of treatment (mono-
therapy or combination therapy). However, the models spe-
cifically developed for prostate cancer are mainly suitable to 
describe PSA level change, and the models incorporating 
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angiogenesis biomarkers or immune components are nor-
mally considered when patients are treated with antiangio-
genesis treatment or immunotherapy, respectively.

Longitudinal tumor size data, such as the SLD of target 
lesions, MTD, or tumor volumes, or PSA measurements 
are required to estimate model parameters. A mixed-effect 
modeling approach has been applied to most model struc-
tures that are displayed by ODEs and algebraic equations 
to account for interindividual variability, whereas the pa-
rameters of other structures, such as the two-phase model, 
were normally estimated for each subject separately. In the 
former case, each subject in a group is normally required 
to contribute at least one measurement before treatment 
and one thereafter. More data points are preferred to en-
able the better estimate of all parameters. However, the lat-
ter method may require each subject to contribute enough 
data points to enable parameter estimates. In addition, if a 
study aims at developing a model incorporating biomarkers, 
longitudinal biomarker observations or previously reported 
models for treatment-biomarkers interaction are required. If 
no specific biological process is considered, the selection 
of model structures can also depend on the model fit to the 
data as long as the model is physiologically or biologically 
plausible.

Among the functions of the natural tumor growth (Eqs. 
1–8), which are always part of the tumor dynamics models, 
the exponential growth model has been the most frequently 
selected in clinical studies. The logistic growth model was 
normally satisfactorily applied when the maximum tumor ca-
pacity was fixed. The selection of the basic functions could 
also depend on the model fit to the data. More than one avail-
able pretreatment tumor size measurement would be helpful 
to find the best fit natural growth model and would enable 
a more accurate estimate of the tumor natural growth rate.

The treatment effect can be characterized in a drug-de-
pendent manner or exposure–dependent manner. If a 
study does not focus on investigating the exposure–effect 
relationship, using a model with drug-dependent tumor 
shrinkage will be enough and drug-exposure information is 
not required. For studies aiming at characterizing the rela-
tionship between drug exposure/dose and tumor response 
and/or optimizing treatment regimens for patients based on 
simulations, the exposure-dependent (or dose-dependent) 
treatment effect structure should be applied. To estimate 
drug exposure, longitudinal concentration data for PK model 
development or a previously reported PK model are needed. 
In addition, the previous knowledge of the treatment mech-
anism may also be required to appropriately characterize the 
treatment effect, especially when applying models consider-
ing biological factors.

The proliferation–invasion model that is displayed by 
PDE has mainly been applied to investigate glioblastoma or 
breast cancer based on available MRI measurements. The 
required parameters can be estimated for each patient sep-
arately based on two sets of pretreatment MRI data or one 
before treatment and one thereafter. Simulations can then 
be performed to predict patient outcome with the model or 
with the velocity function of tumor radius expansion (Eq. 34). 
The mixed-effect modeling approach has not been found to 
be applied in these studies yet.

The model structures of tumor resistance evolution have 
been mainly applied to perform simulations to understand 
evolving resistance and optimize the treatment. The equa-
tions derived from the branching process can be applied 
to answer clinical questions. Available longitudinal or static 
ctDNA measurements can be utilized to determine the 
parameter values and to evaluate the simulation results. 
Although no mixed-effect modeling approach has been ap-
plied in these studies yet, the model structures displayed by 
ODEs, which can provide comparable results to stochastic 
models, are considered to be potentially able to account for 
interindividual variability.

DISCUSSION

Overcoming treatment resistance with a better under-
standing of cancer evolution and personalizing treatment 
brings opportunities to treat cancer as a chronic disease 
and has been increasingly studied in the oncology field. 
Model-based approaches incorporating tumor growth and 
resistance evolution may help achieve this goal. By apply-
ing mathematical models, prior knowledge derived from 
clinical trials and routine patients care can be utilized to 
quantitatively understand drug PK profiles, the drug–re-
sponse relationship, and evolving resistance in cancer 
patients. These profiles can be predicted accordingly for 
future patients, which could be beneficial for identifying op-
timized therapeutic regimens. Furthermore, by accounting 
for interindividual variability with a mixed-effect modeling 
approach, treatment individualization can also be designed 
and guided rationally.97

In the current review, feasible model structures that have 
been used to describe and predict tumor dynamics and re-
sistance evolution during treatment for patients with solid 
tumors are discussed. Models concerning tumor evolu-
tion in leukemia were included because they provide ref-
erence value for solid tumors. Apart from what has been 
introduced, more extensive models have also been found in 
the literature search, such as agent-based models and the 
cellular automata approach. The agent-based models often 
include components from two or more spatial or temporal 
scales, ranging from molecular to tissue,7 and the cellular 
automata approach adopts a discrete dynamical system of 
time and space.9 Although tumor growth can be simulated 
in silico realistically with these approaches, because they 
require infeasible information input (e.g., cell location, nu-
trition distribution, and/or oxygen amount) from clinical pa-
tients, they were excluded from the current review. Studies 
applying the proliferation–invasion model, which are ex-
pressed with PDE, were not excluded, although tumor cell 
location is also one of the variables. It is because two main 
parameters in this model structure, the diffusion coefficient 
Dif and growth rate constant ρ, can be estimated directly 
based on MRI results obtained from patients, and the ve-
locity of tumor radius expansion can then be estimated and 
utilized for prediction.

Models displayed by ODEs, algebraic equations, and PDE 
are commonly reported for the modeling of tumor size change 
and, in the case of prostate cancer, PSA amount change. 
Five main basic natural tumor growth model structures were 
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frequently reported. The diversity in model selection can be 
explained by the difficulties of assessing real long-term nat-
ural tumor growth pattern in patients.11 Although setting the 
maximum boundaries of tumor growth is more biologically 
plausible, the models without such limits, especially the ex-
ponential growth models, have also been used extensively.  
The concept of linear growth is also reflected in the studies 
that applied the proliferation-invasion model, as the expan-
sion of tumor radius has a constant velocity under such a 
model, and this concept has been used to predict tumor 
radius.63–65

For characterizing treatment effect, empirical methods are 
relatively simple to apply for describing the effect of various 
kinds of drugs and are therefore more generally applicable. 
The shrinkage rate of tumor burden caused by treatment can 
be described to be proportional to drug exposure/dose or 
by utilizing drug-dependent parameters, although the latter 
method does not allow differentiation among different dos-
ing regimens. In addition, when the dynamics of biomarkers 
are available and are incorporated in the tumor dynamics 
models, the treatment effect on the production of biomark-
ers can be integrated according to drug mechanism.31,39 
Furthermore, the regrowth of a tumor during treatment can 
be considered in several ways. Studies applying algebraic 
equations generally characterize the decline and regrowth 
of a tumor by a single equation. For studies that used ODEs, 
tumor regrowth was mainly characterized by separating the 
tumor in two parts consisting of drug-sensitive cells and 
drug-resistant cells or by adding the e-λ·t term.

The resistance evolution of cancer has been mainly char-
acterized by stochastic models within which the branching 
process is reported most frequently. However, in studies 
applying the branching process, the focus was mainly on 
the expected outcome of tumor evolution, such as the PR 
and ER. Therefore, relatively simpler deterministic models 
are considered to be good alternative choices. It has al-
ready been demonstrated that ODE models can provide 
comparable results to those that are derived from stochas-
tic models.91 Given that the goal is to characterize evolving 
tumor resistance based on clinical data, applying determin-
istic models might be more suitable given clinical available 
data generally represents the apparent response of each 
patient.

Among the studies included in this review, the detailed 
data of resistance evolution have not yet been incorporated 
in tumor size–based modeling of anticancer treatment re-
sponse. However, genetic biomarkers that represent tumor 
heterogeneity and resistance evolution become increasingly 
available as a result of novel technologies. For example, in a 
clinical setting, a feasible genetic biomarker that is also cor-
related with tumor burden has been identified as ctDNA.98 
Three of the included studies have already utilized the avail-
able ctDNA data to support the estimation of parameters in 
the tumor evolution model or to evaluate the model simu-
lation results.77,79,90 It has also been demonstrated that the 
mutation in ctDNA, which represents treatment resistance, 
is detectable before disease progression,99 suggesting the 
predictive value of ctDNA to the development of drug re-
sistance. By applying longitudinal monitoring of ctDNA, an 
adaptive treatment for individual patients may be achieved 

by selecting drugs that target emerging actionable muta-
tions.98 Therefore, it is feasible to obtain the information of 
evolving cancer resistance and, to increase the chance to 
overcome treatment resistance, it would be helpful if such 
information could be incorporated in future model-based 
studies.

Based on what was learned from previous reported 
studies, as is introduced in this review, model structures 
displayed by ODEs are considered to be feasible for the 
characterization of both tumor size change and resistance 
evolution in cancer patients. A mathematical model can be 
developed based on the input data of tumor size, mutation 
load of ctDNA, and treatment information over time. The 
emergence and dynamics of mutations in ctDNA can pro-
vide insight of the occurrence, growth, decay, and mutation 
for different tumor subclones. External data sets, if available, 
can be used to further evaluate the developed model struc-
ture. Subsequently, the effect of sequential treatment regi-
mens with different dose levels or starting times of therapies 
can be explored with simulation and thereby to facilitate the 
identification of an optimal regimen. Moreover, because the 
parameter values can be estimated for each individual and 
the variability of which can be partially explained by patient 
characteristics, the treatment personalization can also be 
rationally guided based on the modeling and simulation re-
sults. These will be the ultimate output of the model-based 
study.

However, challenges remain beyond what is already 
stated. First, in terms of data collection, previous knowl-
edge of the mutations that represent resistant subclones 
is required. Second, if sequencing data of the subclones 
(ctDNA) over time are available, efforts need to be made 
to handle the vast amount of genetic data in a quantitative 
manner in relation to tumor size dynamics. Third, the opti-
mal method on how to predict a newly acquired mutation 
that has not yet occurred in the data needs to be further 
explored. Finally, because in-depth knowledge is required 
from multiple aspects of tumor and clone dynamics as well 
as complex modeling and simulation, a multidisciplinary 
collaboration is essential to enable the achievement of the 
ultimate goal of optimizing and personalizing anticancer 
treatment.

In conclusion, based on a systematic search of studies 
from the literature, mathematical models that have been 
used to describe and predict tumor size change, drug effect, 
and resistance evolution based on clinically available data 
were introduced in this review. The results may facilitate the 
model-based anticancer treatment response analysis that 
accounts for both tumor growth inhibition and resistance 
evolution, although important challenges still need to be 
overcome. An ultimate model structure handling all of these 
aspects would be of great benefit for optimizing and person-
alizing anticancer treatment.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Figure S1. Diagram of literature scanning for (a) tumor dynamics and (b) 
tumor resistance evolution.
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Table S1. Software that was applied in studies concerning tumor dy-
namics (TD) and tumor evolution (TE) to perform parameter estimation 
and data simulation.
Supplementary Material S1. Literature searching method and soft-
ware summarization.
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