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Automated Detection, Segmentation, and Classification of Pleural
Effusion From Computed Tomography Scans Using
Machine Learning
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Objective: This study trained and evaluated algorithms to detect, segment, and clas-
sify simple and complex pleural effusions on computed tomography (CT) scans.
Materials and Methods: For detection and segmentation, we randomly selected
160 chest CT scans out of all consecutive patients (January 2016-January 2021,
n = 2659) with reported pleural effusion. Effusions were manually segmented and
a negative cohort of chest CTs from 160 patients without effusions was added. A
deep convolutional neural network (nnU-Net) was trained and cross-validated
(n = 224; 70%) for segmentation and tested on a separate subset (n = 96; 30%)
with the same distribution of reported pleural complexity features as in the train-
ing cohort (eg, hyperdense fluid, gas, pleural thickening and loculation). On a
separate consecutive cohort with a high prevalence of pleural complexity features
(n=335), arandom forest model was implemented for classification of segmented
effusions with Hounsfield unit thresholds, density distribution, and radiomics-
based features as input. As performance measures, sensitivity, specificity, and area
under the curves (AUCs) for detection/classifier evaluation (per-case level) and
Dice coefficient and volume analysis for the segmentation task were used.
Results: Sensitivity and specificity for detection of effusion were excellent at
0.99 and 0.98, respectively (n = 96; AUC, 0.996, test data). Segmentation was robust
(median Dice, 0.89; median absolute volume difference, 13 mL), irrespective of size,
complexity, or contrast phase. The sensitivity, specificity, and AUC for classification
in simple versus complex effusions were 0.67, 0.75, and 0.77, respectively.
Conclusion: Using a dataset with different degrees of complexity, a robust model
was developed for the detection, segmentation, and classification of effusion subtypes.
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omputer-aided quantification and diagnosis systems have become
widely available in thoracic radiology, and various pathologies can
be automatically detected, segmented and classified on chest radiographs
and computed tomography (CT)." For pleural disease, effusions can
be detected accurately from radiographs, also with deep learning—
based image analysis.* However, the occurrence’ and amount®’ of effusions
are independent prognostic indicators. This became evident in the COVID-19
pandemic when infected patients with pleural effusions had a higher inci-
dence of severe courses, prolonged hospital stays, and higher mortality rates.®
Compared with radiography, CT provides accurate pleural effusion
quantification; nevertheless, in radiology reports, effusions are commonly de-
scribed only qualitatively because manual delineation is time-consuming.
Automated quantification methods based on traditional image processing
or atlas segmentation have resulted in moderate performance, have not in-
cluded effusion-free control cohorts, or had limited sample sizes. 10
Computed tomography is especially relevant for a detailed as-
sessment of effusion subtypes (ie, hemothorax, empyema, malignant ef-
fusion, and pneumothorax) and for detection of the causative diagno-
sis.!! Additional pleural complexity features, such as hyperdense fluid,
pleural thickening, gas, and loculation, are used to differentiate between
serous and these more complex effusion subtypes'>™'* (from now on re-
ferred to as simple and complex effusions, respectively). This differen-
tiation has implications for patient management'>~'” and outcome, '® '
whereas machine learning models could also be used for CT-guided
planning and fast detection of associated periprocedural pneumothorax
and hemothorax.?%2!

Hypothesis and Purpose

We aimed to develop machine learning models that (1) accu-
rately detect and (2) robustly segment pleural effusions. Our third aim
was classification (3) into simple versus complex pleural effusions with
random-forest classifiers.

MATERIALS AND METHODS

The local ethics committee approved this retrospective study
(Project ID 2021-00946).

Study Population

The study population consisted of cases with and without pleural
effusion, defined as positive and negative cohort, respectively. For the
positive cohort, 2659 consecutive patients were retrospectively identi-
fied with chest CT scans performed at our tertiary hospital between
January 2016 and January 2021 containing the term “pleural effusion”
in the radiological report (Fig. 1). We then randomly selected 160 CTs
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FIGURE 1. Study flow diagram showing the steps conducted for selection of samples. Complexity features include “hyperdense fluid,” “pleural

" ou

thickening,

for segmentation of lungs and pleural cavity, preserving the distribution
of pleural complexity features as in the whole cohort (Text, Supplementary
Digital Content 1, http:/links.lww.com/RLI/A689). For the negative co-
hort, we selected an equal amount of CT datasets (n = 160) from our insti-
tutional database as previously described”? and conducted a secondary im-
age review for the presence of pleural effusion (reader 1, R.S., postgraduate
year [PGY] 4). Our considerations on sample size estimation are provided
in Supplementary Digital Content 2 (text), http://links.lww.com/RLI/A690.

After review by reader 1, detection performance was externally
validated on all patients in the public National Lung Screening Trial
(NLST) dataset®® (n= 1061, 2234 CTs with soft tissue kernel). External
validation of the segmentation performance was performed using data
from the publicly available PleThora project (n = 34),>* consisting of
manual reference segmentations of the thoracic cavity and effusions
in Non-Small-Cell Lung Cancer patients.

For classification of pleural disease, we selected all patients of
the positive cohort with biopsy or thoracocentesis within 7 days of the
chest CT examination (n = 335).

CT Acquisition Parameters

Scans were acquired using 3 different CT scanners: Somatom
Definition Flash (n =284, 2 x 128 slice system), Somatom Definition
AS+ (n = 262, 128-slice system), and Somatom Definition Edge
(n=109, 128-slice system; all scanners: Siemens Healthineers, Erlangen,
Germany). The peak kilovoltage was 120 kVp and an automated tube
current modulation was performed. The contrast agent Iopromide
(Ultravist 370, Bayer Pharmaceuticals, Berlin, Germany) was adminis-
tered in 301 (arterial phase, n = 70; biphasic, n = 93; venous, n=15; CT
pulmonary angiography, n = 123; n = 208 in the classification cohort)
of the 655 CT studies at a standard injection rate of ~4.0 mL/s and a
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gas,” and “loculation.” The external Plethora dataset is not included in the flowchart.

body weight-adapted volume of up to 120 mL. A soft tissue kernel
(30f) of 1.0 mm served as the only input for the algorithm.

Pleural Effusion Detection and Segmentation

Reader 1 manually segmented the pleural cavity, after processing
the original 3-dimensional (3D) chest CTs in a medical image software
as previously described.? The segmentations were then exported with
separate labels for lung, pleura, and background.

We then divided the segmented CTs (n = 320) into a training/
validation (70%, n = 224) and testing dataset (30%, n = 96). During this
otherwise random process, we preserved the distribution of complexity
feature counts (66.2%, 16.9%, and 16.9% with no, 1, and multiple pleu-
ral complexity features, respectively) and the ratio of negative to posi-
tive cases (1:1).

To measure interrater variability, 12 studies were randomly se-
lected from the test dataset and were segmented by reader 2 (T.W.,, in-
training, PGYS) and reader 3 (Julien Poletti, in-training, PGY1), who
were blinded to the radiology reports. To measure intrarater variability,
the same cases were segmented again by reader 1, blinded to and
4 weeks apart from the initial segmentation.

The deep learning model was trained with nnU-Net, which is
self-configuring in terms of preprocessing, architecture selection, train-
ing, and postprocessing (Table, Supplementary Digital Content 3,
http://links.lww.com/RLI/A691).> An ensemble from the 5-fold cross-
validation models was used for inference. All processing was per-
formed in Matlab R2018b and Python 3.7.

Pleural Effusion Classification

We defined effusions with additional pleural complexity features
as complex and effusions without complexity features as simple. In the
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335 cases for effusion classification, the additional pleural complexity
features “hyperdense fluid,” “pleural thickening,” “gas,” and “loculation”
were visually determined by reader 1 in consensus with reader 4 (J.B.,

29 PGY) and radiologically defined as:

e Hyperdense fluid: Density values greater than 15.6 HU in the pleural
cavi‘ry,25 not otherwise explained, for example, by artifacts. Additional
potential indicators such as rib fractures, postoperative changes, pleural
fluid sedimentation, or pleural contrast extravasation confirmed the
diagnosis, if present.

e Pleural thickening: Nodular or smooth pleural line as seen in the
soft tissue kernel.

e Gas: Density values less than —850 within the pleural cavity re-
sembling microbubbles (gas surrounded by pleural fluid) and/or
pneumothorax.

e Loculation: Pleural effusion with an obtuse angle to the lung paren-
chyma (90 degrees < ar < 180 degrees).

In addition, the classification dataset was dichotomized based on
the resulting diagnosis of serous effusion from biopsy or thoracocentesis
in the test dataset. However, microscopic evidence of erythrocytes in an
otherwise serous effusion was not rated as a complex effusion, as this
can be periprocedural.

The sample was randomly split into training/validation and testing
datasets (n =234 and n = 101, 70% and 30%, respectively).

Interpretable Complexity and Radiomic Features

Receiver operating characteristic (ROC) analysis was used to define
the lower threshold with the highest area under the curve (AUC) for
hyperdense fluid (thresholds: 8.5 HU?*? 15.6 HUZ? and 30.0 HU?;
AUC:s: 0.60, 0.62, and 0.63, respectively) and pleural margin thickness (up-
per threshold: 4 mm,?® 5 mm,*” and 8 mm>®'; AUCs: 0.59, 0.59, and 0.57,
respectively). A minimal volume of 2 mL was set as a prerequisite for all
features to exclude spurious hyperdensities. Based on the resulting thresh-
olds of the ROC analysis (30 HU and 4 mm), we defined the following fea-
tures, summarized in Figure 2 and Supplementary Digital Content 4
(Table), http:/links.Iww.com/RLI/A692: Fyper (absolute hyperdense
volume), Fryper rae (hyperdensity rate in %), Fpieura_rate (hyperdensity
rate of the pleura), Feayity rate (cavity), their ratio Finout ratio = Feavity_rate /
J: pleura_rate and indexed ratio .F inout_ratio_index — J: inout_ratio * .F hyper_rate- For
gas quantification (upper threshold: —850 HU), we defined 2 features:
gas within the pleural segmentation (F,.s) and gas in pneumothorax
(Fpneumothorax)> latter as gas adjacent but outside lung and pleural seg-
mentation and without connection to the bronchial system. Furthermore,
we used all radiomic features from the Python package PyRadiomics
(version 3.0.1).32

Classification Models

Random forest models (for details: Table, Supplementary Digital
Content 5, http:/links.Iww.com/RLI/A693) were used for classification
into simple and complex effusion as well as for the prediction of any
underlying pleural complexity features (“hyperdense fluid,” “pleural
thickening,” “gas,” and “loculation”), resulting in a total of 5
models. Initially, the count of positive and negative cases for each
classification task was inevitably unbalanced; therefore, the datasets
were randomly downsampled to a 1:1 ratio. For each class, prelimi-
nary training was performed to select the most informative variables
(50 percentile of feature importance of both interpretable complexity
and radiomic features). Then, with the most important half of the
variables, the models were further fine-tuned with a leave-one-out
cross-validation. Finally, a model was trained for each of the 5 clas-
sification tasks and was evaluated on the test data with a test-
positivity threshold greater than 0.5.
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Statistical Analysis

To evaluate pleural effusion detection and classification perfor-
mance, we used sensitivity, specificity, negative predictive value (NPV),
positive predictive value, and ROC analysis. We used nonparametric tests
to evaluate intergroup differences (Mann-Whitney U test for 2 variables
and Kruskal-Wallis test for more than 2 variables). To evaluate the perfor-
mance of the segmentation algorithm, we used Dice coefficient and
intraclass correlation coefficient (ICC) to compare with human intrarater
and interrater variability. Volumetric results were compared with Bland-
Altman analysis and linear correlation with the Pearson coefficient.

For classification, diagnostic accuracy measures are reported sep-
arately both for the radiological absence or presence of pleural complex-
ity features (simple and complex effusion, respectively) and based on re-
ports from biopsy or thoracocentesis (serous effusion as simple; presence
of pleural empyema or pleural carcinomatosis as complex effusion).

A P value of <0.05 was considered statistically significant. All
statistical analyses were performed in R 4.0.5 (R Core Team, Vienna,
Austria). All results in the main text refer to the respective test datasets
for segmentation and classification, whereas the respective results of the
cross-validation for detection (Table, Supplementary Digital Content 6,
http:/links.lww.com/RLI/A694), segmentation (Table, Supplementary
Digital Content 7, http://links.Iww.com/RLI/A695), and classification
(Table, Supplementary Digital Content 8, http://links.lww.com/RLI/
A696) are summarized in the supplement.

RESULTS
Study Population

The mean age of patients with pleural effusion (n = 2659) was
68.39 years (range, 18-102 years), with 1076 women and 1583 men.
Related to all pleural effusions, 66% (n = 1749) had no pleural com-
plexity feature, 17% (n = 446) had 1 pleural complexity feature, and
17% (n = 464) had multiple complexity features, and these ratios were
preserved in the segmentation subsets. The mean age in the segmenta-
tion dataset (n =320) was 63.42 years (range, 18-97 years; 136 women)
and in the classification dataset (n = 335) was 68.64 years (range, 18-96;
125 women). In both samples, training/validation and test datasets did
not significantly differ regarding patients’ age ( P = 0.360) and effusion
volume (P = 0.192).

Based on the manual reference standard of the segmentation
(n=160), 74 of the 160 CT examinations showed bilateral pleural ef-
fusions. The total effusion volume ranged between 2-2318 mL (mean
[SD], 285 [402] mL; median, 131 mL) in the cross-validation and
5-2094 mL (mean [SD], 469 [499] mL; median, 332 mL) in the test
dataset. In the test segmentation dataset, 3 had hyperdense fluid, 5 had
pleural thickening, 5 had gas, and 5 were loculated. The sample size of
the test dataset was confirmed after testing the ensemble of models with
an ICC of 0.993 (95% confidence interval [CI], 0.98-1.00; power,
0.90). Therefore, the following accuracy and performance measures
are based on the test dataset.

In the classification cohort, 147 patients had simple pleural effu-
sions (no pleural complexity feature) and 188 patients had complex ef-
fusions (1 complexity feature, n = 84; multiple complexity features,
n = 104), with a total of n = 17 with hyperdense fluid, n = 95 with pleu-
ral thickening, n = 100 with gas, and n = 128 with loculation. Of the 208
CT studies with contrast agent administration, 63 patients had visible
pleural enhancement.

Detection of Pleural Effusion

With the radiological reports as the reference standard, the sensi-
tivity for detection of pleural effusion was 0.99 (95% CI, 0.91-1.00)
and the specificity was 0.98 (95% CI, 0.95-1.00). The AUC for the seg-
mentation cohort (both validation and test data) was 0.996 (95% ClI,
0.97-1.00). Figure 3 shows an example of segmentation and Table 1

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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Empyema

Hemothorax

Pneumothorax

F pneumothorax

F gas

F cavity rate

F hyper_rate

F pleura_rate

FIGURE 2. Automated segmentation (dark blue) and applied thresholds (>30 HU and >2 mL in red, <~850 HU in light blue) in exemplary subjects with (A)
empyema, (B) hemothorax, and (C) pneumothorax. D, Schematic overview of the derived pleural complexity features. A, The pleural thickening results
in a slight hyperdensity of the total pleural segmentation (hyper_rate: 13%), which is concentrated in the pleura (pleura_rate: 43%) and not in the pleural
cavity (cavity_rate: 5%), resulting in a low in:out ratio (0.11). B, The blood in the pleural cavity leads to a high total hyperdensity (hyper_rate: 34%),
predominantly in the cavity (cavity_rate: 37%), resulting in a higher inout_rate (1.33). C, The patient with pneumothorax had a gas volume of 50 mL and

pleural effusion of 686 mL.

summarizes the diagnostic accuracy measures. Failure analysis of in-
correctly classified cases can be found in Supplementary Digital Con-
tent 9 (Figure), http://links.lww.com/RLI/A697.

On the external NLST dataset (2234 eligible CTs), the model
performed with a sensitivity of 1.00 (95% CI, 0.94-1.00) and a specific-
ity 0of 0.99 (95% CI, 0.989-0.997).

Segmentation of Pleural Effusion

Inference on the test dataset showed a mean (SD) Dice coefficient
0f 0.84 (0.16) (95% CI, 0.80-0.88; median, 0.89). The mean (SD) abso-
lute volume difference was 33 (53) mL (95% CI, 2045 mL; median,
13 mL), with a significant linear correlation between manual segmenta-
tion and predicted volume (Pearson » = 0.996, P < 0.001).

On the external PleThora (n = 34; mean volume, 383 mL; 95% CI,
278-487 mL) dataset, the model performed with a median Dice coeffi-
cient of 0.71 with an intraclass correlation of 0.97 (95% CI, 0.95-0.99;
P <0.001) for pleural effusion volume and a mean (SD) absolute volume

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

difference of 87 (67) mL (95% CI, 63—110 mL; median, 90 mL). Lung
segmentation performance (Dice: mean, 0.97; 95% CI, 0.96-0.99; me-
dian, 0.99) did not significantly differ between cases with and without
effusion (z score: —0.70, P = 0.480).

Intrarater and Interrater Agreement

There was an excellent ICC between the human readers (0.97;
95% CI, 0.90-0.99), with a higher ICC between the manual reference
standard and the automated segmentation (1.00; 95% CI, 0.99—-1.00),
which is comparable to the intrarater agreement (1.00; 95% CI, 0.91—
1.00). Dice coefficients of intrarater segmentation (0.85; 95% CI, 0.81—
0.89) and the automated segmentation (0.84; 95% CI, 0.79—-0.89) were
comparable (»=0.96, P <0.001, n = 12). Supplementary Digital Content
10 (Figure), http://links.lww.com/RLI/A698, summarizes the intrarater
and interrater agreement between the automated segmentation compared
with the reference standard.

www.investigativeradiology.com | 555
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FIGURE 3. (A) Axial, (B) sagittal, (C) coronal plane, and (D) isosurface of model prediction for pleural effusion and lung of a 54-year-old female patient
with an empyema on the right side and a pleural effusion on the left side. Dark green is well-aerated lung parenchyma, whereas light green is atelectasis.

Probable Confounding Factors for the Performance
of Segmentation

Although the dice coefficient increased with the volume of the ef-
fusion (linear regression, analysis of variance: = 35.60; test: F'=15.62;
P <0.001), no other factor could be identified that influenced the model’s
performance. In the test dataset, neither the presence of additional pleural
complexity features (Kruskal-Wallis: 0.36, P = 0.837) nor the previous
application of a contrast agent (z: —1,9, P = 0.060) showed any influence
on the segmentation. Supplementary Digital Content 11 (Figure), http://
links.lww.com/RLI/A699, visually summarizes the results for the proba-
ble confounding factors.

Classification of Pleural Effusion

The initial training of the classification models identified all in-
terpretable complexity features as informative features. Figure 4 shows
2 examples of model input. From the radiomics features, mostly pleural
“shape features” (elongation, flatness, least axis length, maximum 2D
diameter, maximum 2D diameter, mesh volume, minor axis length,
sphericity, surface area, and surface volume ratio and voxel volume)
were integrated during the preliminary training. The most informative
features depended on the classification task and were Fpicura_rate and
J: hyper_rate for “pleural thiCkening”; .F inout_rates J: inout_ratio_index for
“hyperdense fluid”; Neighborhood Grey Tone Difference Matrix
(NGTDM) strength and NGTDM busyness for “gas”; and Fuyper rate
and Finout_ratio_index TOr “loculation” (see Table, Supplementary Digital
Content 12, http:/links.lww.com/RLI/A700).

Compared with the radiological reference standard, diagnos-
tic accuracy for “simple effusion” had a sensitivity of 0.67 (95% CI,

556 | www.investigativeradiology.com

0.51-0.79), a specificity of 0.75 (95% CI, 63.3-84.5), an NPV of 0.78
(95% CI, 0.65-0.87), and an AUC of 0.77. Regarding the classification
tasks for the 4 pleural complexity features (hyperdense fluid, pleural
thickening, gas, and loculation) used for the distinction into simple and
complex effusion, results are summarized in Table 2, with relatively high
NPVs ranging from 0.78 (loculation) to 0.94 (hyperdense fluid and pleu-
ral thickening) and with an AUC ranging from 0.52 (hyperdense fluid) to
0.91 (pleural thickening) in the corresponding ROC curves (see Fig. 5;
for ROC curves of cross-validation, see Supplementary Digital Con-
tent 13, http://links.lww.com/RLI/A701).

TABLE 1. Diagnostic Accuracy Measures for Detection of Pleural
Effusion

Per Patient Per Pleural Effusion

True-positive 48 72
False-negative 0 1
True-negative 47 118
False-positive 1 1
Sensitivity (95% CI) 1.00 (0.91-1.00) 0.99 (0.91-1.00)
Specificity (95% CI) 0.98 (0.88-1.00) 0.99 (0.95-1.00)
Positive predictive value 0.98 (0.88-1.00) 0.99 (0.92-0.99)

(95% CI)
Negative predictive value 1.00 (0.91-1.00) 0.99 (0.95-0.99)

(95% CI)

CI indicates confidence interval.

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.


http://links.lww.com/RLI/A699
http://links.lww.com/RLI/A699
http://links.lww.com/RLI/A700
http://links.lww.com/RLI/A701
www.investigativeradiology.com

Investigative Radiology e Volume 57, Number 8, August 2022

Analysis of Pleural Effusion From CT Scans

A

FIGURE 4. Classification results in 2 selected cases. Model predictions are shown at the top and original images at the bottom row. A, Posttraumatic chest
CT of a patient with several rib fractures (black arrow), pneumothorax (blue arrowheads/light blue mask), and a complex effusion on the right

(blue mask) with hyperdense fluid (red arrowheads and red mask) and with atelectasis of the lower lobe (green mask). B, Chest CT of a patient with
empyema on the right side (blue) and no effusion on the left side. The hyperdense outer pleural space (HU >30 threshold, red mask) emphasizes the

pleural thickening (red arrowheads).

Compared with reports from biopsy or thoracocentesis, the model
detected simple effusions with a sensitivity of 0.97 (95% CI, 0.86-1.00)
and a specificity of 0.64 (95% CI, 0.51-0.76).

DISCUSSION

We developed and comprehensively analyzed an algorithm for
the automated detection and segmentation of pleural effusions and in-
troduced strategies for the classification between simple and complex
pleural effusions. A highly sensitive detection (0.99; 95% CI, 0.91-1.00)
and a robust segmentation (Dice: 0.84; 95% CI, 0.80-0.88) were achieved.
The classification between simple and complex pleural effusion resulted
in a modest sensitivity of 0.67 and a moderate specificity of 0.75, whereas
the random-forest algorithms incorporated both radiomics and radio-
logically interpretable complexity features, such as density values and
their distribution in the pleural cavity.

First, the performance of a widely adopted deep learning-based
segmentation method® was tested in a clinical dataset, systematically
containing both simple and complex pleural effusions, as well as patients
without effusions. An accurate detection rate was also shown in the exter-
nal NLST dataset.?* Similar to other deep learning—based nonpleural seg-
mentation tasks,** 3 the detection and segmentation accuracy was high,

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

irrespective of effusion complexity, laterality, effusion volume, and previ-
ous application of contrast agents. Previously, computer vision methods
have been used for automated pleural effusion segmentation on limited
CT sample sizes.”'° The proposed segmentation algorithm provides ro-
bust volumetric results in a large and heterogeneous clinical sample and
therefore might have implications for clinical use and offers the poten-
tial for prognostication.'” The segmentation algorithm was validated on
the PleThora dataset,>* consisting of tumor-associated effusions, and
provided a good volumetry with an ICC of 0.97. Dice coefficient and
absolute volume difference were inferior compared with the test dataset,
partially explained by inconsistencies of human-delineated segmenta-
tions in the PleThora dataset, whereas our algorithm tends to primary
segment similar densities. Previously, effusions have been detected
and (semiquantitatively) quantified in chest radiography,*® although
sonography is superior in detecting effusions, which in turn is limited
in effusion volumetry compared to CT.>">® In contrast, if applied
broadly and systematically, our proposed algorithm has the potential
to be utilized for reliable follow-up measurements.

Second, for the classification of pleural effusions, we defined
“complex” effusions as opposed to serous or “simple” effusions. The
former category subsumes various pleural diagnoses (ie, hemothorax,
empyema, malignant effusion, and pneumothorax), which radiologically
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TABLE 2. Diagnostic Accuracy Measures for Classification of Pleural Effusion

Pleural Complexity Features

Hyperdense Fluid Pleural Thickening Gas Loculation Simple Effusion
True-positive 1 21 25 26 26
False-negative 4 4 8 12 13
True-negative 58 62 52 42 46
False-positive 37 13 15 20 15
Sensitivity (95% CI) 0.20 (0.04-0.62) 0.84 (0.65-0.94) 0.76 (0.59-0.87)  0.68 (0.53-0.81)  0.67 (0.51-0.79)
Specificity (95% CI) 0.61 (0.51-0.70) 0.83 (0.73-0.90) 0.78 (0.66-0.86) 0.68 (0.55-0.78) 0.75 (0.63-0.85)
Positive predictive value (95% CI) 0.03 (0.00-0.15) 0.62 (0.44-0.77) 0.63 (0.46-0.77) 0.57 (0.41-0.71) 0.63 (0.47-0.77)
Negative predictive value (95% CT) 0.94 (0.84-0.98) 0.94 (0.84-0.98) 0.87 (0.75-0.94)  0.78 (0.64-0.88)  0.78 (0.65-0.87)

CI indicates confidence interval.

have partially overlapping, complexity features,***® often used in deci- AUC with prespecified features based on “traditional” radiological

sion making'>~'” and prognostication.'®*° The classification task iden-

tified the prespecified complexity features as informative, whereas the
addition of the radiomic features further leveraged diagnostic accuracy.
The classification between simple and complex effusions showed a
moderate performance with an AUC of 0.77, whereas classification
for the separate pleural features ranged between an AUC of 0.52 for
hyperdense fluid and an AUC of 0.91 for pleural thickening. This can
be partially explained by the moderate diagnostic accuracy of the CT
with its predominantlzy high specificity and lower sensitivity for differ-
ent pleural diseases.'>*! The relatively high NPVs can aid in the iden-
tification of complex pleural effusions, yet the low positive predictive
values indicate the necessity of a radiological evaluation. Still, an objec-
tifying visualization of the automated results is pivotal to familiarize ra-
diologists with automated (yet non-black-box) tools, as we have previ-
ously shown in other volumetric tasks.*?

The introduction of shape and textural features has been pro-
posed to overcome the varying interrater a%reements with regard to
the classification of complex pleural lesions.*’ Interestingly, in the pres-
ent study, most of the radiomic features were discarded in the pretrain-
ing selection step, whereas the predefined, interpretable complexity
features were more relevant for the classification tasks. Similarly, clas-
sification of tumor grade prediction has previously achieved higher

characteristics compared with a radiomics-based model, whereas
their combination showed the highest diagnostic accuracy.** The
preference of our classification models for traditional features of
pleural complexity is contributing to the ongoing discussion about
the applicability of radiomics in CT.*** In future research, auto-
mated pleural segmentation and classification might also contribute
to better prognostication, that is, identification of treatment re-
sponders from diaphragm shape analysis.*®

There are several limitations to our work. First, eligible patients
were retrospectively selected on scanners of 1 vendor at a single institu-
tion. The models’ performance on examinations acquired with different
scanners might differ. However, a similarly small sample size of CT
scans from a new site might serve for training a custom segmentation
nnU-Net model, after adopting the settings as shown in Supplementary
Digital Content 3, http:/links.lww.com/RLI/A691. Second, reference
standards for segmentation and classification were based mainly on im-
aging. Nevertheless, the reported features had been validated by at least
3 radiologists (one of which was board certified). Third, the absolute
number of patients with hemothorax in the classification cohort was rel-
atively low. This was probably the cause for the low diagnostic accuracy
of the classification algorithm for hyperdense fluid, which could be im-
proved in the future by increasing the sample size.
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FIGURE 5. ROC related to the entire test dataset classification cohort (n = 101). The thick blue line represents the prediction for “simple effusion.” For
cases with additional pleural complexity features, the respective ROCs of the 4 models are shown. The number of positive features in the test dataset is
39 for “no complexity feature,” 25 for “pleural thickening,” 33 for “gas,” 38 for “loculation,” and 5 for “hyperdense fluid.”
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Analysis of Pleural Effusion From CT Scans

Implications for Practice

Automatic detection and robust segmentation of pleural effusions

in chest CTs allow for routine use without interaction, 3-dimensional
volumetry, and rapid quantification. The proposed classification can be
used to identify pleural effusions with and without pleural complexity
features, and thus, radiologists can be aided in the diagnoses of patients
with empyema, hemothorax, or pneumothorax. The trained models are
openly available on a public repository.
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