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a b s t r a c t

Mobile health (mHealth) technologies, such as symptom tracking apps, are crucial for coping with
the global pandemic crisis by providing near real-time, in situ information for the medical and
governmental response. However, in such a dynamic and diverse environment, methods are still
needed to support public health decision-making. This paper uses the lens of strong structura-
tion theory to investigate networks of COVID-19 symptoms in the Belfast metropolitan area. A
self-supervised machine learning method measuring information entropy was applied to the North-
ern Ireland COVIDCare app. The findings reveal: (1) relevant stratifications of disease symptoms,
(2) particularities in health-wealth networks, and (3) the predictive potential of artificial intelligence
to extract entangled knowledge from data in COVID-related apps. The proposed method proved to be
effective for near real-time in-situ analysis of COVID-19 progression and to focus and complement
public health decisions. Our contribution is relevant to an understanding of SARS-COV-2 symptom
entanglements in localised environments. It can assist decision-makers in designing both reactive
and proactive health measures that should be personalised to the heterogeneous needs of different
populations. Moreover, near real-time assessment of pandemic symptoms using digital technologies
will be critical to create early warning systems of emerging SARS-CoV-2 strains and predict the need
for healthcare resources.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The COVID-19 pandemic was recognised by the World Health
rganisation on 30th January 2020 and became a prominent
ine of research across disciplinary boundaries. Globally, as of
9 October 2021, there were 240,940,937 cases of COVID-19,
ith the number of deaths reported to the World Health Or-
anisation scaling to near 5 million (4,903,911 deaths), across
irtually all countries. In Northern Ireland, as of 18th October
021, there were 2629 reported deaths and 260,974 individu-
ls with a positive laboratory confirmed test, with a total of
,654,280 tests undertaken for COVID-19. Predicting the pan-
emic’s spread, forecasting its severity in regions or groups, and
he effects on healthcare systems have been the focus of many

∗ Corresponding author.
E-mail addresses: J.Sousa@sanoscience.org (J. Sousa), barata@dei.uc.pt

J. Barata), hugo.vanwoerden@uhi.ac.uk (H.C.v. Woerden), F.Kee@qub.ac.uk
F. Kee).
ttps://doi.org/10.1016/j.asoc.2021.108324
568-4946/© 2021 Elsevier B.V. All rights reserved.
research teams around the globe [1,2]. However, this is a chal-
lenging task that, in practice, is primarily supported by test and
trace systems and models of non-pharmacological interventions.

Patients with the new coronavirus (SARS-CoV-2) require a
range of remote and/or face-to-face medical care, depending
on the severity of the symptoms and the need for palliative
or healthcare interventions. Non-pharmacological interventions
(e.g., quarantine, economic aid, and regulations) have been and
will be necessary to adjust the pandemic curve to support the
healthcare response. It has become clear that information is one
of the most valuable assets in dealing with the heterogeneous
nature of COVID-19, particularly data emerging from the mobile
health (mHealth) ecosystem, facilitating real-time epidemiology
research [3,4].

Recently, mobile technologies and apps have become valu-
able data sources for advancing our knowledge of COVID-19 [5,
6]. These have included, for example, mobile applications to
trace COVID-19 infections or monitor the symptoms of sus-
pected/infected patients [4,7]. One such example is the Northern
Ireland COVIDCare app, which the Department of Health launched
in Northern Ireland (DoHNI), used in this paper.
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mailto:J.Sousa@sanoscience.org
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As mobile data for understanding COVID-19 symptoms have
accumulated at an increasing pace, so too have the opportunities
to use artificial intelligence (AI) [8]. The uncontrolled spread of
COVID-19 has quickly expanded outside of medical settings. In
fact, the ‘‘impact of pandemics is beyond imagination and not lim-
ited to the loss of human lives but can threaten the economic stability
and existence of affected countries’’ [9]. AI should be included in the
toolbox to deal with the ongoing pandemic crisis ‘‘establishing the
natural history of infection, including incubation period and mor-
tality rate; identifying and characterising the causative organism;
and, in some instances, epidemiological modelling to suggest effective
prevention and control measures’’ [8]. However, AI modelling of
symptoms progression has been poorly utilised thus far and mo-
bile app data to help fight COVID-19 requires greater exploration.
These constraints can be attributed to the nature of how the
data is collected. Self-reported symptoms of COVID-19 on mobile
platforms can be integrated with location analytics to advance
more effective, and in-situ, public health measures.

We formulated the following research objective: Create AI
semantic networks of COVID-19 symptoms from mobile data and
analyse health-wealth implications at the meso level (specific
population groups) of a metropolitan area. Strong Structuration
Theory [10,11] provided the theoretical basis for analysis. Seman-
tic networks were created using self-supervised machine learning
with node-significance measured as betweenness, interdepen-
dence as weight connectivity, and network structural change
entropy based on betweenness [12,13].

The remainder of this paper is presented as follows: The
following section presents background theory, namely, mobile
health adoption in COVID-19 pandemic management and the
need to address local contexts of disease progression for effective
public measures. Subsequently, the method is explained, followed
by the results obtained by modelling COVID-19 data for Belfast
and three evaluation episodes. A discussion follows, including
the implications for theory and practice. Finally, the conclusions,
limitations, and opportunities for future research are presented.
This structure follows the publication schema suggested by [14]
for the design science research (DSR) paradigm [15].

2. Background

2.1. The role of mHealth in COVID-19

Mobile technologies adopted in COVID-19 pandemics have
followed two trends. One focuses on contact tracing and the other
on remote monitoring/assistance of patients. Such apps emerged
in all corners of the world [5,6], collecting large amounts of
data that the general population can now use (e.g., information
or real-time warnings about contact with infected individuals)
and researchers worldwide [3,4]. Nevertheless, a digital health
‘‘implementation process is likely to be challenging and resource-
intensive’’ [16], and public health authorities are not yet utilising
the full potential of near real-time data to support decision-
making, for example, modelling mobile data when lab tests are
unavailable or scarce.

Disease symptoms are essential to understand the severity
of COVID-19 [17], but COVID-19 is not a socially neutral dis-
ease [18]. For example, ‘‘[o]lder, age, male sex, comorbidities, [and
pecific health related symptoms] predicted critical care admission
nd mortality. Non-white ethnicity predicted critical care admis-
ion but not death’’ [19]. Moreover, ‘‘people with complex needs,
ulnerable populations, and marginalised groups are at increased
isk from covid-19 and the health effects of containment strate-
ies’’ [20]. As multiple outbreaks and waves reveal, this ‘‘syndetic
andemic ’’ [18] is highly dynamic and challenging to contain. New
ethods that integrate diverse data [21] are necessary to allow
2

near real-time monitoring of COVID-19 at the individual and at
the community or social group level.

The recent advances in epidemiology using mobile data and
artificial intelligence are significant. For example, Menni et al. [4]
suggest ‘‘that loss of sense of smell and taste could be included
as part of routine screening for COVID-19 and should be added
to the symptom list currently developed by the World Health Or-
ganisation’’. Going beyond the relevance of a specific symptom,
Menni et al. [4] further state that a ‘‘combination of symptoms,
including anosmia, fatigue, persistent cough and loss of appetite,
(. . . ) together might identify individuals with COVID-19’’, which is
consistent with [3] who found that ‘‘individuals with complex
or multiple (3 or more) symptomatic presentation perhaps should
be prioritised for testing ’’. However, these authors also conclude
that additional research is necessary to combine symptoms and
predict COVID-19 incidence and progression.

mHealth solutions are supporting significant epidemiologic
studies. For example, in the UK [22], one of the studies using
mobile app data found six main clusters of COVID-19 symptoms
predictive of different probabilities of intensive care need. Ac-
cording to the authors, the need for respiratory support ranged
from 1,5% in the less severe cluster of symptoms to 19,8% in
cluster 6, the most dangerous condition. The first two clusters
are similar to flu and have little risk for health care support,
while cluster 3 adds a new combination of symptoms: loss of
smell, headache, loss of appetite, diarrhoea, chest pain, and sore
throat. This cluster has a 5x higher probability of a hospital
visit and a consequent impact on public service response [22].
This work inspired new studies exploring the role of near real-
time symptoms monitoring and the efficient management of the
healthcare response.

However, existing results are not conclusive, and few studies
have combined self-reported symptoms and the characteristics
of the population at the (meso) city level, which could allow a
more fine-grained perspective on the disease’s social determi-
nants (e.g., localities with similar health-wealth indicators).

2.2. Theoretical lens for meso-analysis of COVID-19

COVID-19 is being extensively studied with AI at the micro-
level (e.g., individual diagnosis [23,24]), and many studies provide
a macro vision of symptoms, country-level performance, and dy-
namics [3,25,26]. However, examining COVID-19 mobile data at
a meso level, that combines the social characteristics of a specific
region and its complex interrelations or entanglements (e.g., hot
spots, healthcare capacity constraints, quarantine efficacy) needs
near real-time data and knowledge visualisations able to assist
professionals (e.g., public health staff). Mobile apps are emerging
as a quasi-testing tool.

Structuration theory [27] suggests that structures and agents
are inseparable, and both are necessary to understand a social
phenomenon. According to this social theory, although the micro
(e.g., an individual) and macro (e.g., country or continent) levels
of analysis are essential, the meso level of analysis is equally
important [11]. According to strong structuration theory (SST),
the four elements that must be considered are: (1) the external
structures (context where the action takes place), (2) the inter-
nal structures represented by conjunctural networks of agents
(humans and technology), (3) the actions, and (4) outcomes of
the action [11]. This theory has helped us understand ‘‘conjunc-
tures’’ and their application in healthcare, particularly regarding
technology adoption in practice [11]. Therefore, we considered
it a suitable lens to understand the influence of local networks,
linking position and practice concerning COVID-19.

Modelling complex systems in uncertain environments re-
quires a capacity for data-driven learning within the system [28],
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Fig. 1. The DSR grid for COVID-19 symptoms app analysis.
Source: Adapted from [33].
and the modelling and visualisation of significance and interde-
pendence. Network concepts and tools are a vital part of ad-
dressing such problems [29]. A complex network is a structure of
connected (linked) elements (nodes) that allows the development
of knowledge representations of the behaviour of techno-social
systems [30]. Therefore, creating complex networks to represent
meso-level relationships of COVID-19 offers a promising frame-
work for advancing our knowledge of symptom prevalence and
the creation of new tools to support public health interventions.

3. Method

Our work follows the design science research approach, in-
cluding the activities of building the artifacts (models), evaluating
the results according to different metrics, and producing relevant
and justified theoretical knowledge [31,32]. Fig. 1 outlines the
work according to the DSR grid proposed by [33].

The solution presented in Fig. 1 is relevant to support the de-
cisions about: (1) resource allocation in local healthcare facilities
(e.g., human resources planning, COVID-19 bed occupancy pro-
jection), (2) early warning of an exceptional pandemic spreading,
and (3) open data available for COVID-19 research. The primary
user of the proposed system at this stage is the public health
department. Nevertheless, an interface for healthcare facilities
could be engaging for future work.

The data used in our research was obtained via the North-
ern Ireland COVIDCare app, an IT solution developed by the
Northern Ireland Department of Health, on behalf of the Public
Health Agency for Northern Ireland, in collaboration with a pri-
vate company to inform the public and track the symptoms of

symptomatic individuals [34]. The data modelling process uses

3

semantic networks to visualise the interdependence of complex
sociotechnical structures [29]. This research has adopted a self-
supervised statistical machine learning methodology to develop
data abstractions modelled as a network of significance and in-
terdependence, generating semantic knowledge. The approach
identifies relevant nodes of a complex network and their rela-
tionships, using information entropy based on betweenness [12,
13].

The steps to create the network models include:

(1) Contextualisation:
Selecting the environment to be modelled.

(2) Abstraction
Creation of data abstractions or data reduction. Each vari-
able considered in the network is reduced to a composition
of the feature name and its qualitative value or to the most
usual value (mode) and classified as up (U) when it is above
and down (D) when it is below (1).

(3) Learning
Production of statistical learning models from the data
reduction process presented in step 2. The resulting struc-
ture is visualised as a network of significance interdepen-
dence using betweenness, communities, and connectivity
weights.

(4) Inference
Measurement of the entropy of the network and filter-
ing the most relevant variables using their betweenness
value [13,35].

The methodology was developed using R and Python in the
Zeppelin framework and integrated with Gephi [36] to provide
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he structural measurements and network visual representation.
he context is described by producing an edge list created by
oncatenating the string name with its value as described by the
ollowing algorithm:

The result is a network of nodes with colours represent-
ng communities and lines (thicker lines represent a more rele-
ant interaction between nodes) that can be interpreted by non-
xperts in mathematics or statistics (as happens in more complex
epresentations) and support a near real-time visualisation and
ttention structure [37] for COVID-19 analysis.
This methodology also facilitates machine learning enabled

easurement of change. While the concept of entropy has been
sed and studied in different network contexts, the current use
s significantly different as we considered a data-driven emergent
etwork describing symptoms as a complex adaptive system [38].
e consider network entropy from the formula given in [18,19]

ntegrating normalised betweenness values (Eqs. (1) and (2)).

(A) = −

n∑
i=1

P(ai)log2P(ai) (1)

(B) =

(
−

n∑
i=1

bilog2[bi]

)
/N (2)

Information entropy in complex adaptive systems [35,38] can
easure the system complexity and is an important measure-
ent to describe the structural change of a complex network. It
as been used in different contexts [13,39]. The novelty of this
pproach resides in the data-driven self-supervised learning of
he emergent network and its encoded knowledge, based on sig-
ificance and interdependence expressed by betweenness values
nd connectivity, which are used as measurements of change and
uantifiers for AI inference.
Our research evolved in three phases. First, we adapted our

ethod to develop semantic networks exclusively to the Belfast
rea, combining health-related inputs (e.g., symptoms, comor-
idities) and social characteristics of the app user as inputs
e.g., demographic data). The visualisation of COVID-19 patterns
n specific localities is vital to public health authorities to: (1)
nticipate the possible impact on specific hospitals; (2) under-
tand the severity of symptoms in particular areas (e.g., resi-
ential/industrial, deprived areas); and (3) its potential for near
eal-time monitoring of COVID-19 dynamics in specific popula-
ion sub-groups. We have thus analysed the conjunctures found
n the COVID-19 models supported by the mobile data. Finally, we
4

have evaluated the models’ accuracy, comparing models based
on entropy and betweenness centrality and previous findings
reported in the literature [17].

4. Results

The initial dataset relates to the period between 22nd March
and 15th April 2020, i.e., aligning with the early adoption of the
app (more daily inputs), with a total of 1702 updates. Figs. 2 and 3
present the models obtained with COVIDCare data for each region
of Belfast. The models are ordered according to the deprivation
measurements, and the first model (West region) includes a short
legend to describe the most relevant nodes.

The health-wealth analysis is presented in the following sub-
sections.

4.1. Self-reported symptoms

West Belfast was the only region that did not report breathing
difficulties (node DBREATHING_NO has the higher significance in
he symptoms network). As we found in clusters 4–6 presented
n [22] and in the evaluation phase using the data from [17],
reathing difficulties are one of the most dangerous symptoms.
oreover, this model also reveals that most users did not report

ever or cough. The most significant population of confirmed
atients (EILLNESS_YES) seems asymptomatic (no breathing diffi-
ulties and did not stop most of their activities). Therefore, during
his phase of the pandemic, West Belfast would not be expected
o put pressure on local healthcare facilities. In this paper, we are
ot accounting for public health measures implemented in that
egion (for example, if a quarantine intervention was widespread,
he model could indicate success of the intervention). Neverthe-
ess, as asymptomatic patients have the capacity to spread the
nfection, such regions should still be closely monitored.

The North Belfast network is more complex in the number
f nodes and symptoms identified, although it does not reach
he complexity of the South and East areas. The North Belfast
istrict demonstrates more patients with more significant breath-
ng difficulties (Community integrating DBREATHING_YES and
EILLNESS_YES) and other less known symptoms, such as loss of
smell and taste (more recently included in the list of relevant
symptoms in the UK), and muscle and joint pain. This region
could therefore be expected to put more pressure on healthcare
facilities (when compared to the West).

East Belfast shows more complex combinations of symptoms,
including breathing and fever, and users who present with symp-
toms for more extended periods (over 14 days). This region
reveals an ongoing outbreak pattern, as the symptoms that began
during the previous six days are also relevant to the model.
However, cough is the prevailing symptom in this community,
with more sick cases (EILLNESS_YES) in green.

South Belfast presents a more complex scenario when com-
pared to West and North regions, but less concerning than East
Belfast. The most severe symptoms are weakly connected (red
and purple communities). The analysis of symptoms revealed
an interdependence between two particular symptoms: loss of
taste/smell, and muscle/joint pain — a pattern that was partic-
ularly evident in three of the regions.

4.2. Socioeconomics

We could not find a uniform relationship between symptoms
and social factors in each region, which suggests that different
aspects, such as age or comorbidities may be more related to the
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Fig. 2. West Belfast and North Belfast area modelling results on the NI APP data.
everity of the disease. This type of visualisation may be helpful
oth to public health authorities and general practitioners as it
rovides greater detail regarding localities that may pose a risk
o service capacity.
5

The results were compared with the Northern Ireland Statis-
tics and Research Agency report [40], which presents the charac-
teristics of the population in each of Northern Ireland
regions. West Belfast has the lowest percentage of people over
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Fig. 3. East Belfast and South Belfast area modelling results on the NI APP data.
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able 1
eprivation in Belfast area.

West North East South

Population (number)a 94445 103834 94905 114065
Population 0–15 (rank) 1 2 3 4
Population 16–39 (rank) 2 3 4 1
Population 40–64 (rank) 3 2 1 4
Population over 64 (rank) 4 2 1 4
Multiple deprivation measure 46% 31% 8,7% 5,2%
Income domain 10% 29,6% 2,2% 1,7%
Employment (18–64) 58% 31% 4,3% 1,7%
Health 56% 29,3% 13% 8,6%
Education 40% 34,5% 19,6% 15,5%
Living environment 30% 19% 8,7% 29,3%
Crime & Disorder 22% 24,1% 15,2% 17,2%

aBelfast West and Belfast South have the lowest percentage of population over
65% in all NI. Conversely, both have the highest percentage of population in the
interval 16–39. Belfast West is the most deprived area in NI, followed closely
by North.

65 years old, followed by Belfast South (below 15%). On the other
hand, Belfast East (with the highest percentage between 40 and
65 years) and Belfast North has the highest percentage of its
population over 65 yrs. Deprivation measurements on the four
regions are presented in Table 1.

Table 1 also shows high deprivation levels in Belfast West
which is also the region with a younger population), followed
losely by the North (both over 30% of the population living
n social deprivation), East, and South (both below 10% of the
opulation living in social deprivation) respectively.
Although previous research points to a relation between past/

urrent pandemic periods and deprivation measures in specific
ocalities (e.g., where there is a higher prevalence of comorbidities
r where there may be difficulties in social distancing within
ore deprived communities), such as the work of [18,20], other
tudies are inconclusive in that regard. For example, another
tudy [19] states that ‘‘social deprivation was not predictive of
utcome [critical care admission and death]’’, while [41] found
hat ‘‘[s]ocioeconomic deprivation and having no qualifications were
onsistently associated with a higher risk of confirmed infection’’.
ur findings may contribute to this debate as we found less
evere symptoms in two of the most deprived regions of Northern
reland (East and North Belfast), which theoretically support the
otion that social deprivation may not be directly associated with
ore severe outcomes. Other factors such as the population’s
ge distribution and access to healthcare services (many may be
symptomatic) may be relevant. Lower usage of the symptom app
n areas of social deprivation could also be a confounding factor.

However, our work goes beyond previous research, as we
eveal the dynamic evolution of COVID-19, permitting near real-
ime monitoring of the complex interactions in each region, sur-
assing previous ‘‘static’’ associations of symptoms and social
haracteristics. COVID-19 spread has no respect for borders be-
ween age groups, races, genders, or geographies. For example,
f the population in some Belfast regions work outside their
rea, the disease will probably spread between regions. If unem-
loyment is high, social interactions between older people and
he more mobile segments of the population (students, mid-age
ersons) might lead to more severe outcomes in that region.
herefore, monitoring changes over time (e.g., contrasting the
ode significance and its interactions) could usefully reveal the
mpacts of policy interventions. For example, a more complex
ombination of symptoms in North Belfast could reveal a local
utbreak that can potentially affect areas with more elderly res-
dents and a greater possibility for spread to the regions where
hose residents work. In the South, it is anticipated that the risk
f spreading to other regions may be lower, as social deprivation
s less common in that area.
7

4.3. Evaluation

Three evaluation strategies were used following the FEDS
framework suggested by [42] for studies that aim to design new
artifacts (e.g., models) and support decision-making in socioma-
terial contexts [43]. First, we conducted unstructured interviews
with four public health experts in NI to discuss the possible
impact of predicting COVID-19 infections using AI models, com-
pared with lab testing. Our purpose was to evaluate: (1) the
model’s comprehensibility, (2) whether public health teams were
already using similar techniques, and (3) the approach’s potential.
According to the feedback received, this model could be used to
probe the evolution of the pandemic in specific locations lacking
sufficient testing data, allowing more efficient use of testing and
enhancing health evidence regarding disease progression and the
emergence of new variants.

We have evaluated technical risk and efficacy [42] using a
different approach. We wished to confirm that our results, using
complex networks, would be equivalent to other techniques.
Therefore, a modelling of the symptoms in disease stages using
the proposed self-supervised modelling was conducted using the
data published in [17]. The results are illustrated in Fig. 4 and
confirm the capacity of the learning process to identify the most
prevalent symptoms found by the authors of the study. Thus,
pneumonia is an aggregator for a set of symptoms including:
cough, difficulty breathing, high temperature, loss of appetite, and
chest pain.

The modelling process revealed a strong interdependence be-
tween fever and cough, and between fever and fatigue, in the
group of those who had not recovered. The interdependence be-
tween age and fever increases to the age of sixty years compared
to the group of recovered patients. The complexity of symptoms
increases significantly in this model, including: lack of appetite,
difficulty walking, or muscle pain.

Finally, we evaluated the evolution of test results and the
analysis of app data (Fig. 5).

Fig. 5 compares the evolution of positive reported cases be-
tween 12th April and 31st May (blue), and the app updates for
severity 3 cluster using: (1) a seven-day rolling average (green),
and (2) a daily figure (grey). The dataset was exported from the
HSC NI COVID App data provided by the Social Media Observatory
at Queen’s University of Belfast based on HSC NI provided data.
Over 24000 app updates were used for this evaluation step (a 450
daily average).

Although insufficient to conclusively determine the accuracy
of ‘‘digital testing’’ supported by mobile app data, there are in-
teresting insights in the selected period. First, a similar trend
between traditional test results and the mobile app index was
obtained with the selected severity 3 cluster of symptoms. Sec-
ond, the drastic increase of cluster 3 cases at the beginning of
May, and on 17/05, (more evident for the daily cases, because the
seven-day average reduces variations), parallels the high number
of positive cases found with traditional tests. Third, the possibility
arises of using mobile app data as quasi-test indicators when
traditional test results are unavailable (lack of results or long
delay in obtaining those results).

5. Discussion

Mobile technologies in a health ecosystem are precious tools
that can play a central role in managing emerging threats, such as
the actual COVID-19 pandemic. Firstly, they provide easy access
to near real-time assessment of specific population segments.
Secondly, they provide sources of data which are crucial to lo-
cation analytics. Third, the use of symptom tracking apps could
contribute to encouraging protective health behaviours. Although
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Fig. 4. Modelling symptoms of non-recovered patients using the data of [17].
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we did not find a relationship between disease severity and social
deprivation (at an area level), it is important to acknowledge that
factors such as the level of knowledge of COVID-19 symptoms,
and adherence to preventative behaviours, are related to the risk
of spread of infection [44].

Recent studies, for example, [3], have shown how mobile
technologies can assist in high-level analysis of epidemiologic
patterns in Wales and Scotland. Our work adds to this research
by revealing an approach to data-driven machine learning, which
produces knowledge about symptom clusters and stratification as
well as its context-specific significance and interdependence.

Global and national level research studies are essential to
address the challenges of COVID-19. However, pandemic manage-
ment also requires a more granular examination of population
segments and specific geographical areas, namely, cities, small
towns, or even more restricted communities and social groups.
Complex network analysis offer an interesting tool to evaluate
and visualise those combinations, as demonstrated in the Belfast
region.

Our conclusions also confirm several findings from previous
research, for example, the need to differentiate clusters (commu-
nities in the case of complex networks) with potential for more
significant impact on local healthcare, including, for example, the
impact of social conditions on COVID-19 management. Comor-
bidities affect the severity of COVID-19, but there are other factors
to consider, such as the type of work, life habits, or types of
activity common in the population [45].

The modelling process also revealed information about COVID-
19 symptoms’ interdependence, namely, the association between
the loss of smell and taste, and muscle and articular pain. These
associations extends the findings of [4], who suggested ‘‘that loss
f sense of smell and taste could be included as part of routine
creening for COVID-19’’. Nevertheless, additional research is nec-
ssary to confirm that these symptoms are related or emerge as
combination of other factors, for example, among certain age
roups. Our models did not reveal any association between the
lu vaccine and COVID-19 symptoms.

Local health policies (e.g., travel restrictions, tests) must com-
ine the explicit knowledge provided by mobile apps (e.g., symp-
oms) and local contextual ‘‘environmental’’ information.
oreover, COVID-19 outbreaks happen rapidly, requiring contin-
ous monitoring of different variables that may reveal changes in
he disease pattern in the population across different locations,
s we found in our models. For example, mobile app data can be
sed to indicate COVID-19 progress when testing is not available
nd provide an early warning of a possible increase in hospital
dmission (identified by an increase of cases in clusters that
emonstrate higher level of severity).
The mobile data revealed less complex patterns of self-

eported symptoms of COVID-19 in regions with younger popula-
ions, more significant health deprivation, and higher
nemployment rates. Over time, the analysis of complex symp-
om networks may provide insights into trends, particularly when
ests are unavailable, and help highlight communities that should
e prioritised for testing.

. Conclusion

This paper presents a semantic network approach to model
OVID-19 entanglement using mobile data to extract explicit
e.g., self-reported symptoms) and implicit knowledge (e.g., loca-
ion, social factors, trends). Our proposal extends past research,
ncluding a health-wealth layer and AI self-supervised learning
apacity to profile symptoms in specific contexts.
Modelling social and health-related data at the meso level is

ssential to understanding the dynamics of the virus in the com-
unity, complementing, or even replacing test results (e.g., Lat-
ral Flow or PCR tests) when these are unavailable.
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.1. Limitations

Adopting artificial intelligence techniques to address the chal-
enges of COVID-19 with mobile data is still evolving. Our work
eveals that intelligent COVID-19 self-reported symptom data
nalysis can assist mounting an appropriate public health re-
ponse and complements existing official data and lab test results.
ntil now, self-reported mobile data has mostly been helpful after
he fact (e.g., tracking contacts or warning the user about symp-
oms that deserve attention). Our work sheds light on the value
f understanding patterns of COVID-19 symptoms in association
ith the social characteristics of the target population. How-
ver, the data is only related to the Belfast region and does not
epresent the entire Northern Ireland population. We have only
valuated the most noticeable relationships between the network
odes in this dataset. Moreover, deprivation has been attributed
t a regional level, based on the user’s location, rather than based
n the individual characteristics of each user (e.g., income and
ducation).
A natural limitation of the approach that we have used is

he existence of asymptomatic cases, which can be identified by
aboratory tests. The adherence of the population to the app use is
nother crucial aspect to consider. Therefore, using AI techniques
n mobile data is complementary and most valuable in evaluating
he progression of symptoms severity (which is difficult to do
ith Lateral Flow or PCR tests) and providing projected utilisation
f healthcare facilities.
The number of records is considered sufficient to (1) evaluate

he accuracy of the visualisation approach and (2) reveal its
apacity to represent COVID-19 entanglement based on mobile
ata. However, the predictive value of our model needs addi-
ional research. Despite the alignment of our results with other
odels [17,22] and the apparent interest in revealing trends of
OVID-19 when lab tests are unavailable (or to inform testing
trategies in the case of limited testing capacity), AI and machine
earning methods should be used in parallel with traditional
esting and epidemiological techniques to support public health
ecision-making.

.2. Opportunities for future work

There is scope to add more elements to the semantic net-
orks that we have developed besides demographic and depriva-
ion measures, for example, a day-by-day modelling comparison
9

with reported cases and/or mobility. Comparing symptom pat-
terns across the most relevant economic sectors in the region
(e.g., construction, retail) could also provide interesting results.

Inspired by the three replicability questions proposed specifi-
cally for DSR by [46], the following suggestions are put forward.
First, ‘‘Does the artifact provide utility?’’ The same AI approach can
be used in different datasets, exploring symptom patterns and
providing longitudinal analysis, in conjunction with public health
professionals. It is also possible to explore other data analysis
techniques. Second, ‘‘Is the design theory complete?’’ It would
e interesting to include other attributes in the model, such as
ersonal data (social characteristics, other comorbidities, social
abits), and new symptoms that would help do distinguish other
pecific viruses, such as influenza. Finally, ‘‘What design theory
omponents fit a larger context?’’ One of the most relevant poten-
ial applications of our results [47] is the early identification and
onitoring of circulating viral strains, opening new opportunities

or future research.
The limitations of our work may point to new research di-

ections, for example, studying different cities and regions and
omparing their patterns of COVID-19 symptoms. We hope this
esearch may inspire other researchers working with mobile data
o increase our understanding of the complex interactions of
ocial and health factors in pandemic management.
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