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AbstrACt
Objective To provide a framework for quantifying the 
robustness of treatment ranks based on Surface Under 
the Cumulative RAnking curve (SUCRA) in network 
meta-analysis (NMA) and investigating potential factors 
associated with lack of robustness.
Methods We propose the use of Cohen’s kappa to 
quantify the agreement between SUCRA-based treatment 
ranks estimated through NMA of a complete data set 
and a subset of it. We illustrate our approach using five 
published NMA data sets, where robustness was assessed 
by removing studies one at a time.
results Overall, SUCRA-based treatment ranks were 
robust to individual studies in the five data sets we 
considered. We observed more incidences of disagreement 
between ranks in the networks with larger numbers 
of treatments. Most treatments moved only one or 
two ranks up or down. The lowest quadratic weighted 
kappa estimate observed across all networks was in 
the network with the smallest number of treatments (4), 
where weighted kappa=40%. In the network with the 
largest number of treatments (12), the lowest observed 
quadratic weighted kappa=89%, reflecting a small shift 
in this network's treatment ranks overall. Preliminary 
observations suggest that a study’s size, the number 
of studies making a treatment comparison, and the 
agreement of a study’s estimated treatment effect(s) 
with those estimated by other studies making the same 
comparison(s) may explain the overall robustness of 
treatment ranks to studies.
Conclusions Investigating robustness or sensitivity in an 
NMA may reveal outlying rank changes that are clinically 
or policy-relevant. Cohen’s kappa is a useful measure that 
permits investigation into study characteristics that may 
explain varying sensitivity to individual studies. However, 
this study presents a framework as a proof of concept and 
further investigation is required to identify potential factors 
associated with the robustness of treatment ranks using 
more extensive empirical evaluations.

IntrOduCtIOn
Network meta-analysis (NMA) simultane-
ously compares the efficacy or safety of three 
or more treatments by synthesising evidence 
directly and indirectly contributed by studies, 

including randomised controlled trials 
(RCTs).1–3 This helps answer questions such 
as ‘which treatment is best?’ in addressing a 
clinical problem. Ideally, all studies providing 
information that will assist in answering 
a carefully defined research question will 
inform the NMA. A well-thought-out system-
atic review will aim to produce a collection 
of such studies.4 This is done by identifying 
potentially relevant studies in an extensive 
literature search and vetting them against 
inclusion and exclusion criteria that have 
been designed to ensure the question of 
interest is being addressed by each study.

Despite the desire to provide a holistic body 
of evidence in attempt to determine a hier-
archy of the efficacy or safety of all available 
treatments, individual studies within an NMA 
are understandably subjected to further scru-
tiny often in the form of risk-of-bias assess-
ments.5 Studies that considerably increase 

strengths and limitations of this study

 ► To the best of our knowledge, robustness of Surface 
Under the Cumulative RAnking curve (SUCRA)-based 
treatment ranks has not been formally assessed in 
the literature, despite the controversy surrounding 
its use.

 ► The adoption of Cohen’s kappa as a means to 
quantify the robustness of SUCRA-based treatment 
ranks to individual studies in network meta-analy-
sis allows one to empirically investigate reasons for 
robustness.

 ► This is a proof-of-concept study; any observations 
made in the five illustrations are limited to these 
data sets and are mainly hypothesis-generating; 
more extensive empirical evaluation is needed to 
investigate reasons for robustness to studies.

 ► Simulation studies are ultimately needed to estab-
lish the validity and generalisability of the meth-
odological framework to examine robustness of 
SUCRA-based treatment ranks.
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the between-study heterogeneity because of differences 
in treatment effect estimates beyond chance (eg, poor 
overlap of confidence intervals (CIs)) may also be flagged 
for further investigation.6 It is not surprising then for those 
interpreting NMAs to raise concerns about the inclusion or 
contribution of a particular study or subset of studies to the 
pooled treatment effect estimates, even if they passed strict 
inclusion and exclusion criteria.

Identifying a sensible hierarchy of treatments based on 
the results of an NMA is not straightforward. The interpre-
tation of several relative treatment effect estimates (eg, 6 
in the case of 4 treatments and 45 in the case of 10 treat-
ments) for each outcome can be overwhelming. To draw a 
knowledge user’s attention to the most efficacious or safest 
treatments for a particular outcome, a ranking system for 
each outcome can be presented alongside the treatment 
effect estimates. In a Bayesian framework, ranks may be 
determined based on the mean or median of the posterior 
distribution of the ranks, the probability of a treatment 
ranking best or the Surface Under the Cumulative RAnking 
curve (SUCRA).7–10 Alternatively, in a frequentist frame-
work, ranks may be based on a measure similar to SUCRA, 
referred to as the P-score.11 The probability of a treatment 
ranking best is appealing in terms of the ease of its interpre-
tation, and a large value (eg, >0.90) may reflect that treat-
ment is quite certain to be the most efficacious or safest. 
However, treatments that have large uncertainty around 
their estimated effects are more likely to have higher proba-
bilities of ranking best.10 When there is a lot of overlap and 
uncertainty in the treatment effects, this will be reflected 
across all ranking probabilities (ie, probability of ranking 
best, second best, etc), and SUCRA summarises this.7 12 An 
overview of the characteristics of these different ranking 
measures is provided by Veroniki et al.12

Ranking treatments, in general, is not without contro-
versy. For example, even if there are no clinically or 
statistically relevant differences between the efficacy of 
treatments, the difference in their ranks will imply there 
is one.9 13 Recently proposed methodology explores 
how much an estimated treatment effect (in a study or 
synthesis of studies making the same comparison) must 
change to impact treatment recommendations.14 15 
Further, treatment ranks that are based on the proba-
bility of ranking best may be biased and influenced by the 
removal of treatments from an NMA.16 17 In addition, the 
removal of a study can impact ranking probabilities and 
ranks based on the probability of ranking best.18 19 Since 
ranking probabilities contribute to the calculation of 
SUCRA, which is often estimated with large uncertainty,12 
yet is increasingly being used in published NMAs,20 it is 
of interest to examine the robustness of SUCRA-based 
treatment ranks and to quantify sensitivity with respect 
to evidence contributed by individual studies. It is also 
imperative to make knowledge users aware of factors in 
an NMA that may influence how well a relative effect may 
be estimated (eg, the structure of the network or hetero-
geneity between study estimates), which, in turn, impacts 
the treatment ranks.

To the best of our knowledge, no study has specifically 
looked at the robustness of SUCRA-based treatment ranks 
and quantified their sensitivity. Within published NMAs, 
it is not uncommon to find authors investigating the 
robustness of their conclusions regarding the hierarchy 
of treatments in general through subgroup or sensitivity 
analyses. They may then narratively compare the hierar-
chies in these additional analyses to the one produced in 
the base-case analysis. We aim to adopt this idea to inves-
tigate the robustness of SUCRA-based treatment ranks. 
This paper serves as a first step to do this. Here, we present 
a framework that makes use of an appropriate measure 
to quantify changes in treatment hierarchies (or ranks), 
which further enables a more rigorous investigation to 
understand why certain studies may impact conclusions 
made in an NMA. Our objectives are to (1) provide an 
objective measure to quantify robustness or sensitivity of 
SUCRA-based treatment ranks through Cohen’s kappa 
and (2) illustrate how we may use the aforementioned 
measure to examine what features of the evidence might 
explain why the removal of some studies change the rank 
of treatments more than other studies.

MethOds
description of illustrative data
To illustrate our approach, we selected five NMAs from 
an internal collection of data extracted from published 
NMAs that reported the trial outcome data. Our proposed 
approach described below can only be applied to networks 
where outcome data on each treatment are provided by 
at least two studies. Of the 15 data sets available to us, 5 
were excluded from consideration as they did not meet this 
requirement. We selected 5 of the remaining 10 NMA data 
sets because they contained the largest number of treat-
ments and studies, and varied in terms of their network 
connectivity and size of information (eg, number of 
patients per treatment and number of RCTs per compar-
ison) which we planned to investigate as potential reasons 
for variation in rank sensitivity. We refer to these data sets 
as the ‘chronic obstructive pulmonary disease’ (‘COPD’),21 
‘depression’,22 ‘diabetes’,23 ‘heavy menstrual bleeding’24 
and ‘stroke’25 networks as these NMAs compare treatments 
addressing these medical conditions. Network diagrams 
and the SUCRA values for each treatment, produced using 
complete data, are shown in figure 1, while characteristics 
of the evidence within the networks are presented in online 
supplementary table S1.

The COPD network consisted of evidence on 8 treat-
ments from 39 RCTs, and it had the least direct evidence on 
all possible treatment comparisons (57.1% out of a total of 
28 possible comparisons) (online supplementary table S1). 
Tiotropium was ranked the best treatment in this network 
based on SUCRA, followed closely by budesonide+for-
moterol (figure 1A). Despite containing evidence from 
the largest number of trials (111) comparing the largest 
number of treatments (12), the depression network had 
the second least number of patients (24 595) of the five 
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Figure 1 Network diagrams (left) and SUCRA (right) for (A) chronic obstructive pulmonary disease network,21 (B) depression 
network,22 (C) diabetes network,23 (D) heavy menstrual bleeding network and24 (E) stroke network.25The sizes of the nodes 
are proportional to the number of patients randomised to the treatments, and the widths of the edges are proportional to the 
number of studies comparing two nodes. 1gen, 1st generation endometrial destruction; 2gen, 2nd generation endometrial 
destruction; ACE, angiotensin-converting-enzyme; ARB, angiotensin-receptor blockers; b-blocker, β blocker; CCB, calcium-
channel blocker; hyster, Hysterectomy; SUCRA, Surface Under the Cumulative RAnking curve.

networks (figure 1B, online supplementary table S1). The 
diabetes network, on the other hand, contained evidence 
from the largest number of patients (154 176) and most of 
the 15 possible comparisons between the 6 treatments were 
made in at least 1 trial, making it the most well-connected 
network (figure 1C, online supplementary table S1). The 
heavy menstrual bleeding network is the smallest of the five 
networks in terms of number of treatments (4), RCTs (20, 
2-arm only) and patients (2886) (figure 1D, online supple-
mentary table S1). The stroke network had the second 
smallest number of treatments (5), but had the second 
largest number of patients (55 463). All direct comparisons 
were made in at least two RCTs in the stroke network, and 
the ranking of treatments based on their SUCRA values is 
well-established, as exemplified by the distance between 
them (figure 1E, online supplementary table S1).

empirical evaluation
For each data set, we selected and proceeded with a model 
that was appropriate for the data type, as our purpose 
was to use the networks for illustration and not for clin-
ical interpretation or generalisability. For the interested 
reader, we have included details on the selected model, 
model fit statistics and results of inconsistency checks in 
online supplementary table S2.

An NMA was initially conducted with all studies 
included and the ranks of treatments based on the 
SUCRA results of this NMA were recorded. Sensitivity 
analyses were subsequently conducted, where for each 
sensitivity analysis, a single study was removed, an NMA 
was conducted based on the data set excluding this single 
study, and the SUCRA-based treatment ranks were docu-
mented. This was repeated for all studies, removing them 
one at at time. This procedure is similar to those used 
in influence analysis in regression, where the influence 
of an observation on a regression model is investigated 
through comparison of regression models fitted with and 
without the observation in the data set.26 The motivation 
for this was to enable exploratory analysis, provided there 
is sufficient variability in the impact of trials and potential 
explanatory variables of interest (eg, number of patients).

For each NMA, the analysis was performed in a 
Bayesian framework using the gemtc package (V.0.8-2) 
in R.27 28 Vague priors were used for all model param-
eters (Normal(0, 10 000) for baseline and treatment 
effects, and Uniform(0, 5) for common between-study 
SD). Results were based on 100 000 samples with a thin-
ning rate of 10 after an adaption phase of 20 000 samples 
in each of three chains of Markov chain Monte Carlo 
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simulations. Convergence was assessed using trace plots 
as well as the Gelman-Brooks-Rubin diagnostic test.29 30

We ranked treatments based on their SUCRA values.7 
To calculate SUCRA in a Bayesian framework, the ranking 
probabilities, P(i,j)—the probability that treatment i 
ranks jth best for a particular outcome—were calculated 
for each treatment. The cumulative distribution function 
of a treatment’s ranking probabilities—the probability 
that treatment i ranks kth best or better—was subsequently 
calculated as

 
F
(
i, k

)
=

k∑
j=1

P
(
i, j
)
  

The SUCRA value for treatment i was then taken to be 
the surface under the curve defined by this cumulative 
distribution function. Mathematically, it was calculated as

 SUCRA
(
i
)
=

n−1∑
k=1

F
(
i,k

)

n−1   

where n was the number of treatments in the network. 
The treatment with the largest SUCRA value was ranked 
the best, the treatment with the second-largest SUCRA 
value was ranked second best, and so on, such that the 
treatment with the smallest SUCRA value was ranked nth 
(the worst) for the outcome.

Quantifying, presenting and elucidating robustness of 
treatment ranks
To quantify the influence a study had on all SUCRA-
based treatment ranks, we used Cohen’s kappa,31 which 
measured the agreement between the treatment ranks 
produced with the complete data and the ranks produced 
when a study was removed. We use the term robustness 
in reference to the sensitivity of the treatment ranks with 
respect to individual studies, indicated by departure 
from the ranks produced with the complete data. The 
kappa statistic offers flexibility in the assessment of the 
robustness or sensitivity of treatment ranks in the sense 
that different weighting schemes will allow one to focus 
on different questions regarding the difference in treat-
ment ranks. For example, the unweighted (simple) kappa 
separated studies based on the number of treatments that 
changed rank and considered any change to be the same, 
regardless of the size of the rank displacement. In this 
sense, unweighted kappa provides information similar 
to the percentage of treatments whose rank remains 
unchanged and serves as an overall indicator of rank 
robustness or sensitivity. A more appropriate weighting 
scheme may be quadratic weights,32 where the weights 
between two disagreeing ranks are differences between 
the original and new ranks squared (eg, if a treatment’s 
rank changed from 2 to 5, the corresponding disagree-
ment weight would be (2−5)2). This would distinguish, 
for example, the importance of a change in treatment 
rank of two places from a change in treatment rank by 
one place. The quadratic weighted kappa is equivalent to 
Pearson’s correlation coefficient applied to the SUCRA-
based ranks, as well as Spearman’s rank correlation if it 

was applied to the SUCRA-based ranks or SUCRA values 
themselves.32 Other weighting schemes may incorpo-
rate distances in SUCRA, or may be designed to reflect 
changes in the top three ranks. However, in this paper, 
we are providing a general framework for the proposed 
approach, and we illustrate it by holding interest in 
changes across all treatment ranks, quantified by kappa 
with no weights and quadratic weights.

In order to investigate rank robustness or sensitivity with 
respect to study characteristics, we compared the distribu-
tions of study characteristics between groups of studies 
with a similar impact on treatment ranks via density plots 
and descriptive statistics. In particular, we looked at char-
acteristics that may highlight the contribution of studies 
to the direct evidence in the network. A study’s contribu-
tion to a network is a factor of its own characteristics, as 
well as those of other studies included in the network. In a 
frequentist setting, a study’s contribution has been previ-
ously summarised as a single quantity.33 34 The contribu-
tion of evidence within a direct comparison to an NMA 
has also been quantified.35 However, given the limited 
information available on the study characteristics in the 
selected publicly available data sets, we explored only trial 
size (ie, total subjects) and the amount of information 
available (ie, number of studies) on treatment compari-
sons. In this empirical evaluation, we initially considered 
these characteristics using univariate analysis. Since both 
networks contained multi-arm RCTs, we considered the 
number of studies per treatment comparison,  Ns , for a 
given trial s, under two scenarios: (1) as an average across 
all comparisons made by a single trial s:

 
Ns = 1

ns

ns∑
i=1

(
number of RCTs that made direct comparison i

)
 

where  ns =
ks
(
ks−1

)
2   is the number of unique direct 

comparisons within a k-arm RCT s and (2) at a compar-
ison level. In the latter scenario, multi-arm RCTs had 
multiple values characterising the number of studies that 
made each comparison, whereas two-arm RCTs had only 
one value. Finally, we considered the change in between-
study variance after the removal of each study. This 
characterised the heterogeneity between the treatment 
effect(s) estimated by the removed study and those esti-
mated in other studies making the same comparison(s). 
A large relative change would suggest a large difference 
in the treatment effect(s) observed in a particular study, 
compared with the treatment effect(s) observed in other 
studies.

As the rank of a specific (eg, locally available or cheaper) 
treatment may be of interest to knowledge users, we also 
explored how often and how much each of the treat-
ments’ ranks changed after the removal of a study. We 
quantified robustness of a treatment’s rank by the propor-
tion of studies whose removal resulted in a change in its 
rank and compared it with the width of the 95% cred-
ible interval (CrI) for its rank. This was done to assess 
the relationship between the uncertainty and robustness 
of a treatment’s rank, the former of which is a cause of 
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recent concern.9 To calculate the 95% CrI for each rank, 
we made use of the relationship between SUCRA and the 
expected rank (

−
r  )11:

 SUCRA = n−
−
r

n−1   

where  n  is the number of treatments in the network. In 
our illustrative examples, we computed the 95% CrIs for 
SUCRA based on the 2.5th and 97.5th percentiles of the 
posterior distribution of SUCRA. We then transformed 
the CrIs for each SUCRA  

(
LLS, ULS

)
  into CrIs for the 

expected rank  
(
LLr, ULr

)
  using this relation:

 
(
LLr,ULr

)
=

(
n−

(
n− 1

)
LLS, n−

(
n− 1

)
ULS

)
  

Patient and public involvement
Patients and the public were not involved in this study.

results
Apart from the depression network, the majority of RCTs 
within each network did not individually impact the 
SUCRA-based treatment ranks (table 1). In the stroke 
network, the removal of an individual RCT did not impact 
any of the SUCRA-based treatment ranks across all RCTs, 
and thus the observed agreement beyond chance was 
universally perfect in this network (unweighted kappa 
( κUW  )=weighted kappa  

(
κW = 1 )). The smallest beyond 

chance agreement was observed in the heavy menstrual 
bleeding network ( κUW = 0% ). In this case, the removal 
of an RCT displaced three of the four treatments’ ranks, 
and the corresponding weighted agreement, where the 
importance of disagreement increases as the change in 
rank increases, was  κW = 40% .

The largest absolute change in a treatment’s rank after 
the removal of an RCT was observed in the depression 
network (table 1). In one instance, the removal of one 
RCT resulted in milnacipran and fluvoxamine exchanging 
ranks. In the complete data set, they had ranked 7th and 
11th best, respectively, and so each treatments’ rank 
changed by 4 places. The observed agreement beyond 
chance between the ranks based on the complete data set 
and subset of data with this RCT removed was  κUW = 82%
 . This observed agreement is equal to cases in the depres-
sion network where the removal of an RCT resulted in 
two treatments exchanging neighbouring ranks (eg, 
seventh and eighth), highlighting an important change 
that the unweighted agreement measure does not 
capture. This illustrates the usefulness of the weighted 
agreement measure in terms of distinguishing the quali-
tatively different impacts of RCTs. In the former situation, 
the weighted agreement was  κW = 89% , while in the latter 
situation, the weighted agreement was  κW = 99% .

In most cases, when the removal of an RCT impacted 
the treatment ranks, treatments exchanged ranks 
with a neighbouring treatment (eg, tiotropium 
and budesonide+formoterol in the COPD network 
(figure 1A)). Changes between neighbouring treatments’ 
ranks are more common between treatments with small 

differences in SUCRA, compared with treatments that 
have larger differences between their SUCRA values. 
For example, in the depression network, milnacipran 
and paroxetine have SUCRA values of 35.2% and 34.3%, 
respectively, and fluoxetine, duloxetine and fluvoxamine 
have SUCRA values of 30.9%, 30.5% and 30.0%, respec-
tively (figure 1B). These treatments’ ranks changed by 
one place after the removal of a relatively higher number 
of RCTs, compared with other treatments in the network 
(table 1). The treatment ranking best according to 
SUCRA in the diabetes, heavy menstrual bleeding and 
stroke networks was never affected by the removal of an 
RCT in each network (table 1), and we note the consid-
erable difference between the SUCRA values between 
the best and second best ranking treatments in all three 
networks (figure 1C–E).

Since there was substantial variability in the impact of 
RCTs to the SUCRA-based treatment ranks in COPD and 
depression networks, compared with the other networks, 
we explored potential reasons to explain why some RCTs 
in these networks impacted treatment ranks more than 
others.

results of further investigation into ranks in the COPd nMA
The largest changes in rank were observed for two RCTs, 
identified as study 13 ( κW  = 83%) and study 18 ( κW  = 
81%) (figure 2). Both of these studies compared four 
treatments: budesonide, formoterol, budesonide–formo-
terol and placebo (online supplementary table S3). The 
removal of study 13 resulted in budesonide, originally 
ranked fourth best, to become the best, while the removal 
of study 18 resulted in the same treatment ranking seventh 
(just better than the worst treatment). Apart from study 
10, the remaining RCTs for which changes in treatment 
rank were observed had the same level of weighted rank 
agreement (figure 2).

Excluding outlying studies 13 and 18, we examined and 
compared the number of patients in RCTs that changed 
treatment ranks (Group 2 of figure 2) and those that 
did not (Group 1 of figure 2). The group of RCTs whose 
removal did not result in a change in treatment ranks 
included two clusters of studies (Group 1 of figure 3A), 
one containing some of the smallest numbers of patients 
in the network, and the other containing relatively larger 
numbers of patients. The size of the RCTs that displaced 
treatment ranks fell into three clusters; the first of which 
also include some of the smallest numbers of patients in 
the network, but most of these RCTs contained relatively 
larger numbers of patients (Group 2 of figure 3A). There 
was also an exceptionally large RCT that shifted treat-
ment ranks. Compared with the RCTs that did not change 
treatment ranks, there was a slight shift in the distribu-
tion of the size of studies that impacted ranks, indicating 
that they tended to be larger than the majority of RCTs 
that did not impact ranks (figure 3A). In terms of the 
average number of RCTs per comparison, there is a shift 
in the mode of the distributions between the two groups, 
suggesting RCTs that displaced treatment ranks tended to 
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Figure 2 Observed 1—quadratic weighted kappa ( κW ) in 
the chronic obstructive pulmonary disease network,21 which 
quantifies the weighted disagreement between the treatment 
ranks produced from the complete data set and the ranks 
produced from a sub-data set where one RCT (indexed on 
the x-axis) was removed. Studies are grouped by a similar 
impact on rankings, as indicated by markers described in the 
legend, for further investigation. RCT, randomised controlled 
trial.

Figure 3 Study characteristics between two groupings of studies in chronic obstructive pulmonary disease network21: Group 
1, where the individual removal of these RCTs had no impact on treatment rankings (KW=1), and group 2, where the individual 
removal of these RCTs had a small impact on treatment rankings (0.95<KW<0.98) (identified in figure 2). Density plots, as well 
as descriptive statistics, of (A) the number of patients within studies, (B) information available for comparisons (ie, number of 
studies in the network making each comparison), averaged across all comparisons made within a study, and (C) information 
available for comparisons across all comparisons made by a study, are displayed. RCTs, randomised controlled trials.

make less common comparisons on average (figure 3B). 
At a comparison level, RCTs that changed treatment ranks 
were more often than not making infrequently studied 
treatment comparisons (Group 2 of figure 3C). However, 
the bimodal distribution belonging to the group of RCTs 
that did not change ranks is mostly, in part, driven by 
multi-arm RCTs that made common comparisons, as well 
as uncommon comparisons (Group 1 of figure 3C).

Further investigation as to why studies 13 and 18 
produced extreme rank changes revealed that these 

four-arm RCTs provide the only direct evidence on five 
out of the six possible comparisons between four treat-
ments (budesonide, formoterol, budesonide–formoterol 
and placebo) in the network. Furthermore, these studies 
provided conflicting evidence on the placebo versus 
budesonide comparison (study 13: OR (95% CI)=0.81 
(0.57 to 1.16); study 18: OR (95% CI)=2.31 (1.37 to 
3.87)). This conflicting evidence drives the magnitude of 
the between-study variance, as the between-study variance 
decreased after the removal of each of these two RCTs, 
and the magnitude of the change in between-study vari-
ance was much larger for study 13, compared with the 
changes observed after the removal of all other RCTs. 
In addition, the conflicting evidence is reflected by the 
large uncertainty in budesonide’s rank. Its 95% CrI, 1–8, 
indicates that there is a 95% probability that budesonide’s 
rank in terms of reducing exacerbations could be as high 
as 1 (ie, best treatment in terms of efficacy) or as low as 
8 (ie, worst treatment). Based on the limited number of 
treatments and hence datapoints, we were not able to 
conclude the existence or non-existence of a relation-
ship between the CrIs for each treatment’s rank and the 
number of RCTs that impacted their rankings (online 
supplementary figure S1).

results of further investigation into ranks in the depression 
nMA
Among the 75 RCTs whose removal resulted in a change 
in treatment ranks, 41 (54.7%) only affected the ranks 
of 2 treatments, hence the high value of weighted kappa 

https://dx.doi.org/10.1136/bmjopen-2018-024625
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Figure 4 Observed 1—quadratic weighted kappa ( κW ) in 
the depression network,22 which quantifies the weighted 
disagreement between the treatment ranks produced from 
the complete data set and the ranks produced from a 
sub-data set where one RCT (indexed on the x-axis) was 
removed. RCT, randomised controlled trial.

estimates ( κW ), suggesting very good weighted agreement 
among the ranks (median  κW =99% (minimum 89%, 
maximum 99%)) (figure 4).

Only the removal of two RCTs, studies 31 and 55, 
resulted in the observed maximum rank change of four 
places (table 1, figure 4). For instance, the removal of 
study 31 resulted in the exchange of ranks between 
milnacipran (7th best) and fluvoxamine (11th best). This 
study provided the only direct comparison of these two 
agents (online supplementary table S4), suggesting that 
sparseness of a network may influence the robustness of 
SUCRA-based ranks. The removal of study 55 resulted 
in fluvoxamine’s rank increasing from 11th best to 7th 
best, and three other treatments’ ranks subsequently 
decreased by one or two ranks. Study 55 provided the only 
direct evidence between fluvoxamine and venlafaxine, 
but venlafaxine’s rank was unaffected by the removal of 
this RCT. Although these RCTs had the largest impact on 
treatment ranks, the change in between-study variance 
was minimal in comparison to the changes observed after 
the removal of other RCTs.

Finally, we investigated the relationship between the 
robustness of individual treatment ranks with their preci-
sion as measured by the width of the 95% CrIs when the 
SUCRA-based ranks were calculated using the complete 
data set. Similar to the COPD NMA, the small number 
of datapoints did not reveal any conclusive relationship 
(online supplementary figure S2).

dIsCussIOn
This study proposes a novel approach for quantifying 
robustness or sensitivity of treatment ranks using Cohen’s 
kappa in NMA. We illustrated the approach using 
five publicly available NMAs and the results show that 
SUCRA-based ranks in most of these NMAs are in general 
robust with respect to the exclusion of individual studies. 
However, we have observed even a single study can 
change the pooled evidence enough (ie, relative effects) 
to influence SUCRA-based treatment ranks. When this 

occurs, this should serve as a flag for further investiga-
tion as to whether the change is important enough to 
impact how confident a knowledge user may be in terms 
of the hierarchy of the efficacy or safety of treatments. As 
such, rigorous scrutiny of such studies is important when 
conducting an NMA; this might be particularly crucial in 
a sparse network where direct evidence on some treat-
ment comparisons is limited. Note that the results and 
conclusions drawn from the five networks are for illustra-
tive purposes only and are not intended for clinical inter-
pretation and use. The observations made regarding the 
robustness of the treatment ranks are limited to the five 
networks evaluated and may not be true for all networks.

Most changes in treatment ranks were observed 
between treatments in close proximity of each other’s 
SUCRA values. SUCRA summarises the relative strength 
and precision of the estimated treatment effects, and 
similar SUCRA values might truly reflect treatments that 
are equally efficacious (or safe), where the small differ-
ences observed might be because of random error. On 
the other hand, similar SUCRA values might reflect true 
but small (and sometimes clinically important) differ-
ences in the efficacy or safety between the treatments. 
This highlights why it is important to interpret treatment 
ranks alongside point estimates and confidence or cred-
ible intervals of relative effects, to assess the relevance of 
any differences between treatments.36 In terms of inves-
tigating SUCRA-based treatment ranks using Cohen’s 
kappa, a weighting scheme that incorporates differences 
in SUCRA would highlight studies that have a meaningful 
impact on SUCRA-based treatment ranks. Alternatively, a 
different ranking measure may be used to distinguish the 
relative efficacy of these treatments and should be investi-
gated in future work.

The use of weighted kappa to quantify rank sensitivity 
as opposed to other rank agreement measures offers 
the advantage of incorporating a weighting scheme that 
distinguishes trials or subgroups based on the importance 
of their influence. For example, if investigators were only 
concerned about changes in the top-ranked treatments, a 
weighted kappa that gives more weight to disagreements 
among the top three ranks may highlight which trials 
impact the top-ranked treatments more than others. A 
weighting scheme could also incorporate changes in rela-
tive effects within treatments, or differences in relative 
effects between treatments, to reflect clinically important 
changes. Nevertheless, one may explore other agreement 
measures to assess the robustness of ranks, including the 
prevalence-adjusted bias-adjusted kappa.37 In addition, 
while the motivation for using kappa or other agree-
ment measures is to quantify the robustness of SUCRA-
based treatment ranks, users may be able to accompany 
the agreement measures with CIs or assess their signifi-
cance using established tests (eg,32) provided the sample 
size, which is equal to the number of treatments in the 
network, is sufficient.

In practice, we note that knowledge users are encour-
aged to examine the uncertainty of the SUCRA values 

https://dx.doi.org/10.1136/bmjopen-2018-024625
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from NMA through their CrIs to assess whether there 
is a relevant difference in the efficacy and safety of 
treatments.9 In the COPD and depression networks we 
explored, we were not able to make any conclusions 
regarding a relationship between the width of CrIs for the 
ranks (from which CrI of SUCRA may be derived through 
a transformation)11 and robustness or sensitivity of the 
treatment’s rank. More extensive empirical evaluation, 
as well as simulation studies, is required to explore this 
further and establish a relationship, if any.

Investigation of the robustness or sensitivity of treat-
ment ranks with respect to study characteristics is possible 
by identifying clusters of studies with similar kappa values. 
For example, further investigation of five distinct groups 
(clusters) of RCTs in terms of unweighted kappa in the 
depression network (online supplementary figure S3) 
revealed the median number of patients in these clusters 
increased as the unweighted rank agreement decreased 
(online supplementary figure S4A). However, there was 
no association between the amount of information avail-
able on treatment comparisons and rank agreement 
measured by unweighted kappa (online supplementary 
figure S4B,C). Due to limited study-level data from the 
selected publicly available NMAs, further exploration of 
identified clusters was not possible in this manuscript, but 
is of interest in a more rich data set.

A study’s size and the number of trials comparing the 
treatments it compared could be offered as explanations 
for a studies’ outlying impact on treatment ranks. Hetero-
geneity between evidence provided by studies within direct 
comparisons or between direct and indirect evidence 
(ie, inconsistency) might also explain why some studies 
are more influential in networks than others, leading to 
rank differences/disagreements. Exploring the robust-
ness of treatments ranks may, thus, help to pinpoint the 
sources (ie, studies) of important heterogeneity or incon-
sistency. However, small sample size or small number of 
studies per treatment comparison may mask potentially 
important heterogeneity between studies, which would 
be reflected in the overlap of wide confidence or cred-
ible intervals of treatment effects estimated by individual 
studies. Furthermore, sparseness in the network, that is, 
a single study or no sources of direct evidence on many 
treatment comparisons, would limit evaluation of hetero-
geneity. This gives credibility to a common criticism of 
NMA, that knowledge users should interpret the results 
for the treatment comparisons with little direct evidence 
with caution. Thus, a combination of these factors may 
explain why some studies influence treatment ranks 
more than others, and should be considered together in 
a multivariate setting.33 34 However, an investigation into 
clinical characteristics of a study or its quality (eg, patient 
population, treatment administration and risk of bias) 
may be more informative and helpful to knowledge users 
concerned about the potential influence of studies.

Bootstrapping techniques could serve as an option for 
assessing the robustness of NMA results, but this could 
lead to disconnected subnetworks in some bootstrap 

samples. Moreover, leaving one or more studies out 
follows the practice of sensitivity or subgroup analyses 
commonly employed in NMA, and quantifying changes in 
rank with kappa provides an objective summary of robust-
ness. We would like to highlight that the approach used 
in this paper is not meant to identify outlying studies that 
should be excluded from an NMA. This approach follows 
the same principles that guide influence analysis across 
a variety of modelling situations. Outlying observations 
may or may not impact the model, whereas influential 
observations do.38 In deviance-based analyses, if there is a 
concern regarding the contribution of a particular data-
point, a common practice is to present the results with 
and without the datapoint. It is then up to the knowledge 
users to decide which data set is most representative of the 
problem at hand. For example, in the context of NMA, if 
a study includes a population that was not included in 
other studies and is not relevant to the research question, 
a knowledge user may choose to interpret the results 
without that particular study. Alternatively, provided there 
is enough information available, meta-regression may be 
used to adjust a study’s contribution to an NMA based 
on a known effect modifier. At a minimum, investigating 
studies’ influence on the treatment ranks may highlight 
studies that require a secondary check against the inclu-
sion and exclusion criteria, or for data extraction errors.

Finally, we note that the magnitude of Cohen’s kappa 
is often categorised into levels of agreement for inter-
pretation (eg, poor (<0%), slight (0%–20%), fair (21%–
40%), moderate (41%–60%), substantial (61%–80%) 
and almost perfect (81%–100%) agreement).39 This is an 
ad-hoc procedure and ultimately depends on the context 
of the area it is applied to. Knowledge users should care-
fully consider whether a kappa value of 90%, for example, 
is indeed indicative of almost perfect rank agreement 
based on their expertise in the clinical area.

COnClusIOn
Motivated by the concerns surrounding the stability of 
treatment ranks in NMA, this study provides a frame-
work for investigating the robustness of SUCRA-based 
treatment ranks and reasons for varying sensitivity to 
individual studies in NMAs. It lays the groundwork for 
quantifying, visualising and elucidating the robustness or 
sensitivity of SUCRA-based treatment ranks with respect 
to direct evidence provided in individual studies. Similar 
to deviance-based analyses done to investigate outlying 
studies, we recommend that future NMAs should include 
sensitivity analyses to assist knowledge users in assessing 
the robustness of treatment ranks to individual studies. 
This will also help knowledge users to understand how 
the robustness of treatment ranks may depend on the 
contribution and features of the studies making up the 
network. The approach described in this paper will draw a 
knowledge user’s attention to a study or groups of studies 
that have undue influence on the treatment ranks, which 
may prompt them to adjust the ranks, if certain aspects 

https://dx.doi.org/10.1136/bmjopen-2018-024625
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of the studies makes it necessary to do so (eg, because of 
an inclusion of a poorly conducted study, or large uncer-
tainty in evidence resulting from very heterogeneous 
results).
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