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Interest in cancer immunotherapy has rapidly risen since it offers many advantages over

traditional approaches, such as high efficiency and prevention of metastasis. Efforts

have primarily focused on two major strategies for regulating the body’s antitumor

immune response mechanisms: “enhanced immunotherapy” that aims to amplify the

immune activation, and “normalized immunotherapy” that corrects the defective immune

mechanism in the tumor immunemicroenvironments (TIMEs), which returns to the normal

immune trajectory. However, due to the complexity and heterogeneity of the TIMEs, and

lack of visualization research on the immunotherapy process, cancer immunotherapy has

not been widely used in clinical setting. Recently, through the design and modification of

nanomaterials, intelligent TIME-responsive nanoplatforms were developed from which

encouraging results in many aspects of immunotherapy have been achieved. In this

mini review, the status of designed nanomaterials for nanoplatform-based immune

regulation of TIMEs has been emphasized, particularly with respect to the aforementioned

approaches. It is envisaged that future prospects will focus on a combination of multiple

immunotherapies for more efficient cancer inhibition and elimination.

Keywords: cancer, nanomaterials, enhanced immunotherapy, normalized immunotherapy, tumor immune

microenvironment

INTRODUCTION

Immunotherapy, a fast-growing tumor treatment strategy, restarts and maintains the tumor-
immunity cycle to restore the body’s antitumor immune response, thereby controlling and
eliminating tumors (Liu et al., 2019). However, many patients have experienced minimal or
no clinical benefits in response to this strategy. This has been attributed to evaded and
tolerant antitumor immune responses (Gajewski et al., 2013) via the following mechanisms: (i)
resistance to an immune attack through dominant inhibitory effects of the immune system,
including suppressive pathways in infiltrated-inflamed (I-I) tumor immune microenvironments
(TIMEs), brought about by programmed death-ligand 1 (PD-L1) (Gadiot et al., 2011)
and tumor-associated macrophage 2 (TAM2)-type macrophages (Goswami et al., 2017), and
(ii) resistance to an immune attack through immune system exclusion or ignorance in
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infiltrated-excluded (I-E) TIMEs in which the immune system
is unable to recognize or respond to a pathogen or malignancy
(Evans et al., 2016). Thus, these tumors are considered to be
poorly immunogenic or “cold” (Spranger, 2016). The core of
this immunosuppressive environment established in tumors is
oncogenes and abnormal pathway signals, which leads to the
production of potent cytokines, chemokines, and numerous
immunosuppressive immune cells, finally forming the TIMEs.
Broad effects of factors directly affect the quality and character
of the TIMEs, such as diet (Julia et al., 2015), adiposity,
the microbiome and sex, and systemic inflammatory state of
an individual.

Currently, TIMEs are divided into three classes according
to recent human and mouse data, helping us understand how
the immune composition and immune state affect cancer cells
and immunotherapy. I-E TIMEs are flooded with immune cells,
but relatively lacking in cytotoxic lymphocytes (CTL) in the
core of the tumor. I-E TIMEs place CTLs at the invasion
boundary of tumor tissue or cause them to sink into the
fibrous nest. I-I TIMEs are characterized by the high infiltration
of CTLs expressed by PD-1 and cancer cells expressed by
PD-1 inhibitory ligand PD-L1. Tertiary lymphoid structures
(TLSs)-TIME contains a large number of lymphocytes including
naive and activated conventional T cells, regulatory T cells,
B cells, and protruding cells. TLS-TIMEs are usually found
in the margins and stroma of aggressive tumors (Binnewies
et al., 2018). Analysis of the unique classes and subclasses of
TIMEs can predict and guide immunotherapeutic responsiveness
and reveal new therapeutic targets (Binnewies et al., 2018).
According to different treatment principles, two strategies are
available, namely, normalized and enhanced tumor immunity.
The former aims to reduce the suppression signal of the immune
system, while the latter induces the immune system’s ability to
kill heterogeneous cells (Sanmamed and Chen, 2018), thereby
combating tumor immune therapeutic resistance.

Nanotechnology has been intensively investigated with respect
to cancer immunotherapy. This is a key step toward creation
of more effective immune responses with fewer negative
implications in clinical and preclinical trials (Goldberg, 2019).
Chemical modification of a nanoplatform (e.g., shape, surface
charge, targeting, and responsive ability) for transport and
biodistribution behavior (Figure 1)mainly focuses on (i) effective
and precise delivery of immune drugs (immune antigens and
cytokines, adjuvant) to targeted sites, and controlled drug release
(Fan and Moon, 2015; Wang et al., 2020); (ii) optimization of
the immune response to nano-tumor vaccines, enabling a variety
of immune mechanisms to specifically attack and destroy cancer
cells (Fu et al., 2018); (iii) regulation of immunosuppressive
components of tumor immunity in the tumormicroenvironment
to normalize cancer immunotherapy for restoration of the lost
antitumor immunity (Gao et al., 2019); and (iv) implementation
of photothermal therapy (PTT) and photodynamic therapy
(PDT), among others, to activate the body’s immune system
to improve the number and quality of antitumor immune
responses, combined with cancer immunotherapy (Sang et al.,
2019). However, TIME-responsive nanomaterials for cancer
immunotherapy remain poorly investigated, and thus, there is

FIGURE 1 | Current main strategies on the fate of immunomodulators using

nanotechnology with different parameters.

scope for future work. In this minireview, the development
of TIME-responsive nanomaterials has been assessed with
respect to normalized and enhanced cancer immunotherapy, and
perspectives for future applications are provided.

ENHANCEMENT OF CANCER
IMMUNOTHERAPY

Since its inception, various types of immunotherapies have been
employed to activate and increase the immune response via
modulation of general regulatory and/or activatory mechanisms
(Sanmamed and Chen, 2018), involving antigen processing,
activation and expansion of naive T cells, and intensification of
the effector phase of the immune response. Another approach
is to use effector cells/molecules of the immune system to
directly attack tumor cells, consisting of antibody therapy and its
derivatives, including adoptive immune cell therapy (ACT) with
genetically engineered T cells, and regulation of the phenotype of
immune cells in TIMEs. With the development of drug-carrying
nanotechnology, significantly more antitumor molecules such as
antibodies, molecular vaccines, and cytokines can be selectively
delivered to target sites for augmenting retention (Bertrand et al.,
2014); this is assisted by folate-, transferrin-, mannose-, and
antibody-conjugated nanomaterials (Huang et al., 2016) and is
combined with the EPR effect. The discovery of new drugs such
as ipilimumab has paved the way for active immunotherapy
by eliminating residuals and advanced cancer with durable
and long-lasting responses (Hodi et al., 2010; Baronzio et al.,
2013).

The presence of TAM2 in the TIME inhibits the recruitment
of effector T cells to the tumor core (Beatty et al., 2015).
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Additionally, IL-10 and TGF-β that are excreted by TAM2
macrophages can suppress adaptive immune responses and
drive the differentiation of regulatory T cells (Tregs) (Liu
et al., 2019). Utilization of biomarkers that are overexpressed
on tumor-associated macrophages (TAMs) to design specific
ligands, construct nanocarriers, and modify their targets to
remodel the TIMEs has attracted much attention, especially
with respect to the polarization from TAM2 to antitumor
TAM1 macrophages (Goswami et al., 2017). Additionally,
albumin nanoparticles that are modified with mannose and
encapsulated with drugs such as regorafenib, target albumin-
binding proteins such as secreted protein acidic and rich in
cysteine (SPARC) overexpressed in tumor cells and the protumor
TAM2, serving both as a delivery and therapeutic strategy.
TAM2 is “reeducated” into the antitumor TAM1 by means of
the interplay of the TAMs, Treg, and effector CD8+T cells,
thereby reducing apoptosis (Zhao et al., 2018). Similarly, more
multifunctional nanoprobes decorated with target markers and
loaded with macrophage regulators have been utilized to remodel
the TIMEs via reprogramming of TAMs and efficiently trigger
macrophage-directed cancer immunotherapy (Ai et al., 2018;
Nath et al., 2018). Interestingly, natural killer cell membranes that
are carried with photosensitizer-embellished nanoparticles are
used synergistically with photodynamic therapy and have been
found to enhance M1-macrophage polarization, inhibiting the
growth of primary and distant metastatic tumors (Deng et al.,
2018).

ACT is an important part of cancer immunity. Nanoprobe-
based regulation mainly focuses on pre-removal of tumor
suppressor T cell recruitment factors such as TGF-β to activate
the T cells (Zheng et al., 2017) and on normalization of tumor
vasculature with vascular endothelial growth factor (VEGF)
antibodies (Stephan et al., 2015). Additionally, nanoparticles have
been found to enable ex vivo and in vivo T-cell proliferation,
allowing the generation of effector T cells of high quality and
quantity. Iron-dextran-derived artificial antigen-presenting cells
(aAPCs) were used to selectively filter tumor-specific T cells from
the naïve precursors by virtue of a magnetic force (Perica et al.,
2015). Nanoprobes that were conjugated with fibronectin were
utilized to activate T-cell proliferation, thereby increasing the T
cell expansion rate (Perica et al., 2015). Furthermore, nanoprobes
loaded with DNA were selectively connected to the T cells,
resulting in expression of a defined leukemia-specific Chimeric
Antigen Receptor (Smith et al., 2017).

However, the therapeutic effects of ACT are impaired
by insufficient proliferation and inadequate T-cell activity
in the immunosuppressive TIMEs (Mardiana et al., 2019).
In contrast to immunotherapy in isolation, nanoplatform-
based synergistic combination cancer immunotherapy allows
for improved anticancer activity as it includes radiotherapy,
chemotherapy, photothermal and photodynamic therapy, gene
therapy (Sang et al., 2019), and magnetic hyperthermia therapy
(Pan et al., 2020). In essence, this is also a measure for
enhancement of immunity by means of exposing more tumor-
associated antigens, promoting the recruitment and infiltration
of more effector cells into tumor tissue, and generating

long-term memory T cells to prevent tumor recurrence
and metastasis. Additionally, switching non-T cell-inflamed
into T-cell-inflamed TIMEs can contribute to subsequent
effective immunological checkpoint blockade (ICB) therapy
(Spranger, 2016).

NORMALIZATION OF CANCER
IMMUNOTHERAPY

Compared with enhancement of cancer immunotherapy,
normalized way harnesses the identification and correction of
immune response deficiencies during tumor progression to
further selectively restore natural antitumor immune capacity
(Sanmamed and Chen, 2018). It is mainly comprised of ICB
therapy, which has been widely recognized and used in clinical
trials as it exhibits fewer side effects.

The B7-H1/programmed cell death-1 (PD-1) inhibitory
pathway leads to the suppression of immune responses (Zou
et al., 2016; Ribas and Wolchok, 2018). It has been approved
for commercial use by the U.S. Food and Drug Administration
(FDA) and used in clinical cancer immunotherapy (Liu
et al., 2019). Accumulation and retention of checkpoint
inhibitors that are encapsulated in nanoprobes within the tumor
allows for enhanced efficacy (Meir et al., 2017). Furthermore,
the αPD-L1 antibody combined with gold nanoparticles as
the targeted marker has been harnessed to predict the
benefits of anti-PD-1/PD-L1 immunotherapy through image-
guided accumulation. Additionally, compared to free checkpoint
inhibitors, nanomaterials loaded with PD-L1 can be decorated
with tumor-targeting probes to decrease the dose while reducing
side effects, and be sustainably released within the sites of interest
(Teo et al., 2015; Wang C. et al., 2016). Furthermore, knockdown
expression of the PD-1/PD-L1 pathway also enhances the efficacy
of ICB (Shi et al., 2018). Small interfering RNA (siRNA) has
been utilized to silence the PD-L1 pathway and for knockdown
of PD-1 on tumor-infiltrated T cells to promote immunity
against cancer and inhibit progression and metastasis of tumors
(Borkner et al., 2010; Iwamura et al., 2012; Wang D. et al., 2016).
Moreover, clinical trials indicate that anti-PD-1/PD-L1 combined
with cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
blockade exerts a synergistic antitumor effect in melanoma
and lung cancer (Chae et al., 2018). Additionally, the study of
inhibitory signaling pathways independence of PD-1/PD-L1 in
the TIMEs will provide new strategies for nanotechnology to
adjust immune normalization, such as for fibrinogen-like protein
1 (FGL1)/lymphocyte-activation gene 3 (LAG-3) (Wang et al.,
2019), and the v-set immunoglobulin domain suppressor of T cell
activation (VISTA) pathway (ElTanbouly et al., 2019; Mahoney
and Freeman, 2020).

CONCLUSIONS AND FUTURE
PERSPECTIVES

The urgent demand for effective cancer immunotherapy
strategies has attracted attention in the field of biomaterials
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FIGURE 2 | Future outlooks for effective immunological response harnessing TIME-responsive nanomaterial.

science, immunity, and molecular imaging (Liu et al., 2019).
Following decades of progress, anti-TIME responses assisted
by artificial nanoplatforms have been harnessed, and this is
a fundamental strategy in cancer immunotherapy. However,
within the development of these artificial nanomaterials, there
are still many unexplored opportunities, and technical issues and
scientific challenges remain to be addressed. This minireview
highlights current difficulties in cancer immunotherapy
and the advantages of applying nanotechnology to address
immune escape and rejection. Based on previous studies
(Binnewies et al., 2018), herein, we would like to provide
some key points and perspectives on nanomaterial design for
an effective immunological response (Figure 2). These are
as follows:

1) A deeper understanding of the TIMEs can better reveal
advanced biomarkers for designing nanoplatforms to exert
antitumor immunotherapy. The rich immunosuppression
mechanism in the tumor makes it difficult for a single
treatment to standalone. The development of new tumor
immune escape mechanism pathways provides more
immunological checkpoint blockade targets, such as
FGL1/LAG-3 and VISTA. The controlled release and
multidirectional carrying characteristics of targeted
nanoplatforms can comprehensively inhibit multiple immune
pathways, making ICB more effective. In addition, the I-E

TIMEs result in poor therapeutic effect and require warming
prior to combination with other therapies, providing new
ideas for effective treatment.

2) Future prospects may involve rational combination of
immunotherapies with other treatments for more efficient
cancer inhibition and elimination. Generally, the immune
system of the patient with cancer is normal, and the
focus is on the mode of usage of the composite and
intelligent nanomaterials to better tune the body’s immune
defense to eliminate the tumor. Hence, during the design
of a nanomaterial, the combination of multiple treatment
methods should be considered.

3) The enhanced immune strategy frequently leads to immune-
related adverse events (irAEs). To promote basic to clinical
conversion, safety of nanotechnology and side effects of
immunity must be comprehensively evaluated (Sanmamed
and Chen, 2018).

As a collaborative study, we believe that the use of
nanotechnology to achieve higher objective response rates
with fewer irAEs is a promising approach. Additionally,
it is envisaged that the steady development of such
nanomaterials will improve the quality of life for patients
with cancer and certainly promote the transformation
of cancer immunotherapy from a basic study to
clinical application.
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