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Recent electrophysiological observations related to saccadic eye movements in rhesus

monkeys, suggest a prediction of the sensory consequences of movement in the Purkinje

cell layer of the cerebellar oculomotor vermis (OMV). A definite encoding of real-time

motion of the eye has been observed in simple-spike responses of the combined

burst-pause Purkinje cell populations, organized based upon their complex-spike

directional tuning. However, the underlying control mechanisms that could lead to such

action encoding are still unclear. We propose a saccade control model, with emphasis

on the structure of the OMV and its interaction with the extra-cerebellar components. In

the simulated bilateral organization of the OMV, each caudal fastigial nucleus is arranged

to receive incoming projections from combined burst-pause Purkinje cell populations.

The OMV, through the caudal fastigial nuclei, interacts with the brainstem to provide

adaptive saccade gain corrections that minimize the visual error in reaching a given target

location. The simulation results corroborate the experimental Purkinje cell population

activity patterns and their relation with saccade kinematic metrics. The Purkinje layer

activity that emerges from the proposed organization, precisely predicted the speed

of the eye at different target eccentricities. Simulated granular layer activity suggests

no separate dynamics with respect to shaping the bilateral Purkine layer activity. We

further examine the validity of the simulated OMV in maintaining the accuracy of saccadic

eye movements in the presence of signal dependent variabilities, that can occur in

extra-cerebellar pathways.
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1. INTRODUCTION

Saccades are rapid eye movements, observed in primates, carried out to bring a selected spatial
target into the center of the fovea. The saccadic eye movements are executed in the absence of visual
feedback information, suggesting a contribution of internal estimates (that predict sensorimotor
consequences) in generating accurate eye movements (Shadmehr et al., 2010). In addition, various
factors such as the mechanical state of the oculomotor plant, behavior of the target stimuli (Aslin
and Salapatek, 1975), and variable motivational states associated with the same target location
(Jürgens et al., 1981; Xu-Wilson et al., 2009) result in variabilities in motor commands. Adaptation
is necessary in the neural pathways forming the internal estimates to deal with the presence of
definite functions of variability, and this has been a topic of high interest in the experimental and
modeling aspects of sensorimotor control (Hopp and Fuchs, 2004).
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Lesion and inactivation studies (Zee et al., 1976; Xu-
Wilson et al., 2009) carried out in the posterior lobes VIc
and VII of the cerebellar vermis, also known as oculomotor
vermis (OMV), indicate a loss of accuracy and adaptation in
the saccadic eye movements. This OMV regulated adaptation
(Robinson et al., 2006), involves both online correction of
sensory-motor signals in the saccade control system to deal
with inter-trial variability (Takagi et al., 1998), and also
long-term corrections for the changes in the mechanical
properties of oculomotor plant (Ritchie, 1976; Optican and
Robinson, 1980; Robinson, 1995). These observations imply
that the OMV can take into account the current state of
the oculomotor system, and produce necessary corrections
for accurate saccadic eye movements. To achieve accuracy,
the correction signals from the OMV output should bear a
definite relationship with saccadic activity. Particularly, OMV
output is transferred to the extra-cerebellar components in the
saccade production, by means of projections of the vermal
Purkinje cells (PCs) (that form the sole output of the cerebellar
vermis) onto caudal fastigial nuclei (cFN). However, the
organization of the PCs and cFN in the cerebellar vermis and
their interactions with the extra-cerebellar regions, responsible
for such error correction mechanisms have not been fully
addressed.

Definite saccade related contextual information such as
desired saccade displacement and progress of the eye toward
target, has been observed to be encoded in the inputs carried
to the OMV as mossy fiber (MF) information (Kase et al.,
1980; Yamada and Noda, 1987; Ohtsuka and Noda, 1992). This
mossy fiber information undergoes further processing in the
granular layer of the OMV, before transmission to the PCs,
whose activity is further regulated by the error information
received from the climbing fibers (Ito, 1990). The activity of
climbing fiber afferents has been observed to have definite
modulation with respect to the visual error from inaccurate
saccadic movements (Soetedjo et al., 2008). A large number
of these Purkinje cells converge in an inhibitory manner, onto
the cFN. The activity of these cFN could be further shaped
by excitatory projections from mossy fibers, as indicated in
Ohtsuka and Noda (1991). These cFNs are directly involved in
providing correction signals derived from the OMV, to the other
regions of saccade generation circuitry. The lateralized cFN in
the direction of saccades produces an early burst of saccade,
and the cFN in the opposite direction produce a late burst for
a certain duration that is related to the end of saccadic movement
(Ohtsuka and Noda, 1991; Fuchs et al., 1993). The objective
of the saccade models (Dean, 1995; Schweighofer et al., 1996),
following the early experimental observations has been to explain
various neural mechanisms that could cause the observed cFN
discharges, that ultimately produce saccadic trajectories. These
models do not reproduce the PC patterns responsible for such
control. Anothermodel inQuaia et al. (1999) andOptican (2005),
reproduces the driving and braking signals generated by the cFN
activity, but does not provide a plausible representation of the PC
discharges.

In the earlier experimental and modeling cases, the functional
organization of the PCs of the OMV, responsible for such

stereotypical cFN activity was not examined well enough. Even
though earlier experimental recordings illustrated saccade related
discharges in individual PCs of the OMV, no definite encoding
of saccade metrics such as amplitude, speed, or motor related
information was observed in the firing patterns of those Purkinje
cell outputs. Moreover, the duration of the recorded PC activity
does not subside with the end of saccadic movement. This leads
to an interesting question of the manner in which PCs in the
OMV could encode the eye motion. A recent model in Gad and
Anastasio (2010) aims to explain shaping of the cFN activity as
a result of separate populations of burst and pause PC activities.
In this model, the oculomotor drive signal by contralateral cFN
burst in the beginning of saccade, is generated by the combined
excitation from the MF inputs with the sequential pause and
burst activity of the inhibiting PC projections. However, this
model did not examine the possibility of amplitude modulation
in the cumulative PC population activity, with respect to various
saccade target eccentricities.

Contrary to the previous experimental observations on
individual bursting or pausing PC population activities, recent
recordings (Herzfeld et al., 2015) suggest that combined activities
of burst-pause PC populations converging onto a common cFN,
predict real-time motion of saccadic eye movements. The key
difference from the earlier observations was to cluster the PC
based upon their respective climbing fiber projections from the
inferior olive. Furthermore, each of these PC population cluster
has been considered to project onto a single cFN. The net
inhibitory input from these Purkinje cell populations onto the
cFN is observed to encode the direction and speed of saccades via
a gain field. These experimental recordings on the PC population
activity, can present a transition in the understanding of the
role of OMV in saccade adaptation. In this context, we propose
to model the predictive encoding of saccade kinematic metrics
observed in the Purkinje cell population responses, and its role
in the endpoint control of saccadic eye movements. Before, it is
important to elaborate the overall neuroanatomical connections
involved in the saccade sensorimotor control.

1.1. Neuroanatomy
A simplified representation of the anatomical organization
involved in saccade production, based upon major experimental
studies (Robinson, 1972; Jürgens et al., 1981; Hepp and
Henn, 1983; Scudder, 1988), is presented in Figure 1. In these
anatomical connections, Medium-lead burst neurons (MLBNs)
in the brainstem are the only directly responsible connections for
delivering velocity commands to the putative premotor circuitry
(Van Gisbergen et al., 1981). Information regarding the target
eccentricity could be regarded to be transferred from the frontal
eye fields to the superior colliculus (SC). The MLBNs receive
inputs from the superior colliculus (SC) through three different
pathways (Schweighofer et al., 1996; Quaia et al., 1999). In the
direct pathway, the SC information is projected directly onto the
MLBNs through unilateral excitatory connections. The indirect
pathway involves a further modification of the SC activity in the
lobuli VIc and VII of the OMV, transferred through the nucleus
reticularis tegmenti pontis (NRTP). The third pathway involves
inhibitory connections from the omnipause neurons (OPNs),
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FIGURE 1 | Simplified representation of the neuro-anatomical pathways involved in saccade production. The target information from the frontal eye fields (FEF)

diverges into two distinct pathways for generation of motor control signal: The direct pathway, represented as red lines, passes through the superior colliculus (SC)

which provides excitatory input drive to the medium lead burst neurons (MLBNs). A displacement integrator (DI) with gain lower than unity is employed to represent

the inaccurate feedback information in case of vermal lesions. Additionally, the SC is hypothesized to provide static hold on the eye position by influencing the activity

of omnipause neurons (OPNs), represented as dotted lines. The indirect pathway, represented as black lines, undergoes additional processing in the cerebellar

oculomotor vermis (OMV), before projecting drive/brake signals to the MLBNs.

that acts as static hold for the oculomotor plant until it receives
a drive trigger from the SC region to initiate eye movement.
The MLBNs are driven by dynamic motor error, which is the
difference between a desired target displacement and current
eye displacement. An estimate of this eye displacement could be
considered to be derived from integrating the velocity commands
generated in the MLBNs (Van Gisbergen et al., 1981). This
velocity integration is represented by the displacement integrator
(DI) component in Figure 1. During the inactivation of the OMV
in the indirect pathway, the DI can be considered to provide an
inaccurate estimate of eye position, hence resulting in saccade
inaccuracies with a non-zero endpoint error (termed as saccade
dysmetry). Several closely related interpretations have explained
the nature of this inaccurate eye position estimate (Dean, 1995;
Quaia et al., 1999; Optican, 2005). For our study of the OMV
regulated endpoint control, the model proposed in Dean (1995),
involving a local feedback loop with gain lower than one and
agnostic to the origin of the eye position estimate, is suitable
for simplification of control computations. As already described
above, the focus of this current work lies in simulating the role of
OMV in the indirect pathway, that is responsible for precision in
steering the eyes toward a given target.

1.2. Contribution
We develop our current model with a major goal to simulate
the encoding of saccade kinematic metrics, observed in
the cumulative burst-pause responses in the Purkinje cell
populations of the cerebellar vermis, that project onto common
fastigial nucleus (Herzfeld et al., 2015). Our focus is to shed light
on the underlying vermal and nucleus activities, by implementing
simplest assumptions that could result in such action encoding.
The first simplification we implement, is to consider a rate-
based control approach for simulating the involved neural
components, as explained in detail in the Methods section.
This allows us to emulate the total input to each cFN (i.e.,

the net PC population projection onto cFN), and the output
activity of the cFN responsible for generating the necessarymotor
commands. Furthermore, the PC layers are not comprised of
purely burst or purely pause type activities, but contain combined
burst-pause responses. This is inline with the hypothesis that
the action encoding is observed in the total inhibitory activity
onto the cFN from burst-pause Purkinje cell populations. The
second simplification, as elaborated in the Methods section, is
to consider the lateralized PC populations on each side to act
exactly in opposite directions with respect to themotor command
delivered to the oculomotor plant.

Our model demonstrates that, the cFN activity could be
shaped by the cumulative responses from the burst-pause
Purkinje cell populations. The PC information is further
combined with excitatory projections from mossy fibers arising
in the brainstem region, to form the net cFN activity. The
cFN activity thus generated, provides necessary corrections
to the saccadic movements. To simulate the ability of the
cerebellar vermis to generalize the learning from different input
contexts, we implement sparse connectivity in the granular
layer units (simulated as rate based leaky-integrator units),
with random inhibitory interconnections (Yamazaki and Tanaka,
2007a; Rössert et al., 2015; Bratby et al., 2016) and excitatory
mossy fiber projections that carry the state of saccadic eye
movement.

Sensory estimation, in the form of speed encoding, in the
Purkinje layer facilitates the modulation of motor error input to
the burst generating units in the brainstem region. This sensory
estimation in the PC population response itself is shown in the
model to result from the overall objective to reduce the visual
target reaching error. The modulation of visual reaching error is
facilitated by plastic connection strengths at the PF-PC synaptic
connection site. Overall, our model demonstrates the role of
OMV as a forward model estimator for sensory consequences of
eye movement, backed by recent saccade experimental evidences.
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With the same model, we illustrate the mechanism by which
the presented OMV configuration can compensate for signal-
dependent variabilities, associated with the extra-cerebellar
pathways of saccade production. The results indicate that the
OMV could provide appropriate compensations for variabilities,
by means of its forward model mapping of the kinematic state of
the eye movement to the necessary motor error corrections at the
brainstem region.

2. METHODS

The overall neuronal circuitry of our model is presented
in Figure 2, and the main features include: 1. An internal
feedback loop based on the grouped brainstem properties,
that generates high magnitude bursts as velocity commands to

the premoto-neuron circuitry. 2. Bilateral OMV region, that
compensate for the errors and variabilities associated with
horizontal eye movements.

The key components of saccade production system are already
outlined in Figure 1. The oculomotor system is composed of
complex and distributed neuronal circuitry with directional
selectivities. Each of the component does not need an explicit
neuronal representation for analyzing the OMV structure
under study, and several previous works have made simplified
implementations for the study of specific regions (Dean, 1995;
Schweighofer et al., 1996; Optican, 2005). Hence, wemake several
simplifications in our saccade model. The key feature of the
OMV adaptation is the active modulation of the motor error
delivered to the brainstemMLBNs, by the OMV outputs through
the cFN, by means of plasticity in the PF-PC synaptic weights.
We approximate the distributed brainstem burst neurons to

FIGURE 2 | Schematic diagram showing the bilateral organization of the OMV and its connectivity with the internal feedback loop in saccadic production. The

anatomical components in this saccade control system includes the SC, superior colliculus; BG, burst generating units to provide velocity commands u to the

oculomotor system; DI, displacement integrator for providing inaccurate internal estimate of the eye position; NI, neural integrator that provides tonic discharge to hold

the eye in place; Target information to the OMV is provided by MFtarget signal, the state of the BG is provided by MFburst; z is the granule cell layer activity; ypccontra
and ypcipsi represent the bilateral PC population activity that receive same climbing fiber (CF ) projections from the inferior olive (IO); yccontra and ycipsi represent the net

bilateral cFN activity. Arrowed projections indicate excitatory connections and circled projections are inhibitory. MF and CF inputs to the OMV are represented using

dotted lines, connections to the grouped internal feedback loop are represented in red colored lines. PF-PC weights are the variable connection parameters.
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a grouped control block as detailed in the internal feedback
loop subsection below. The SC is replaced by a dummy neuron
unit similar to Dean (1995), that outputs a step signal with
firing-rate proportional to the desired saccade amplitude (1
Hz = 1◦ desired saccade amplitude). This does not alter the
analysis on the OMV because we focus on the OMV output
responsible for eye movement correction, without including
possible OMV to SC modifications. Moreover, the inputs to the
OMV, as described in this section, are set to be physiologically
plausible. The NRTP is just used as a relay. Furthermore,
we employ a switch mechanism activated after a fixed time
duration from the saccade beginning, to cut-off the activities
of the brainstem and OMV inputs, and hold the eye at the
reached position at the cut-off time. This switch relaxes the
model from having to send separate eye-hold signals to the
omnipause neurons (OPNs). Without loss of generality, we
simulate horizontal saccades toward targets located in rightward
direction.

2.1. Internal Feedback Loop
The shaping of the brainstem output is determined by
the contributions from desired displacement command (yd),
cerebellar output (yc), and the displacement integrator that
performs imperfect integration of its own activity (u) over
time, as presented in Equation (1). The distributed connections
of excitatory and inhibitory burst neurons (EBN, IBN) in
the brainstem are simplified in a grouped control block, for
emulating the average burst behaviors observed during the
inactivation of cerebellar compensation for the saccade control.
The net output from the brain stem is devised to represent the
burst properties of the involved neurons as presented in Equation
(1), similar to the approach followed in Van Gisbergen et al.
(1981) and Dean (1995) for brainstem representation,

u(t) = A(1− exp−(yc+yd−k
∫
udt)/σ ) (1)

where, u(t) represents the magnitude of the burst at time t, A
is the amplitude of the burst and fixed to a value of 1, 100Hz.
The parameter k varies the end-point error in the absence
of cerebellum. k = 0 results in continuous increase in the
eye position, and k = 1 causes the eye to reach the target
displacement yd with significantly lower speed. The intermediate
values k ∈ (0, 1) result in non-zero reaching error with no control
in the eye speed. For the monkey oculomotor system, the value of
k is considered to be a fixed parameter equal to 0.72 and σ is fixed
at a value 16 (Dean, 1995).

2.2. Oculomotor Vermis
The indirect pathway of saccade motor control includes the SC-
NRTP-OMV-cFN connections as shown in Figure 2, with OMV
as the key neuronal processing site. Contrary to many of the
previous modeling studies (Dean, 1995; Quaia et al., 1999; Gad
and Anastasio, 2010), we include the granular layer computations
as an essential component in shaping the PC population activity.
It is important to note that the PC layer activity described in
this model represents the total population response projecting
onto the cFN. Hence, the simulated PC layer does not represent

an individual biological Purkinje cell, but represent the total PC
projections onto a given cFN.

2.2.1. Input Information
In the context of eye movement controllability in the saccade
control scheme, the OMV requires the target displacement
information, and an estimate of the progress of eye movement
toward the target location. The NRTP activity contains
information about the desired target displacement, and acts
as the source of target information to the OMV(Crandall and
Keller, 1985; Ohtsuka and Noda, 1992). These MFs from the
NRTP region,MFtarget , are set to transmit the target displacement
information, yd, in the form of an amplitude-proportional
activity. The experimental recordings from the MFs originating
from the NRTP in Ohtsuka and Noda (1991, 1992) indeed show
the existence of suchMF types, with definite relationship between
peak firing rates and the saccade amplitude. The target relatedMF
activity is simulated to build-up gradually before the movement
initiation, tON , to mimic the long-lead characteristics expressed

as utarget(t|t ≤ tON) = λyde
−(t−tON )2

α2 . Here λyd represents the
final value reached by the build-up and α is the spread. Further
the MFtarget activity sustains at the value λyd from tON until the
end of the eye movement.

On the other hand, the progress of eye movement information
to the OMV does not need to come directly from the visual
or proprioceptive sensors. Indeed, the experimental results on
monkeys in Lewis et al. (2001), show an independence of on-
line saccade eye control from the proprioceptive information
(for linear range of eye movement). In our model, the OMV
receives brainstem burst related efference copy information,
uburst , through mossy fibers MFburst . In regard to this
MFburst activity, two separate sources of MF activity are
found in the previous literature. Experimental recordings
(Kase et al., 1980; Yamada and Noda, 1987), and modeling
studies in Schweighofer et al. (1996) and Quaia et al.
(1999) propose the brainstem burst information related MFs
to be originating directly as bilateral projections from the
brainstem PPRF region. On the other hand, Gad and Anastasio
(2010) considered the MF to be derived from the burst-
tonic signal provided from SC projections through NRTP
structure. Nevertheless, the important aspect that is agnostic
to specific projection sites, is the agreement regarding the
presence of the brainstem burst information, u(t), in the MF
projections onto the OMV. The MFburst activity is simulated
as feedback from the brainstem burst generator during the
movement.

2.2.2. Granule Cell Activity
The overall mossy fiber afferents carry the activity m(t) =

(utarget(t), uburst(t)) at a given time t. This information should be
used by the OMV to compute the necessary compensations, yc as
depicted in Figure 6. These MF afferents excite the downstream
granule cells whose activity is computed as follows:

τ ˙z(t) = [−z(t)+ S(t)]+ (2)
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where, τ is the time constant, z(t) is the vector of N granule cell
activities at time t, S(t) is the net synaptic projection on to each
granule cell at time t given by

S(t) = f (wmf−GrCm(t)− ρwz(t)) (3)

where, wmf−GrC represent the vector strengths of N mossy fiber
projections onto the granular layer,w represents theN×Nmatrix
of connection strengths in the granule layer. The weights w are
strictly positive so that the term −ρwz(t) is always negative,
and hence results in inhibitory connection as represented by
Equation (3). Separate populations of Golgi inter-neurons are
not included in this model. Moreover, both wmf−GrC and w

do not contain any manually set values of connection weights,
but are a set as sparse and random distribution for having a
stable granule layer activity. f is considered to be a sigmoid
function. An additional parameter ρ referred as the spectral
radius, is used to limit the maximum weights in the granule layer
to ensure the stability of the granular layer dynamics. As the
exact connectivity patterns in the granule layer are not yet clear
from experimental recordings, this sparse-random connectivity
should serve as a reasonable and minimalistic assumption for
gain and timing control studies (Yamazaki and Tanaka, 2007b).
This kind of granule cell representation is known to carry out
an appropriate signal expansion of the mossy fiber inputs in a
number of computational models (Yamazaki and Tanaka, 2007a,
2009; Rössert et al., 2015).

2.2.3. PC and cFN Activity
The granule activity (z) is transmitted by means of PF
connections (p) to the PCs, with wpf−pc connection strength
vector of length N. The important concept underlying the
objectives of this work is the sorting of burst-pause PC
populations onto bilateral cFN, so that they can be enabled to
be separately tuned for the directions of task space error. In
experimental terminology, the PC units that show maximum
firing for a given error direction can be labeled as CS-on in
that particular direction, and the opposite direction (at 180◦)
as CS-off (Herzfeld et al., 2015). Furthermore, these CS sorted
PC populations (combined burst-pause PCs) are found to be
lateralized, with the CS-on sorted PC layer available on the
contralateral side, and CS-off PC layer available on the ipsilateral
sides of the eye movement. We have simulated burst-pause
PC populations on contralateral and ipsilateral sides of the eye
movements as shown in Figure 2.

We approximate the PC layer to contain a sum of all the
projecting PFs weighted by the respective PF-PC connection
strengths. The state of the PCs is combined with the mossy
fiber strength onto the fastigial nucleus (cFN). wpc−cFN represent
the strength of PC-cFN connections, and wmf−cFN represent the
connection fromMFs to cFN. Hence,

ypccontra (t) = wpf−pccontraz(t)

ypcipsi (t) = wpf−pcipsiz(t) (4)

yccontra (t) = −wpc−cFNcontraypccontra (t)+ wmf−cFNcontra
u(t)

ycipsi (t) = −wpc−cFNipsiypcipsi (t)+ wmf−cFNipsi
u(t) (5)

The negative sign on the PC contribution to cFN activity in
the above equation represents the inhibitory projections of
PCs onto the cFN. Bilateral cFN activities described in the
above equation affect the total motor command delivered to the
oculomotor system through their projections onto the MLBNs.
The contralateral cFN adds to the saccade command during the
beginning of the movement by its excitation of the ipsilateral
MLBNs. The ipsilateral cFN provides a braking signal at the
end by means of a late burst and subsequent excitation of the
contralateral MLBNs (Fuchs et al., 1985). The motor command
to the oculomotor plant, delivered through motor neurons, is the
net difference between the contralateral and ipsilateral MLBNs,
simulated as one grouped unit. As depicted in Figure 2, the
equivalent control representation of this anatomical detail is
that the contralateral cFN adds a positive command to the eye
movement and the ipsilateral cFN provides a negative command.
If we assume that the wmf−cFN and wpc−cFN are constant, the
PC populations are responsible for the driving and braking
commands in the oppositemanner as that of their respective cFN.
Overall, the net contribution by the bilateral cFNs is considered
as follows,

yc(t) = r1yccontra (t)+ r2ycipsi (t) (6)

where r1 and r2 signify the responsibility of each cFN response to
the motor command. Specifically in this paper the values used are
r1 = 0.02 and r2 = −0.02. Furthermore, wpf−pc are considered
to be the only sites of plasticity in this model.

2.3. Learning Criterion
Contrary to the approach of adjustment of the free parameters
to fit the experimental data for specific stimuli conditions, our
objective is to model the experimental observations as emergent
phenomena of task error reduction.

Traditionally, saccades have been considered to minimize
the endpoint variability. The information from the climbing
fiber neural correlates (Soetedjo et al., 2008, 2009) suggest that,
the estimate of the discrepancy between the desired and the
observed sensory states is the likely candidate to regulate saccade
eye movements. Such cost considerations can be observed in
several modeling studies (Chen-Harris et al., 2008; Saeb et al.,
2011), without emphasis on the OMV activity. In this work, we
employ the following cost computation for generating saccadic
movements.

J =

T∑

t=0

|1g(t)| + γw2
pf−pc

such that, 1g(t) = 1yd(t)− 1ye(t)

(7)

where J is the cumulative cost accumulated by the end of the
saccadic movement, 1g(t) is the gaze error between desired eye
displacement (yd) and the original eye displacement (ye) at time
t, wpf−pc represent the adaptive synaptic connection strengths of
the bilateral OMV, and γ represents the relative significance of
weight regularization compared to the gaze accuracy represented
by the first term.
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The PC activity for a given MF input can be modulated
by changing the PF-PC connection strengths. This results in
downstream cFN activity modulation. In light of different
contributions of the bilateral cFNs to the ongoing motor
command as given in Equation (6), it is worthy to note that
considering different proportions of r1 and r2 can result in
different types of cFN responses—for example: only burst, only
pause, burst before pause, or pause before burst responses.
The exact kind of responses elicited are dependent upon the
physiological constraints on the PCs and cFNs, such as the
relative distributions of each type of cells, and their discharge
properties. These additional physiological details can be added
as constraints on the cost function depicted in Equation (7).

3. RESULTS

We present the simulation results in four parts. In the
first part, we present the saccadic trajectories and how they
are related with physiological evidences on monkeys. In the
second part, we illustrate the emergence of PC layer activity
from our model, and its predictive encoding of saccade
kinematic metrics such as amplitude and speed. As described
in previous sections, the simulated PC layer activity represents
the total amount of inhibitory activity projecting onto each
cFN, by the combined burst-pause PC populations organized
by their common complex-spike/error property. We present
a comparison with the experimental evidences described in
Herzfeld et al. (2015). This is followed by the portrayal of the
vermal and cFN activities. In the final part, we illustrate the ability
of the same model to compensate for variabilities associated with
the saccadic eye control.

The simulations are carried out to have adaptive weight
updates at the PF-PC connections wpf−pccontra and wpf−pcipsi . The
eye plant with the orbital tissue is approximated by a second
order plant of the form,

k1θ̈ + k2θ̇ + k3θ = m(t) (8)

Where, θ(t) is the eye position and m(t) is the net command or
motor neuron firing rate imparted to the eye plant at time t. k1,
k2, and k3 are the plant constants and set to the values 0.003
and 0.6 and 4, respectively. All the parameters considered for
simulations are presented inTable 1. The adaptation trials consist
of delivering motor commands to the oculomotor plant (the
same monkey eye model as considered in Dean, 1995), through
the mentioned direct and indirect pathways, resulting in specific
eye movement toward the given target locations. These target
locations are randomly chosen horizontal eye displacements
between 4 and 20◦. The endpoint error information obtained at
the end of each trial is used to update the modifiable weights
in the control loop, using fmincon optimization toolbox in
MATLAB/SIMULINK. This toolbox uses finite difference based
search for estimating the value of gradients at each iteration
of optimization, hence alleviating the requirement to supply
analytic incremental gradient update rule (while ensuring the
applicability of incremental weight updates). Each adaptation
trial is run for T = 0.4s, and the weight update is carried

TABLE 1 | Model parameters.

Parameter Value

k 0.72

k1 0.003

k2 0.6

k3 4

A 1, 100 Hz

σ 16

λ 2

α 0.015 ms

ρ ≈ 0.5

τ 20 ms

w ∈ [0, 0.2]

wmf−GrC ∈ [−30, 30]

wpc−cFNcontra ≈ 20

wpc−cFNipsi ≈ 20

r1 0.02

r2 −0.02

T 150 ms

γ 10−4

Numerical quantities of all the fixed parameters presented in the methods.

out until there is saturation in the cumulative endpoint error.
As the properties of the reservoir neurons affect the shape of
the produced granular layer activities and hence the overall PC
layer output, instead of considering hand-set values of granule
cell time constant τ and spectral radius ρ, we input these as
variable parameters in the optimization loop. The values of τ over
simulation trails is obtained to be close to 20ms, and the value of
ρ is obtained to be equal to 0.5. The regularization coefficient,
γ , presented in Equation (7) is determined empirically and
fixed at the value 0.0001, such that these values emulate the
PC population activity shape derived from electrophysiological
observations (Herzfeld et al., 2015). All the simulated population
responses depicted in the results below were obtained with the
calibration variables wpc−cFNcontra = wpc−cFNcontra ≈ 20, λ =

2, r1 = 0.02, and r2 = −0.02 as presented in the methods.
Biological recordings for the typical range of various synaptic
strengths in the OMV can facilitate appropriate tuning of these
calibration variables.

3.1. Saccade Adaptation Characteristics
As the brainstem and displacement integrator block was
simulated to generate eye movements in the absence of
cerebellum, the initial movement with no cerebellar contribution
results in default overshooting of the eye from a given target.
We use adaptation trials to adjust the wpf−pc connection
strengths, for the OMV module to be able to compensate
for these imprecise eye movements. This involves providing a
target saccade command to the control loop, and recording
the visual error associated with the movement. Subsequently
the PF-PC weights are adjusted based upon the sensory error
according to the learning criterion described in the Methods
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section. This procedure is repeated until accurate saccades are
executed.

Figure 3 illustrates the modulation of the eye movement
trajectories before and after the adaptation trials. Figure 3A
depicts the pre and post adaptation eye displacement
characteristics for a given target displacement of 20◦, while
Figure 3B depicts the typical speed modulation. The x-axis in
both plots refer to the saccade duration, with the eye movement
initialized at t = 0ms. The peak speeds corresponding to target
locations in the testing phase(post adaptation) are presented
in Figure 3C. Figure 3D depicts the duration of the learnt
eye movements for the presented target displacements. Both
the speed-amplitude and duration-amplitude relationships,are
in close alignment with the main sequence saccade patterns
in monkeys (see Figure 5 of Fuchs, 1967 and Figure 10 of
Van Gisbergen et al., 1981) .

3.2. Encoding of Action in the PC
Population Activity
Experimental results in Herzfeld et al. (2015) indicate a definite
relationship of the PC population activity, sorted by their CS
property, with saccade speeds and amplitudes. These CS sorted
PC populations have been found to be anatomically lateralized.
As already described in the Methods section, the contralateral PC

layer can be considered to be the CS-on direction, ipsilateral PC
layer could be considered to be the CS-off direction. Hence the
terms CS-on and CS-off are used interchangeably to indicate the
contralateral and ipsilateral PC layers respectively. We depict the
net total population activity of the CS-off PC layer, in relation to
saccade speed and amplitude in Figure 4 (that can be compared
with the experimental observations in Figure 3 of Herzfeld et al.,
2015). Figure 4A shows the change in the total activity of the CS-
off PC layer, from baseline (considered at zero of the ordinate)
for horizontal saccades of different amplitudes, made in the
rightward direction. This CS-off PC layer activity is characterized
by an early burst, with an onset prior to the initiation of saccadic
movement (represented as dotted line in the figure at t = 0s),
followed by relatively milder dip in the activity below baseline,
that continues until the MF activity persists. The size of the
PC layer activity is observed to increase with the size of the
saccade amplitude (shown for 10, 12, and 20◦). Although, the
experimental observations in Herzfeld et al. (2015) illustrate a
linear relationship between the CS-off PC population activity and
saccade amplitude (R2 = 0.93, P < 10−5), in the simulations
we observe a non-linear relationship (as indicated in Figure 4C).
This can be because we perform simulations in a larger target
range 4–20◦, while the experiments were performed between 10
and 15◦, where linearity could be observed.

FIGURE 3 | Adaptation results on sample test targets. (A) The displacement of eye position plotted against the movement time in milliseconds for a given test target

of 20◦. (B) The eye speed trajectory in deg/sec for the same test target of 20◦. (D) Peak Eye speeds at various simulated target displacements post adaptation.

(C) The duration of saccades against magnitude of the target displacements post adaptation. Comparison could be made from experimental observations on

monkeys, shown in Figure 10 of Van Gisbergen et al. (1981), and in Figure 5 of Fuchs (1967).
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FIGURE 4 | Eye motion information observed in the Purkinje layer activity. (A) Change in the CS-off PC layer activity at simulated target displacements (10, 12, and

20◦). (B) Change in the CS-off PC layer activity at different speeds of Eye movement. (C) Peak change in the CS-off PC layer activity showed a slightly curved

relationship with saccade amplitudes. (D) Peak change in the CS-off PC layer activity showed a linear relationship with saccade speed. Comparison could be made

from experimental observations on rhesus monkeys, indicated by Figure 3 of Herzfeld et al. (2015).

Furthermore, the CS-off PC layer activity can be observed to
be proportional to the saccade speeds (shown in Figure 4B). The
CS-off PC layer activity reaches its peak before the peak eye speed,
hence providing a predictive encoding of the saccade speed. The
peak change in CS-off PC population activity is related linearly
to the saccade speed associated with different target placements
(as shown in Figure 4D), which corroborates the experimental
observations (R2 = 0.98, P < 10−7) .

3.3. Vermal and Fastigial Nucleus Activity
Figure 5 illustrates the pattern of responses in the cFNs, post
adaptation in the OMV. These patterns of activity provide
feedback corrections to the burst generating units in the
brainstem for different saccade amplitudes. The activities are
represented as heat maps, to have a clear picture of the
generated signals, for randomly chosen target locations between
5 and 20◦. The baseline activities of cFN has been set to
be at zero ordinate level, hence the degree of change in the
color of the heat map directly represents the change in the
activity with respect to the baseline. These results can be
related to the pause-before-burst and burst-before-pause cFN
unit activities observed in experimental recordings (Fuchs et al.,
1993).

Bilateral cFN activity has been simulated to be the summation
of activities from the PC populations, and the excitatory MF
projections from the burst generating units. The resultant cFN
activity is depicted in Figures 5A,B. Figure 5A illustrates that
the contralateral cFN activity is characterized by a strong burst

activity during the initialization of the saccadic movement, that
forms a part of drive signal to the eye, as indicated in previous
works (Fuchs et al., 1993; Gad and Anastasio, 2010). This burst is
followed by a pause and subsequent return to the baseline activity
(0 in this case), till the eye hold is triggered. Ipsilateral cFN
signal activity is characterized by an early pause in the activity
followed by a late burst above the baseline and subsequent return
to the baseline (depicted in Figure 5B). In combination with
the pause in contralateral cFN activity, this late ipsilateral cFN
activity decelerates the eye from peak speed to a halt. It is worthy
to note the high activity in the cFN units around the onset of eye
movement (represented as dotted line at t = 0), whose intensity
increases with the increase in saccade amplitude.

The experimental recordings on individual cFNs (Ohtsuka
and Noda, 1991; Fuchs et al., 1993) indicate a modulation
of burst duration in cFNs, while their peak burst remains
constant. The current modeling results in Figure 5 depict an
increasing burst duration with increasing saccade amplitudes,
while the peak burst also increases slightly with the increase
in saccade amplitude. In this regard, it is worthy to note that
the current model describes the net contralateral and ipsilateral
activity of cFN that project onto the brainstem MLBN system.
The cFN activities depicted in Figures 5A,B are net population
rate activities rather than individual cFN activities. Sufficient
experimental observations are yet to be performed on the
cummulative population activities of the cFN, that project onto
each individual group of the distributed MLBNs with maximum
burst discharge in a preferred movement direction.
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FIGURE 5 | Bilateral cFN activities simulated for different saccade amplitudes in the range of 2–20◦, post-adaptation. (A) Contralateral cFN activity is comprised of

early burst in the activity above the baseline, whose intensity increases with the increase in desired target displacement, followed by pause in the activity. (B) Ipsilateral

cFN activity is comprised of early pause, whose intensity can be observed to increase with increasing target displacement, followed by burst in the activity above the

baseline.

Figure 6 illustrates the pattern of activities in randomly
picked granular layer units bilaterally. These plots show different
responses in the amount of burst and pause generated within
granular layer units on each side, during the eye movement. The
combined activities of these granular layer units on each side
provide temporal basis for the shaping of PC layer activities,
and consequently for shaping the cFN activities on the respective
sides. One important observation that could be made between
the contralateral and ipsilateral granular units is the similarity
in the temporal activity patterns between both sides, as depicted
in Figures 6A,B. These activity patterns are characterized by
relatively long temporal activity before the movement initiation
at t = 0ms and a relatively short duration of increase or decrease
in the activities during the movement. Performing visual error
based learning in the PF-PC connection strengths, by considering
the bilateral MFs to project onto a single side of granular layer
(either ipsilateral or contralateral sides), yielded similar PC and
cFN layer activity patterns as that of the bilateral granular layer
configuration. The bilateral OMV outputs could, in principle,
emerge from similar dynamics of the granular unit activities, by
means of different PF-PC and MFburst-cFN synaptic strengths.
This indicates that direction specific dynamics is not necessary in
the granular layer. As the granular layer is composed of multiple
cell types with specific roles and as few recordings are available, it
is difficult to verify this argument.

3.4. OMV Compensations for Variabilities
Having simulated the model to generate sensory corrections, we
chose to examine if the same model can explain the variabilities
in eye trajectories observed during primate saccade adaptation
experiments. In Xu-Wilson et al. (2009), the authors show that
the participants with intact OMV are able to correct their
movements against the variabilities in motor commands due to
drop in motivational levels. The same was not valid for cerebellar
patients, where the same structured variability resulted in saccade
dysmetria.

We can simulate the reduction in saccade speeds in our model
setup, by reducing the burst amplitude of the burst generating
units, A, mentioned in internal feedback loop (see Equation 1).
We perform simulation for the cases of an intact OMV that
actively takes in the MF inputs and computes the compensations
for the perceived reduction in motivation level (injected at the
level of burst generating units), and a clamped OMV output
which does not vary in relation to the variabilities in the burst
generating units.

Figure 7 illustrates the saccadic trajectories for a sample
15◦ desired target amplitude, with respect to intact OMV and
clamped OMV output conditions. In the case of intact OMV (left
column of Figure 7), the amplitude of the movement remains the
same in both normal and reducedmotivational states (induced by
means of saccade burst reduction by 16%). However, a dysmetry
of 2◦ is observed in the clamped OMV case (right column of
Figure 7). While the peak velocity dropped in both the intact
OMV and clamped OMV cases, only the intact OMV case
showed a later correction for the reduced peak velocity. The
intact OMV case showed a peak speed reduction of 11%, and the
clamped OMV condition showed peak speed reduction of 14%,
for the given target amplitude of 15◦. However, this reduction
in the speed was compensated by the corrective bulge observed
in the speed profile, after 19ms (indicated by the dotted line),
in the intact OMV trial. The same pronounced compensation at
a later time cannot be seen in the clamped OMV output case,
resulting in saccade dysmetria. It is important to note that, for
these variability trials no further learning is required in the OMV.
The previously learnt synaptic strength configuration is sufficient
to provide compensation for variabilities. To do this, the OMV
requires only information from theMFburst projections.

4. DISCUSSION

The principal outcome of this work, resulting from the proposed
saccade model, is the definite encoding of saccade kinematic
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FIGURE 6 | Simulated bilateral granule cell activities during the saccadic eye movement. (A) Activity in randomly picked granule cell units from the contralateral side.

(B) Activity in randomly picked granule cell units from the ipsilateral side.

FIGURE 7 | Simulations of eye movement profile for 15◦ target, in presence of variabilities in the extra-cerebellar pathway. (A,C) Represent the amplitude and speed

variations with respect to normal and reduced motivational states for intact OMV. (B,D) Represent the amplitude and speed profiles with respect to normal and

reduced motivational states for clamped OMV output.

information in the combined burst-pause PC population
response converging onto a common cFN. The total inhibitory
activity from the PC layer on a given cFN, displayed a definite
relationship with the speeds and amplitudes of the saccadic
movements. The peak population response in the PCs increased
linearly with the peak eye speeds, which corroborates the

experimental evidences from Herzfeld et al. (2015). While
emphasizing on the possible computations behind the observed
PC population response, we have been able to reproduce
stereotypical saccade amplitudes and speeds observed in
monkeys (Bahill et al., 1975). However, we have observed a slight
deviation from experimental observations (Herzfeld et al., 2015),

Frontiers in Computational Neuroscience | www.frontiersin.org 11 January 2019 | Volume 12 | Article 108

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Kalidindi et al. Modeling the Encoding of Saccade Kinematics

in the relationship of the peak PC population response with
the saccade amplitudes. While the experimental observations
indicate a linear relationship of the peak PC population response
with various desired saccade amplitudes, our model indicates
a curved relationship. Combining the observation that saccade
amplitudes and velocities are related in a similar curved manner,
and the observed linear relationship between peak PC population
response and saccade speeds, the non-linear curve between
peak PC population response and saccade amplitudes should
be a straightforward deduction. However, the experimental
observations were presented in a restricted range of saccade
amplitudes, from 10 to 15◦, thereby could not have informed
the possibility of non-linearities in a broader range of target
amplitudes. Through our simulations, we indicate that the peak
PC population responses are related to the saccade amplitudes, in
a similar manner as that of the relationship between peak saccade
speeds with amplitudes.

Further, our simulation results indicate the possible
mechanism behind the OMV, in compensating for the inter-trial
variability of saccade trajectories associated with the motivational
states of the primates. In the experimental studies conducted
on humans (Xu-Wilson et al., 2009), the authors demonstrated
a drop in the eye speeds along increasing number of trials, as
the human subjects repeatedly executed saccades to a given
target location. Appropriate corrections in motor commands
were supposed to be provided by the OMV at the end of the
eye movement, to counter the initialization at lower speeds.
However, the neural correlates of this phenomenon were not
completely clear. Variabilities can be injected into multiple sites
of saccade productionmodel, consequently having specific effects
on the output trajectories (Eggert et al., 2016). For example,
motivational state of the primates, corresponding to rewarded or
non-rewarded target locations, is observed to induce variabilities
in saccade velocities (Kawagoe et al., 1998). This is possible due
to the variable importance assigned to specific target locations,
by means of the distributed neural connections in basal ganglia
(Hikosaka et al., 2000; Kawagoe et al., 2004), projecting onto the
superior colliculus (SC). To examine the specific case of speed
reduction presented in Xu-Wilson et al. (2009), we induced an
amplitude reduction in the burst characteristics of the internal
feedback loop. By means of our simulations we observed that,
the OMV does not need to undergo further wpf−pc connection
strength adaptation inorder to associate different motivational
states of the primate with different PC population responses.
The OMV acquires forward estimation of sensory consequences
as a function of target displacement, current state of the burst
generator and eye position. Variabilities in the burst responses
of the internal feedback loop are reflected in the information
carried by mossy fibers, arising from the burst generating
units. This mechanism automatically provides an input state
separation, which the presented OMV organization is able
exploit to generate appropriate trajectory corrections. The same
compensatory mechanism was not observed in the clamped
OMV simulation.

Granular layer plays an important role in expanding the given
mossy fiber input states into complex and sparse information,
to provide appropriate activity at the PC layer. The dominant

neuronal units observed in the granule layer, are the granule
cells (GrCs) and golgi cells (GCs). Our current model is agnostic
to the distinct GrC and GC populations, and considers a
population of random-sparse-recurrent inhibitory connections
between uniform granular layer units. This kind of granular
layer computation, is inspired from the proposed computational
studies in Yamazaki and Nagao (2012), Rössert et al. (2015),
and Bratby et al. (2016). Further, we have implemented
granular layer in both contralteral and ipsilateral directions,
with different interconnections as represented in Figure 2.
The purpose of considering bilateral granular layer projections
was to examine if distinct patterns of granule unit activities
emerge for generating the necessary bilateral PC layer activities.
Experimental observations in Prsa et al. (2009), on the GC
activities during saccadic eye movements indicate that several
directions of movement are represented equally in the population
responses of GCs, without any directional selectivity. This
directional independence in the GCs is in contrast with the strong
directional preferences observed in the MF discharges related to
saccades (Kase et al., 1980; Ohtsuka and Noda, 1992). By our
simulations, we suggest that similar patterns of granular activities
can indeed produce both contralateral and ipsilateral PC layer
activities (CS-on and CS-off PC layers, respectively), by means
of different PF-PC synaptic strengths. Hence, direction specific
dynamics seems to be not necessary in the granular layer, in order
to induce appropriate activities in the Purkinje layer for precise
eye movement control.

The plastic PF-PC weights, have been modulated by a visual
error teaching signal. Unlike motor tasks such as vestibulo-ocular
reflex and simple eye blink conditioning, the desired output of
the cerebellum from the deep cerebellar nuclei does not need to
be directly available from the target information, but could be a
result of an unreferenced motor control problem (Harris, 1998).
However, through our simulations, we display the applicability
of sensory error information, which is not immediate but distal
(Dean et al., 2002), to enable appropriate adaptation of the
plastic synaptic sites in the OMV. The nature of the teaching
signal determines whether the output from the cerebellum should
compensate for sensory error signals (Tseng et al., 2007), or
motor correction signals (Kawato andGomi, 1992). In the former
case, the cerebellum should provide feedback compensation in
the sensory space (function of cerebellum as a forward model). In
the latter case, the cerebellum could function as an inverse model,
that provides feedforward compensation in the motor space.
Though the forward model function of cerebellum has been
hypothesized to have computational advantages in a number of
studies (Dean et al., 2002, 2010), each specific motor control task
still requires enough computational and experimental evidence,
to validate the relevance of the two view points (Iwamoto
and Kaku, 2010). In case of saccade adaptation, experimental
evidence from stimulation studies indicates that the adaptation
could take place through visual error information, even in the
absence of corrective motor actions (Wallman and Fuchs, 1998).
We further investigated this view by our computational model.
However it should be noted that, though saccade adaptation
is likely to be guided by visual cells in the SC (Soetedjo
et al., 2009), there is a possibility that deeper layers of the
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SC have additional encoding of motor error, hence aiding an
inverse model adaptation. In compliance with the experimental
observations on rhesus monkeys in Herzfeld et al. (2015), our
simulations foster the hypothesis of forward sensory prediction
in the OMV compensations. A further elucidation regarding this
prospect, for different stages of primate development, needsmore
experimental evidence.

The fundamental unit of cerebellar computation can be
considered to consist of a repetitive pattern of connectivity, called
microzone (Dean et al., 2010; Jörntell, 2017). The computational
properties of this microzone arrangement have been extensively
studied, pertaining to the flocculus region of the cerebellum,
through VOR (Ito, 1998; Clopath et al., 2014) and eye-blink
conditioning responses (Herreros and Verschure, 2013). It is
important to understand the nature of cerebellar microzones in
complex motor control contexts like saccades. This could enable
us to understand the way these microzones are organized in
the larger scheme of sensory-motor control, with various levels
of adaptation and decision making. However, a considerable
understanding of the OMV, which is related to saccade motor
control, has been limited until now, due to the presence of
multiple sites and time scales of saccade adaptation. The saccade
adaptation can be studied in the context of long-term adaptation
(Robinson et al., 2006) that takes place over duration of several
days, and short-term adaptation (Hopp and Fuchs, 2004) that
takes place over durations of several hours. According to recent
experimental observations, the short adaptation could be further
divided into two more time scales, at the direct and indirect
pathways of saccade production (Chen-Harris et al., 2008). The
adaptation process that we addressed in this paper corresponds
to the plasticity in the indirect saccade pathway, corresponding to
the OMV and cFN components. Through our simulation results,
we observe that a definite encoding in the PC layer activity of
the OMV, could enable precise online endpoint control in the
presence of variabilities in the cortical control loop. However,
experimental studies indicate that lesions in the OMV do not
necessarily warrant long-term inaccuracies (Barash et al., 1999),
thus indicating other possible sites of adaptation. Another model
proposed in Saeb et al. (2011) could be explored for a plausible
candidate for adaptation in the direct pathway, corresponding
to the SC and MLBN connections. In any case, it would be an
interesting direction to have a comprehensive model, that could
explain multiple timescales of adaptation. This extension could
provide additional insights into the organization of the OMV,
and the kind cerebellar connectivity that could be responsible for
multiple timescales of adaptation.

Though the implementation of timing dependent plasticity at
the plastic synaptic connections (Schweighofer et al., 1996; Gad
and Anastasio, 2010) could throw light on the rate of learning
from visual errors, we simplify the adaptation procedure with
numerical gradient estimation, to focus on the control objectives
of saccade adaptation. However, the learning criterion used to
minimize the visual error, is indeed conducive for the derivation
of incremental gradient based learning rules presented in Dean
et al. (2002) and Saeb et al. (2011). The recurrent, nonlinear

inhibitory connections in the granular layer do not impede
the application of such incremental linear approximation based
learning rules, as evident from Carrillo et al. (2008) and Casellato
et al. (2014). This is because of the liquid state property of the
cerebellar granular layer (Yamazaki and Tanaka, 2007a), which
enables learning of complex motor actions, only by adjusting
the linear readout synaptic strengths (Sussillo and Abbott, 2009;
Rössert et al., 2015; Bratby et al., 2016). One property that we
could not comment upon, by the very nature of a control block
simplification of the OMV, is the full-scale directional specificity
in the PC population activity (Soetedjo et al., 2008). The Purkinje
cells of the OMV are organized to receive MF inputs from all the
sites in the SC (Fujita, 2005). However, the adaptation in these
PCs is driven by teaching signals received from climbing fiber
(CF) afferents, with a definite directional specificity (Soetedjo
et al., 2008). The PCs receiving similar CF information are further
hypothesized to be projected onto specific cFNs (Herzfeld et al.,
2015). Hence, the adaptation for a given saccade vector is specific
to certain PC populations, and regulated by the CF afferents of
that particular directional specificity (Iwamoto and Kaku, 2010).
This direction specific adaptation in the OMV was referred to
as parametric adaptation in Hopp and Fuchs (2004). Due to the
compact representation of the entire OMV as simplified control
blocks, we could examine the ipsilateral and contralateral sides
of movement but not the whole topographic space. Hence it
was not possible to analyze the parametric adaptation. However,
the gap between our current model and a study of directional
specificity in PC layer activity can be overcome, by implementing
an increased number of directionally tuned teaching signals.
We found out through a number of trials that expanding the
error reduction methodology used in this paper for parametric
adaptation is computationally expensive, due to the increase
in number of plastic synaptic connections to be optimized,
and requires an implementation of incremental plasticity
rules.
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