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Abstract Since the 1950s, Staphylococcus carnosus is used
as a starter culture for sausage fermentation where it contrib-
utes to food safety, flavor, and a controlled fermentation pro-
cess. The long experience with S. carnosus has shown that it is
a harmless and Bfood grade^ species. This was confirmed by
the genome sequence of S. carnosus TM300 that lacks genes
involved in pathogenicity. Since the development of a cloning
system in TM300, numerous genes have been cloned,
expressed, and characterized and in particular, virulence genes
that could be functionally validated in this non-pathogenic
strain. A secretion system was developed for production and
secretion of industrially important proteins and later modified
to also enable display of heterologous proteins on the surface.
The display system has been employed for various purposes,
such as development of live bacterial delivery vehicles as well
as microbial biocatalysts or bioadsorbents for potential envi-
ronmental or biosensor applications. Recently, this surface
display system has been utilized for display of peptide and
protein libraries for profiling of protease substrates and for
generation of various affinity proteins, e.g., Affibody mole-
cules and scFv antibodies. In addition, by display of
fragmented antigen-encoding genes, the surface expression
system has been successfully used for epitope mapping of

antibodies. Reviews on specific applications of S. carnosus
have been published earlier, but here we provide a more ex-
tensive overview, covering a broad range of areas from food
fermentation to sophisticated methods for protein-based drug
discovery, which are all based on S. carnosus.

Keywords Bacterial surface display . Combinatorial protein
engineering . Epitopemapping . Food fermentation . Starter
culture . Virulence factors

Introduction

This review article is unique in its nature in that it describes the
use of the food grade Gram-posi t ive bacter ium,
Staphylococcus carnosus, evolving over several decades,
from being an important strain in food fermentation (Götz
1990c) to becoming a versatile and powerful microbial tool
in modern microbiology and biotechnology. When the ge-
nome sequence was deciphered (Rosenstein and Götz 2010;
Rosenstein et al. 2009), the different characteristics of
S. carnosus were better understood, and as will be described,
its non-pathogenic nature made it suitable for characterization
of virulence factors. The development of a host-vector system
for efficient and secreted recombinant production inspired the
development of also a surface display system for S. carnosus.
The use of these systems in a wide variety of application areas
will be reviewed.

S. carnosus as a starter culture

Some of the most well-investigated staphylococcal species (e.g.,
S. aureus) are pathogens. However, like many other genera,
Staphylococcus is composed of many species (> 40) with a vast
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diversity, of which only few are associated with pathogenicity.
The majority has never been associated with infection, and some
species are even used as starter cultures in sausage fermentation
(Götz et al. 2006). The first reports on using S. carnosus in
sausage fermentation came in the 1950s (Lerche and Sinell
1955; Niinivaara and Pohja 1956). At that time, they were
regarded as micrococci, a group of Gram-positive cocci that are
facultative anaerobic and catalase-positive. However, a system-
atic analysis of the starter cultures in various fermented dry sau-
sages revealed that most of these micrococci were incorrectly
classified and are in fact S. carnosus (Schleifer and Fischer
1982). S. carnosus and S. xylosus are the two main staphylococ-
cal species worldwide that are used as starter cultures in food
fermentation, either alone or in combination with defined
lactobacilli or other microorganisms. Starter cultures protect the
food from undesirable bacteria and make the fermentation pro-
cess more reliable. They also suppress food spoilage and poison-
ing by unwanted microorganisms and the whole fermentation
process can be better controlled. S. carnosus has several func-
tions during the ripening process of dry sausage (Barriere and
Leroy-Setrin 2001; Corbiere Morot-Bzot et al. 2007; Liepe and
Porobic 1983); nitrate is reduced to nitrite which, together with
myoglobin, forms the red colored nitrosomyoglobin (Neubauer
and Götz 1996; Götz 1990c). Subsequently, nitrite is further
reduced to ammonia which leads to regeneration of NAD+ that
is needed for glycolysis (Neubauer et al. 1999). S. carnosus also
contributes to flavor and to detoxification of hydrogen peroxide
that is produced by lactobacilli (Barriere and Leroy-Setrin 2001).
Because of its use as a starter culture since the 1950s, S. carnosus
is regarded as a Bfood grade^ species (Fig. 1a).

Dissimilatory nitrate fermentation

Beside flavor, one of the main functions of S. carnosus as a
starter culture is its ability to reduce nitrate and nitrite. Nitrate
and/or nitrite are curing agents that play a decisive role in
obtaining the specific sensory properties, stability, and hygienic
safety of products such as fermented sausages, ham, and more
recently, emulsion type of sausages (Hammes 2012). The inter-
mediary presence of nitrite is important as it prevents the growth
of food-spoiling bacteria such asClostridium. On the other hand,
at the end of the fermentation process, both nitrate and nitrite
should be decreased below a certain threshold level. As many
lactobacilli are unable to reduce nitrate, S. carnosus has an im-
portant function in the process. In S. carnosus, the reduction of
nitrate to ammonia involves several steps (Fig. 1b) (Neubauer
and Götz 1996): (i) nitrate is taken up and reduced to nitrite, and
nitrite is subsequently excreted, (ii) after depletion of nitrate, the
externally accumulated nitrite is taken up by the cells and re-
duced to ammonia, which again is excreted into the medium.
The nitrate reduction by the nitrate reductase is connected with
energy gain and is therefore also referred to as Banaerobic

respiration^ or Bdissimilatory nitrate reduction^ (Fast et al.
1996; Fedtke et al. 2002). The nitrate reductase is a membrane-
bound enzyme, whereas nitrite reductase is a cytosolic enzyme
involved in NADH reoxidation (Neubauer et al. 1999; Pantel
et al. 1998). The expression of the corresponding genes is only
possible under anaerobic growth conditions and in the presence
of nitrate. The mechanism of oxygen repression is based on a
three-component system, NreABC (Schlag et al. 2008). NreB is
an oxygen-sensing histidine protein kinase with an O-labile iron-
sulfur cluster of the FNR type (Kamps et al. 2004; Müllner et al.
2008). NreA functions as a nitrate receptor (Niemann et al.
2014), which together with NreB forms a nitrate-oxygen sensor
complex (Nilkens et al. 2014). NreC is phosphorylated by NreB
and the phospho-NreC acts as a response regulator that specifi-
cally binds to a guanine-cytosine (GC)-rich palindromic se-
quence to enhance transcription initiation of all operons involved
in nitrate/nitrate metabolism (Fedtke et al. 2002).

Characterization of the genome of S. carnosus
TM300

The 2.56-Mbp genome of S. carnosus TM300 is relatively dif-
ferent from other sequenced genomes of this genus. It is small
compared with other genomes and it has the highest GC content
(34.6%) of all sequenced staphylococcal species (Rosenstein and
Götz 2010; Rosenstein et al. 2009). Another peculiarity is that the
ori and ter regions are asymmetrically arranged with the
replichores I (1.05 Mbp) and II (1.5 Mbp) (Fig. 2a). Such an
asymmetry could have arisen by a large deletion near the oriC.
Our experience with gene cloning and expression in S. carnosus
showed that we normally have no trouble with genetic instability.
This positive quality could be due to the absence of mobile
elements such as plasmids, IS elements, transposons, or STAR
elements. Furthermore, the number of repeat sequences has
markedly decreased suggesting a comparatively high stability
of the genome. In comparison, S. aureus and S. epidermidis
strains have numerous such elements and repeat sequences.

Genome analysis revealed that the main pathways are pres-
ent, although some genes are truncated. This is probably due
to the nutrient-rich habitat, which makes some biosynthesis
functions superfluous. The latter is particularly important for
the bacteria to tolerate the high osmolality in sausage meat.
The genome also lacks most of the toxins typical of S. aureus
as well as genes involved in biofilm formation and adherence
to host cells and matrix proteins (Rosenstein and Götz 2010;
Rosenstein et al. 2009). While pathogenic species such as
S. aureus are completely resistant to lysozyme, S. carnosus
and other non-pathogenic species are sensitive to lysozyme,
which is produced by mammalians in response to a bacterial
infection. The reason for the high lysozyme resistance in
S. aureus is due to the presence of the peptidoglycan O-
acetyltransferase (OatA) that modifies the peptidoglycan in
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such a way that lysozyme binding is affected (Bera et al.
2005). S. carnosus and other non-pathogenic species lack
the oatA gene (Bera et al. 2006). In conclusion, the lack of
toxins, hemolysins, many of the adherence proteins, capsule
genes, the presence of an unusual high number of truncated
genes, and the lack of the peptidoglycan O-acetyltransferase
(OatA) underscore the non-pathogenic status of S. carnosus.

The natural habitat of S. carnosus is still not known today
and it has never been associated with pathogenicity. However,
its close phylogenetic relationship with S. piscifermentans,
which is associated with marine fish, suggests that
S. carnosus comes from a similar biotope (Probst et al.
1998; Tanasupawat et al. 1992). Although the ecological niche
of S. carnosus and its related species is unclear, we assume
that S. carnosus is well equipped to live in a milieu together
with Gram-negative bacteria such as Pseudomonas. For ex-
ample, co-cultivation studies of S. carnosus with
Pseudomonas aeruginosa, an opportunistic pathogen, re-
vealed that P. aeruginosa was unable to suppress the growth
of S. carnosus, but it massively suppressed the growth of
S. aureus. P. aeruginosa and related species produce a number
of respiratory inhibitors like pyocyanin (Hassan and Fridovich
1980), hydrogen cyanide (Castric 1975), and a mixture of
quinoline N-oxides (Machan et al. 1992). While S. aureus,
S. epidermidis, or S. saprophyticus are sensitive to these re-
spiratory inhibitors, S. carnosus and S. piscifermentans are
resistant (Voggu et al. 2006). The resistance is due to the
cydAB genes that encode a pyocyanin and cyanide resistant

cytochrome bd quinol oxidase. In S. aureus and other patho-
genic species, the cytochrome bd quinol oxidase does not
cause resistance (Voggu et al. 2006). It has been shown that
in S. aureus, the subunit B was altered in such a way that it
became sensitive. We assume that S. aureus and other patho-
genic staphylococcal species rarely come in contact with
Pseudomonas and that they have lost the cyanide resistance
function by successive mutations in the cydB gene, a process
referred to as Bmicro evolution^ (Voggu et al. 2006). The
cydAB operon is also found in Escherichia coli where it is
referred to as a cytochrome d oxidase complex, which is par-
ticularly active under oxygen limited conditions (Cotter et al.
1997). We assume that S. carnosus and related species live in
an environment that is also occupied by Pseudomonas and
other Gram-negative bacteria and that they have evolved to
resist cyanide and pyocyanin to be able to co-exist with
Pseudomonas. As for S. aureus, there was probably no need
to compete with Pseudomonas, and the cydB gene was
degenerated to cyanide-sensitive respiration.

S. carnosus as a valuable tool to analyze virulence
functions

The lack of most virulence factors makes S. carnosus a
suitable model organism to study pathogenicity factors
from pathogenic staphylococcal species. Numerous inva-
sion factors and matrix-binding proteins have been
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Fig. 1 Application of S. carnosus
in food technology. a S. carnosus
is used as starter culture for
sausage fermentation where
dissimilatory nitrate/nitrite
reduction plays an important role.
b Steps in dissimilatory nitrate/
nitrite reduction in S. carnosus
under anaerobic conditions. (1)
Nitrate is taken up by the nitrate
transporter (NarT). (2) It is
reduced to nitrite by nitrate
reductase. (3) Nitrite is excreted
and accumulates in the
supernatant until nitrate is almost
completely consumed. (4) Nitrite
is taken up again and is ((5))
intracellularly reduced to
ammonia by the NADH-
dependent nitrite reductase. (6)
Ammonia is excreted leading to
mild alkalization of the
environment
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expressed in S. carnosus, to unravel and to prove their
functions. For example, unlike S. aureus, S. carnosus
has no fibronectin-binding proteins and therefore, the
function of heterologous-expressed proteins and their role
in binding to other matrix proteins or role in host cell
invasion has been verified and studied in S. carnosus
(Agerer et al. 2005; Grundmeier et al. 2004; Kerdudou
et al. 2006; Sinha et al. 2000). The proof that the extra-
cellular adherence protein (Eap) from S. aureus enhances
host cell internalization was carried out in S. carnosus
(Haggar et al. 2003). The broad-spectrum binding

capacity of the S. aureus extracellular matrix protein-
binding protein (Emp) was verified in S. carnosus
(Hussain et al. 2001). The proof that the peptidoglycan
O-acetyltransferase (OatA) causes lysozyme resistance
was made in S. carnosus because transformation of the
oatA gene into S. carnosus rendered the clones lysozyme
resistant (Bera et al. 2006). The finding that the S. aureus-
specific lpl gene cluster triggers host cell invasion was
supported by transforming the lpl gene cluster into the
non-invasive S. carnosus which became invasive after re-
ceiving the gene cluster (Nguyen et al. 2015). Also,
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Fig. 2 Illustration of S. carnosus genomic map and protein construction
for secretion. a Genomic map of S. carnosus. The green circle represents
genes located in the upper strand; the red circle indicates genes from the
lower strand. Orange dashes show genes that are conserved within the
staphylococci, while the black dashes correspond to genes that are
specific for S. carnosus TM300. The extension of the conserved core
region of the genome is shown by the open black circle; the variable
region with an accumulation of species-specific genes is located next to
the origin of replication (oriC) and indicated as filled black segment. Note
that the point of termination replication (ter) is located asymmetrically
with respect to oriC. The blue segments show the positions of a prophage

and the genes responsible for nitrite and nitrate reduction (nir/nar),
respectively. A GC plot showing local deviations in GC content is
presented on the innermost circle. The scale is shown in the outermost
circle with the ticks indicating every 0.2 million bases. b SHL-based
secretion signals for heterologous secretion of proteins (secretion
construct). The signal peptide (SP) and the propeptide (PP) of SHL
(Staphylococcus hyicus lipase) is used to secrete other proteins (protein
X) into the supernatant in high amounts. The PP part can be cleaved off
by a specific protease that cleaves at the proteolytic cleavage site
introduced between PP and protein X. Normally, enzymes are active
even in the presence of PP
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S. epidermidis-derived virulence factors have been studied
and verified in S. carnosus, such as phenol-soluble
modulin peptides (Otto et al. 2004), methicillin resistance
gene (Tesch et al. 1988), and biofilm formation of the
S. epidermidis-derived ica genes (Heilmann et al. 1996,
2004).

Development of a cloning and protein production
system in S. carnosus

Because of its long use in starter cultures for meat fer-
mentation, S. carnosus is classified as a GRAS (generally
recognized as safe) organism and a cloning system has
therefore been developed for this species. When used as
a cloning and production host, it is necessary that it can
be transformed with recombinant DNA, that vectors are
stably replicated, and that it has low extracellular protease
activity to prevent proteolytic degradation of secreted re-
combinant proteins. Almost 100 S. carnosus strains were
screened for transformation ability and lack of external
proteolytic activity. Among those strains, S. carnosus
TM300 was superior and therefore selected as a potential
cloning and protein production host (Götz 1990c). Indeed,
TM300 does not secrete soluble exoproteases, lipases, or
hemolysins into the culture medium.

The first efforts focused on developing an efficient
plasmid transformation method. Initially, the method of
choice was protoplast transformation (Götz et al. 1983a),
which was later improved to increase the transformation
frequency (Götz and Schumacher 1987). Protoplast trans-
formation is relatively laborious, but the reached efficien-
cy was 106 transformants per μg DNA. With the advent of
the less time-consuming electroporation, this method was
soon applied successfully to S. carnosus (Augustin and
Götz 1990) and was later optimized by Löfblom and co-
workers (Löfblom et al. 2007a). Plasmids are widely dis-
tributed in staphylococci and some classical plasmids
such as pT181, pC194, and pSX297 (Götz et al. 1983b;
Horinouchi and Weisblum 1982; Novick et al. 1982)
served as a basis for vector construction such as pCT20
and pCA43 (Keller et al. 1983; Kreutz and Götz 1984) or
the xylose inducible and glucose repressible vectors
pTX15 and pCX15 (Peschel et al. 1996; Wieland et al.
1995). In the meantime, optimized derivatives of these
vectors were generated. There was also a gene replace-
ment system developed in S. carnosus and S. xylosus that
was based on temperature-sensitive Escherichia coli-
Staphylococcus shuttle vectors for fragment delivery and
erythromycin resistance cassettes to facilitate selection of
genomic copies of disrupted genes (Brückner 1997). With
the development of these basic tools, a number of genes
could be cloned, expressed, and analyzed for function in

S. carnosus (Brückner and Götz 1995; Götz 1990a,
1990b, 1990c).

Staphylococcus hyicus lipase (SHL)-based construct
for secretion of proteins

The lipase gene (lip) from Staphylococcus hyicus subsp.
hyicus was one of the first genes that was subcloned in
S. carnosus (Götz et al. 1985). The lip-encoded lipase was
named SHL (S. hyicus lipase) (Rosenstein and Götz 2000).
SHL is the most well-characterized lipase among the staphy-
lococcal lipases. Its activity is Ca2+-dependent, and the en-
zyme should rather be regarded as a phospholipase as its ac-
tivity with phospholipids was higher than with triglycerides
(van Oort et al. 1989). Triglycerides were fully hydrolyzed to
free fatty acid and glycerol and the fatty acids of phosphati-
dylcholines and lysophospholipids were also completely hy-
drolyzed. Thus, SHL is unique among staphylococcal lipases
as it has both lipase and an even higher phospholipase A1 and
lysophospholipase activity. Structural analysis of the mature
SHL showed that the substrate-binding cavity contains two
large hydrophobic acyl chain-binding pockets and a shallow
and more polar third pocket that is capable of binding either a
short fatty acid or a phospholipid head group, explaining the
broad substrate specificity (Tiesinga et al. 2007).

SHL turned out to be a paradigm of staphylococcal lipases
as all the lipases studied so far are organized as pre-pro-lipases
(Götz and Rosenstein 2001; Rosenstein and Götz 2000). The
pre-sequence represents the signal peptide, which is unique as
it contains a conserved YSIRK-G/S motif which appears to be
involved in enhanced protein translocation or processing (Bae
and Schneewind 2003; Rosenstein and Götz 2000). The 207
amino acid long propeptide (PP) is located between the signal
peptide (SP) and the mature part of the lipases. Normally, the
lipases are secreted in the pro-form, which is subsequently
processed by an extracellular protease (Götz et al. 1998;
Wenzig et al. 1990). In S. aureus, the processing enzyme is
the metalloprotease aureolysin (Cadieux et al. 2014).
Complete or partial deletion of the PP dramatically impaired
signal peptide processing, secretion, and lipase stability, sug-
gesting that the PP acts as an intramolecular chaperone
(Demleitner and Götz 1994; Liebl and Götz 1986). The PP
also protected the Escherichia coli outer membrane protein A
(OmpA) from proteolytic degradation by cell-associated pro-
tease(s) in Bacillus subtilis (Meens et al. 1997).

Both the SHL-specific SP and PP were necessary to secrete
heterologous proteins in large amounts (Fig. 2b). For example,
the human growth hormone protein (hGH) was efficiently
produced by S. carnosus when fused with the PP, which can
be removed from hGH by introducing an enterokinase cleav-
age site between PP and hGH (Sturmfels et al. 2001). In a pH-
auxostatic fed-batch process, the production of the human
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calcitonin (hCT) precursor fusion protein reached a concen-
tration of 2000 mg/L within 14 h, and after cleavage of the PP,
still 420 mg/L of the recombinant hCT precursor was obtained
(Dilsen et al. 2000, 2001). SHL production could be increased
up to 230 mg/mL by specific fermentation techniques
(Lechner et al. 1988; Märkl et al. 1990). The SHL-specific
SP and PP were also successfully used to secrete large
amounts of the Escherichia coli-specific alkaline phosphatase
(phoA) in Bacillus subtilis; the PP protected the target protein
from proteolytic degradation in the B. subtilis supernatant
(Kouwen et al. 2010). Thus, the SHL-PP not only contributes
to folding and secretion but also protects the fusion partner
from proteolytic degradation. This system was also used for
immobilization of enzymatically active enzymes on the cell
surface of S. carnosus (Strauss and Götz 1996). These and
many other examples show that the SHL secretion signals
comprise a very valuable biotechnological tool for protein
production/secretion in S. carnosus.

A surface display system for S. carnosus

The first use of recombinant bacteria for surface display of
heterologous proteins was first reported more than two de-
cades ago (for reviews, see (Georgiou et al. 1997; Ståhl and
Uhlen 1997)) and has since attracted attention for numerous
different applications in biotechnology, immunology, and ap-
plied microbiology. The first studies were mostly on Gram-
negative bacteria, but approaches for surface expression on
Gram-positive bacteria soon followed (Samuelson et al.
2002; Ståhl and Uhlen 1997).

In 1995, a novel expression vector for display of recombi-
nant proteins on the surface of S. carnosus was described
(Samuelson et al. 1995). The vector used the promoter, secre-
tion signal, and propeptide from the Staphylococcus hyicus
lipase gene in combination with the cell wall anchoring region
from staphylococcal protein A (SpA). Between the propeptide
and the anchoring part, an albumin-binding protein (ABP),
derived from streptococcal protein G, was introduced, en-
abling efficient monitoring of the surface expression level of
individual cells using fluorescently labeled albumin as probe
(Fig. 3). In fact, this allowed the quantification of the numbers
of heterologously displayed proteins per staphylococcal cell
using flow cytometry, and it was assessed that approximately
104 recombinant proteins were displayed per bacterium
(Andreoni et al. 1997).

Later, efforts to delete or reduce the size of the propeptide
region showed that it in fact was beneficial for display of
proteins that were inefficiently secreted (Samuelson et al.
1999). In a successful vector engineering effort, the vector
system was further improved in terms of both plasmid size
and genetic stability (Wernerus and Ståhl 2002). In addition,
the vector system was later modified with a 3C protease

substrate sequence (Fig. 3), which enabled specific proteolytic
release of displayed proteins to allow detailed characterization
(Kronqvist et al. 2008b).

Miscellaneous early applications
for surface-engineered S. carnosus cells

Staphylococcal biocatalysts

Surface display is a straightforward means for production of
immobilized enzymes. In a pioneering study, the lipase from
Staphylococcus hyicus as well as a ß-lactamase from E. coli
was displayed on S. carnosus, and the studies demonstrated
that the enzymes retained their catalytic activity (Strauss and
Götz 1996). The surface display platform was slightly differ-
ent compared to the systems described above, with surface-
anchoring parts from S. aureus fibronectin protein B (FnBPB)
instead of the SpA-derived regions. In the study, it was shown
that around 10,000 enzymes were displayed on each cell, and
the authors also speculated that Gram-positive staphylococci
might be particularly appropriate for construction of microbial
catalysts due to the rigid cell wall (Strauss and Götz 1996).

Diagnostic tools

Another interesting application for recombinant bacteria,
displaying heterologous proteins on the surface, is so-called
whole-cell diagnostic tools. By, for example, displaying anti-
body fragments or other affinity proteins on the cell, the bac-
teria could function as Bwhole-cell monoclonal antibodies^
that could be used as diagnostic devises. In a first study on
this concept, S. carnosus and S. xylosus were used for func-
tional surface expression of a murine IgE-specific single-chain
variable fragment (scFv) antibody fragment (Gunneriusson
et al. 1996). The results from the analysis showed that the
recombinant staphylococci could bind to the intended antigen
and it was also the first reported display of functional antibody
fragments on Gram-positive bacteria. In a follow up study, it
was also demonstrated that IgE- and IgA-specific Affibody
molecules (see below) could be displayed on S. carnosuswith
retained ability to bind respective antigens (Gunneriusson
et al. 1999).

Directed immobilization of staphylococcal cells

Numerous reports have been published on the concept of
surface-specific immobilization of bacteria for different appli-
cations, such as for whole-cell biosensors (Scouten 1995),
bacterial bioadsorbents (Brower et al. 1997; Kessler 1981),
and microbial biocatalysts (Freeman et al. 1996). Specific
and directed immobilization of microorganisms to various
matrices has the potential to be more straightforward and
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efficient when compared with conventional strategies, using
for example chemical crosslinking, aggregation, or entrap-
ment (Rehm and Omar 2008). In a pioneering study, it was
demonstrated that surface expression of a fungal cellulose-
binding domain (CBD) from Trichoderma reesei cellulase
Cel6A on S. carnosus resulted in directed immobilization of
the bacteria to cellulose fibers (Lehtio et al. 2001).

Metal-binding staphylococci

Toxic metals in wastewater is a growing issue worldwide and
it has been suggested that recombinant bacteria that are
displaying metal-binding peptides or proteins might be
exploited as bioadsorbents in the bioremediation process
(Brower et al. 1997). Another potential application of metal-
binding bacteria is in the development of whole-cell microbial
biosensors (Tibazarwa et al. 2001). Gram-positive bacteria
might have an advantage in terms of bioadsorbents due to
the inherent metal-binding capacity of the thick cell wall
(Mullen et al. 1989). To investigate the feasibility of the con-
cept, fusion proteins with polyhistidyl peptides for chelation
of metal ions were displayed on S. carnosus and S. xylosus
and the results from the study demonstrated that recombinant
bacteria could adsorb metal ions as intended (Samuelson et al.
2000).

The promising results on staphylococci as recombinant
bioadsorbents inspired additional studies on this application.
Instead of using the polyhistidyl peptides as in the previous
approach, Wernerus et al. showed that directed evolution by
phage display could be used for engineering newNi2+-binding
variants of CBD (Wernerus et al. 2001). The isolated CBD
variants were subsequently displayed on S. carnosus,
resulting in recombinant staphylococci with Ni2+-binding ca-
pacity (Wernerus et al. 2001). The demonstrated ability to
generate new specific metal-binding proteins followed by sur-
face expression on staphylococci indicates a potential for

straightforward development of inexpensive bioadsorbents
for bioremediation of toxic metals in the future.

S. carnosus as a live vaccine delivery system

As mentioned above, S. carnosus is a GRAS (generally
regarded as safe) organism and has been used extensively in
the food industry for decades, which makes it a potentially
suitable strain in the vaccine field for oral delivery of recom-
binant immunogens. In an initial effort, administrations of
high doses of S. carnosus to mice by mucosal or subcutaneous
routes were shown to be safe and well tolerated (Ståhl et al.
1997). Recombinant S. carnosus (Samuelson et al. 1995) and
S. xylosus (Hansson et al. 1992), displaying ABP as a model
immunogen, were also used in a comparative immunization
study, demonstrating that the S. carnosus system was superior
compared with S. xylosus for oral immunization (Robert et al.
1996; Ståhl et al. 1997). Although the reasons behind these
results are not completely clear, the authors speculated that it
might be due to the higher surface expression level on
S. carnosus (Andreoni et al. 1997; Robert et al. 1996).

Although the initial vaccine studies with recombinant
staphylococci demonstrated systemic antibody responses, the
obtained antibody titers were relatively modest (Liljeqvist and
Ståhl 1999). Later investigations were thus focused on strate-
gies for increasing the antibody response to the surface-
displayed antigens (Cano et al. 1999; Liljeqvist et al. 1997).
The second-generation whole-cell vaccine delivery vehicles
were hence modified by fusing the model immunogen to an-
other recombinant protein with adhesive properties, in order to
achieve targeting of the bacterial vaccine vehicles to the mu-
cosal epithelium. Three different adhesion proteins were in-
vestigated in the study: (i) a fibronectin binding domain from
Streptococcus dysgalactiae (Liljeqvist et al. 1999), (ii) a chol-
era toxin B (CTB)-derived peptide, CTBp (Cano et al. 1999),
and (iii) a bacterial adhesion factor. The results demonstrated
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region from S. aureus
protein A

Ori E. coli pMB1
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Beta lactamase (Ampr)

Chloramphenicol acetyl 
transferase (Cmlr)

Replication initiator 
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Fig. 3 Schematic representation
of the expression vector for
surface display of recombinant
proteins on S. carnosus. Please
note that the sizes of the different
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that co-display of any of the evaluated adhesion proteins on
the surface of S. carnosus yielded elevated serum antibody
responses to the displayed immunogen after intranasal admin-
istration into mice (Liljeqvist and Ståhl 1999). The encourag-
ing results resulted in a follow-up study, where CTBp was
fused to an antigen from the G glycoprotein of human respi-
ratory syncytial virus (RSV) and displayed on S. carnosus
(Cano et al. 2000). The recombinant staphylococci were there-
after used for intranasal immunization of mice, which elicited
a significant anti-RSV serum IgG response. Moreover, lung
protection was shown for around 50% of the animals after
viral challenge with 100,000 tissue culture infectious doses50
(TCID50) and was thus the first reported study that could dem-
onstrate protective immunity to a virus using vaccination with
recombinant food-grade bacteria (Cano et al. 2000).

Peptide and protein libraries displayed
on S. carnosus.

Surface display of recombinant protein and peptide libraries
on cells is an attractive complement to the conventional phage
display technology. Yeast display of antibody libraries (Cherf
and Cochran 2015) is the most established approach, but sim-
ilar methods have also been developed based on bacteria
(Löfblom 2011). The main reason for using cells over phages
is the option to use fluorescence-activated cell sorting (FACS)
for screening the libraries and for isolation of desired clones
(Fig. 4a). The multivalent display of recombinant proteins on
the surface (> 10,000 per cell) yields a quantitative fluorescent
signal in the flow cytometer that corresponds to the relative
affinity, resulting in efficient selection of high affinity variants.
Flow-cytometric sorting also provides a direct visualization of
the enrichment procedure of binders throughout each selection
round in the process.

Combinatorial protein engineering of affinity proteins
using staphylococcal display and FACS

The first study showing the potential of S. carnosus for com-
binatorial protein engineering was published in 2003 and
demonstrated that recombinant Affibody molecules
(Löfblom et al. 2010; Nord et al. 1997; Ståhl et al. 2017)
displayed on the bacterial surface could be enriched by
FACS from a large background (1:100,000) of non-binders
(Wernerus et al. 2003).

One of the characteristics of cell display of combinatorial
libraries combined with FACS is the ability to discriminate
between variants with relatively small differences in affinity,
facilitating isolation of the strongest binders during selection.
In a study from 2005, a mock sorting was conducted to ex-
plore the discrimination capacity of the staphylococcal meth-
od (Löfblom et al. 2005). The albumin-binding fusion protein

was employed as a surface expressionmonitoring tag and cells
were labeled with a saturating concentration of fluorescently
labeled albumin (Fig. 4b). By normalizing the target-binding
signal with the surface-expressing level, the distribution in
signal was reduced dramatically. It was furthermore demon-
strated that flow-cytometric sorting from a mock library on
S. carnosus that contained binders with twofold higher affinity
mixed 1:1000 in a background of a weaker variant resulted in
efficient isolation from a single round with an enrichment
factor of around 140-fold.

Another feature of cell display is that isolated individual
variants after sorting can be characterized directly on the cell
surface using flow cytometry, obviating initial subcloning for
soluble protein production of candidates. Using the staphylo-
coccal display platform, it was demonstrated that both the
equilibrium dissociation constant and the dissociation rate
constant could be accurately determined in the flow cytometer
(Löfblom et al. 2007b). Moreover, in a following publication,
it was shown that the recombinant protein could be released
from the surface by specific proteolytic cleavage and that the
obtained soluble binders were functional in different assays
(Kronqvist et al. 2008b).

Although the studies described so far had shown the poten-
tial of S. carnosus for library applications, the most critical
challenge still remained—transformation of the DNA-
encoded library to the staphylococcal host. While the relative-
ly thick peptidoglycan cell wall is a favorable feature in FACS
as the viability of isolated clones is nearly unaffected by the
harsh sorting conditions, it also limits the transformation fre-
quency. Library complexity and the probability of finding
high-affinity variants are directly correlated, which means that
transforming millions of clones is basically a requirement for
success in combinatorial protein engineering. In an effort to
increase the relatively modest transformation frequency of
S. carnosus, a number of different parameters for electropora-
tion were optimized, including the addition of a heat-treatment
step to temporarily knock out the host restriction enzymes,
enabling transformation of high concentrations of plasmid
DNA prepared in E. coli (Löfblom et al. 2007a). Overall, the
optimization resulted in 10,000-fold higher transformation
frequency, corresponding to around 106 transformed staphy-
lococci per electroporation event.

The improved transformation frequency opened up the
possibility to construct large libraries on S. carnosus. In a
pioneering study, a pre-selected Affibody library from phage
display was transferred to staphylococci and subnanomolar
binders for tumor necrosis factor (TNF) alpha; TNF alpha
were efficiently isolated using FACS (Kronqvist et al.
2008a). Following the first reported staphylococcal library,
the method has since been used extensively for affinity matu-
ration of Affibody molecules. Examples include affinity mat-
uration of a human epidermal growth factor receptor 3
(HER3)-specific Affibody down to around 20 pM affinity
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(Kronqvist et al. 2011; Malm et al. 2013), affinity maturation
of a head-to-tail dimeric Affibody for the amyloid beta peptide
to 300 pM affinity (Lindberg et al. 2013, 2015), and more
recently, affinity maturation of two distinct Affibody mole-
cules for vascular endothelial growth factor receptor 2
(VEGFR2) (Fleetwood et al. 2014), which were later format-
ted as a so-called biparatopic binder with extremely slow dis-
sociation from the receptor (Fleetwood et al. 2016).

In addition to combinatorial engineering of Affibody mol-
ecules, the method has also been used for isolation of other
types of affinity proteins. One example is engineering of so-
called ADAPT molecules (ABD-derived affinity protein),
which are based on an albumin-binding domain from strepto-
coccal protein G (Alm et al. 2010). For the ADAPTs, the
libraries were designed with the intention of preserving the
affinity for albumin, while engineering an additional specific
binding on the opposite surface of the affinity protein. In these
efforts, the possibility to use multiparameter FACS was
exploited and albumin and target were labeled with different
fluorophores, enabling efficient engineering of bispecific
binders by monitoring both signals simultaneously in the flow

cytometer. Bispecific ADAPTs for TNF (Nilvebrant et al.
2011), human epidermal growth factor receptor 2 (HER2)
(Nilvebrant et al. 2014), and HER3 (Åstrand 2016), respec-
tively, have been successfully isolated using that approach
from libraries displayed on staphylococci.

Staphylococcal display has also been used for selection of
specific antibody fragments. Fleetwood and coworkers
subcloned an immune so-called nanobody (i.e., single-
domain VHH from camelid heavy-chain-only antibodies) li-
brary to the staphylococcal display vector and used FACS for
isolation of green fluorescent protein (GFP)-specific camelid
antibodies (Fleetwood et al. 2013). The same library had pre-
viously been used for selecting nanobodies to GFP using
phage display and when comparing the output from the two
methods, it was demonstrated that the staphylococcal method
yielded binders with a higher affinity on average and that the
clones were relatively different between the two methods.
Another more recent example is a study where S. carnosus
was used for engineering of HER2-specific single-chain var-
iable fragment (scFv) antibodies (personal communication
Johan Rockberg, KTH). Staphylococcal display and FACS
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Fig. 4 FACS of S. carnosus displaying recombinant protein or peptide
libraries. a Schematic representation of staphylococcal surface display
and FACS. Staphylococcal surface expression vectors, encoding
protein, or peptide libraries are transformed to S. carnosus using
electroporation. After expression on the bacterial surface, the
combinatorial libraries on staphylococci are incubated with
fluorescently labeled target (or antibodies for epitope mapping) and
subsequently sorted for isolation of binding variants using FACS. The
sorting is typically repeated for several rounds with amplification by
growth in between cycles until required enrichment is reached. After
sorting, the isolated recombinant proteins or peptides are identified
using DNA sequencing. For epitope mapping, the sequence information

is used to determine the epitope. For directed evolution of affinity
proteins, the affinity as well as the specificity is thereafter determined
directly on the cell surface using flow cytometry, followed by
subcloning and production of soluble proteins. b Schematic
representation of the recombinant fusion protein displayed on the
surface of S. carnosus for library applications and FACS. Cells are
incubated with fluorescently labeled target protein (or antibodies for
epitope mapping) as well as with fluorescently labeled albumin for
monitoring of the surface expression level and normalization during
FACS. Please note that approximately 10,000 copies of recombinant
protein are displayed per cell, resulting in a quantitative signal in the
flow cytometer, corresponding to the affinity for the target
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was used both for selection of first-generation binders as well
as for affinity maturation with an error-prone PCR-generated
library to yield human scFvs in the low nanomolar range.

Display of peptide libraries on S. carnosus for profiling
of protease substrates

In addition to the generation of specific affinity proteins, the
staphylococcal platform has been evaluated for display of
peptide libraries for various purposes. One recent publication
describes how the method can be utilized for substrate profil-
ing of proteases as well as for discovery of new improved
substrates that are processed with higher catalytic activity.
The method is based on display of random peptide substrate
libraries on the surface of staphylococci followed by addition
of protease and subsequent FACS for isolation and identifica-
tion of cleaved substrates. In the method, an Affibody is
expressed on the surface as a reporter tag. In-fusion with the
reporter tag is another domain that specifically blocks the
reporter tag from binding a soluble fluorescently labeled re-
porter (Sandersjoo et al. 2015). The linker between the two
domains contains a substrate peptide library. Upon addition of
protease, variants with a functional substrate will be cleaved
within the linker, resulting in release of the blocking domain
and binding of the fluorescent reporter molecule. Using sub-
strate libraries for tobacco etch virus (TEV) protease and ma-
trix metalloprotease (MMP)-1, the substrate profiles for the
respective protease were identified and several new peptides
were isolated forMMP-1 that were processed with up to eight-
fold higher catalytic activity compared with previously report-
ed substrates (Sandersjoo et al. 2017).

Display of peptide and protein libraries on S. carnosus
for epitope mapping

Several studies have also reported on the use of the staph-
ylococcal display method for epitope mapping of antibod-
ies. Two approaches have so far been explored for this
purpose. The first is based on surface display of antigen-
derived peptide libraries, differing in length and covering
the entire sequence of the antigen. By incubating the pep-
tide libraries with fluorescently labeled antibodies and
subsequent FACS (Fig. 4), the corresponding epitopes
for both monoclonal and polyclonal antibodies binding
to a panel of different antigens have been identified
(Hjelm et al. 2010, 2012; Kronqvist et al. 2010;
Rockberg et al. 2008, 2010). In a more large-scale ap-
proach, Hudson and colleagues created a peptide library
covering the sequences of 60 clinically relevant protein
targets (Hudson et al. 2012). The library was used to
map the epitopes of several different antibodies and se-
quencing the output revealed off-target binding in some
cases, demonstrating that the strategy is also powerful for

investigating potential cross-reactivity. Although the
lengths of the peptides in the library can be adjusted and
it has been shown that conformational epitopes might be
identified for certain antigen/antibody pairs, in general,
the antigen-derived peptide libraries are more suitable
for discovery of linear epitopes. Another complementary
approach is to express full-length proteins or independent-
ly folded domains and construct error-prone PCR libraries
on staphylococci followed by sorting for loss of binding.
This strategy was used for mapping the conformational
epitope of the monoclonal antibody eculizumab, which
is used in the clinics for treating patients with paroxysmal
nocturnal hemoglobinuria (PNH) and atypical hemolytic
uremic syndrome (aHUS) (Volk et al. 2016). Interestingly,
the identified epitope explained the previously observed
non-responsiveness to treatment in a subpopulation of pa-
tients of Japanese origin, carrying a mutation in the
epitope.

Conclusions and future perspectives

S. carnosus is a non-pathogenic Gram-positive staphylococ-
cal species. It has for a long time (and is still today) been used
as part of starter cultures for meat fermentation and in other
food processes. An essential function of S. carnosus in starter
cultures is to prevent the growth of undesirable bacteria, thus
reducing the risk of food poisoning and acting as a food pre-
servative. Importantly, S. carnosus also contributes favorably
to development of flavor and red color as well as to decreasing
pH and hydrogen peroxide. Due to the many valuable and
often unique properties of S. carnosus, it will most likely
continue to play an important role in food processing in the
future. In 2009, the genome sequence of S. carnosus was
published, which verified and explained its previously report-
ed non-pathogenic behavior. S. carnosus lacks important vir-
ulence factors found in many pathogenic bacteria. This has
made S. carnosus a very valuable scientific model organism
for studying and elucidating the mechanism of isolated genes
from, for example, S. aureus for pathogenicity. As staphylo-
coccal infections and the general issue of increasing antibiotic
resistance is continuing to grow globally, we expect that
S. carnosus will be an even more important tool for such
studies in the future, as part of the large efforts to combat
these, sometimes deadly, infectious diseases. Due to the long
historic use in the food industry and the now verified non-
pathogenic properties, S. carnosus is classified as a GRAS
organism. Moreover, the straightforward translocation of re-
combinant proteins over the single-cell membrane in Gram-
positive bacteria combined with the very low proteolytic ex-
tracellular activity makes S. carnosus an attractive host for
production of secreted recombinant proteins. Methods for
transformation, subcloning, and protein production in
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S. carnosus are established today and yields of grams per liter
culture for recombinant human proteins have been reported.
Although the post-translational modifications of human pro-
teins are different compared to eukaryotic hosts, S. carnosus
has the potential to become an attractive complementary pro-
karyotic production host in cases when such modifications are
not critical for the intended application.

In addition to secreted production of soluble recombinant
proteins, a vector system has also been developed for surface
display of recombinant proteins and peptides on the surface of
S. carnosus. It has been used for a number of different appli-
cations, such as display of metal-binding peptides with the
long-term goal of using them as whole-cell bioadsorbents
for purification of metal pollutants from wastewater. Another
example is a whole-cell biocatalyst where enzymes are
displayed on the bacteria, obviating the need for production
and purification of soluble enzymes. Since S. carnosus is a
GRAS organism and not pathogenic, it has also been investi-
gated relatively extensively as a vaccine delivery vehicle, car-
rying antigenic determinants displayed on the surface, in sev-
eral preclinical vaccination studies with encouraging results.
More recently, optimization of the DNA transformation effi-
ciency has enabled expression of large libraries of recombi-
nant proteins or peptides on S. carnosus. Screening such li-
braries with FACS has been used for directed evolution of a
range of different affinity proteins, substrate profiling of pro-
teases, as well as for epitope mapping of antibodies. With the
successful results from these different library applications, we
expect that S. carnosus will be a valuable complement to
phage and yeast display in the years to come.

In summary, S. carnosus will definitely continue to be
an important microorganism in a very broad range of ap-
plications in the future, all the way from being part of
starter cultures in sausage fermentation to host in power-
f u l m e t h o d s f o r d i r e c t e d e v o l u t i o n o f n ew
biopharmaceuticals.
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