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Abstract: There is conflicting evidence of the roles vitamin D and iron have in isolation and combined
in relation to muscle health. The purpose of this narrative review was to examine the current literature
on the roles that vitamin D and iron have on skeletal muscle mass, strength, and function and how
these nutrients are associated with skeletal muscle health in specific populations. Secondary purposes
include exploring if low vitamin D and iron status are interrelated with skeletal muscle health and
chronic inflammation and reviewing the influence of animal-source foods rich in these nutrients on
health and performance. PubMed, Scopus, SPORT Discus, EMBAE, MEDLINE, and Google Scholar
databases were searched to determine eligible studies. There was a positive effect of vitamin D on
muscle mass, particularly in older adults. There was a positive effect of iron on aerobic and anaerobic
performance. Studies reported mixed results for both vitamin D and iron on muscle strength and
function. While vitamin D and iron deficiency commonly occur in combination, few studies examined
effects on skeletal muscle health and inflammation. Isolated nutrients such as iron and vitamin D may
have positive outcomes; however, nutrients within food sources may be most effective in improving
skeletal muscle health.

Keywords: animal food sources; iron; muscle function; muscle mass; muscle strength; vitamin D

1. Introduction

Many nutrients are essential for skeletal muscle health including vitamin D and iron.
These nutrients have been well-established to play a role in improving muscular strength,
muscle mass, and muscle function in various populations such as youth, athletes, and older
adults [1–8]. Together, muscular strength, muscle mass, and muscle function are important
components that make up “skeletal muscle health” and will be the primary focus within
this review. Beyond the role that these nutrients have on skeletal muscle health, emerging
literature has reported a link between vitamin D action on pro-inflammatory cytokines
and mechanisms behind iron regulation [9–11], which may physiologically play a role in
skeletal muscle health.

Vitamin D plays a role in the body’s inflammatory response through activation and
differentiation of immune and inflammatory cells [12,13]. Furthermore, adequate levels of
vitamin D has been shown to decrease the production of pro-inflammatory cytokines such
as IL-12, interferon gamma (IFN-γ), IL-6, TNF-α, IL-17, IL-9 and increase the production
of anti-inflammatory cytokines such as IL-4, IL-5, and IL-10 [14–18]. Although many
studies utilize different definitions, 25(OH)D levels <20 ng·mL−1 (50 nmol·L−1) have been
defined as deficient and levels 30–60 ng·mL−1 (75–150 nmol·L−1) are defined as insufficient.
Levels of >75 nmol·L−1 are thought to be optimal for health [19]; however, recent evidence
has suggested that levels of at least 100 nmol·L−1 may be necessary for older adults [20].
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Although the Recommended Daily Allowance (RDA) for vitamin D for individuals between
ages 9–70 years is 600 IU·d−1 [19], intakes between 1500 and 2000 IU·d−1 have been
thought necessary to increase blood concentrations to above deficient levels [21]. Due to
insufficient intake [6,22], lack of exposure to sunlight [23,24], skin pigmentation [25,26],
and inhibition of absorption [27–32], many individuals have a low vitamin D status. Older
adults, in particular, have decreased vitamin D production from sun exposure due to
lower 7-dehydrocholesterol in the skin, thus compounded the risk in this population [33].
Additionally, Vitamin D is linked to the regulation of iron metabolism through its effects on
hepcidin, indicating that low vitamin D levels may consequently result in iron deficiency
and/or anemia [9,11,34,35]. Therefore, maintaining adequate vitamin D and iron status
may be necessary for clinically related outcomes such as healthy growth, proper bone and
tissue development, and a reduction in incidences of sarcopenia and various other chronic
diseases [36–39]. Furthermore, with more research suggesting a link between skeletal
muscle health and chronic inflammation, identifying methods to mitigate inflammation
may be essential for the optimization of muscle health throughout the lifespan.

Nutritional deficiencies are common in athletes, youth, and older adults, with vitamin
D and iron being common micronutrients that are deficient. In fact, prevalence of low
vitamin D status ranges from 17.4 to 87% in older adults [22,40], from 34 to 75% in adult and
youth athletes [41,42], and from 21 to 49% in normal to severely obese youth [43], indicating
the severity of this issue in multiple populations. The prevalence of low iron status ranges
from 11 to 33% in older adults [44,45], 46 to 86% in youth and adult athletes [46,47], and
4 to 14% in youth [48]. Additionally, iron deficiency and anemia have been linked to low
vitamin D status [49,50], suggesting that a combination of these nutritional deficiencies
causes compounded risk to muscle health and inflammation. Since the combination of
vitamin D deficiency and low iron status is prevalent in many populations including
older adults [22,40,44,45,51], youth [52–55], and athletes [47,56,57], this highlights the need
to examine a potential interaction and symbiotic relationship between these nutrients,
particularly regarding inflammation and muscle health.

Adequate consumption of vitamin D and iron may be key in enhancing muscle
mass, strength, and performance. Animal-source foods are abundant in vitamin D and
iron, which may help individuals reach optimal, bioavailable intakes of these nutrients to
support skeletal muscle health [58–60]. Thus, we aim to investigate the potential impacts
of vitamin D, iron, and animal-source foods containing these nutrients on skeletal muscle
health and chronic inflammation.

The purpose of this narrative review was to examine the current literature on the roles
that vitamin D and iron have on skeletal muscle mass, muscle strength, and muscle function
and how these nutrients are associated with skeletal muscle health in specific populations
such as youth, athletes, and older adults. Secondary purposes include (a) exploring if
low vitamin D and iron statuses are interrelated with skeletal muscle health and chronic
inflammation and (b) reviewing the influence of animal-source foods rich in these nutrients
on health and performance. Furthermore, this narrative review aimed to identify gaps in
the literature for future research focused on health benefits of animal-source foods targeted
at specific populations such as youth, athletes, and older adults.

2. Materials and Methods

A review of the literature was performed using PubMed, Scopus, SPORT Discus,
EMBAE, OVID MEDLINE, and Google Scholar databases. Cross-sectional, observational,
longitudinal, and experimental studies that examined nutritional status (i.e., serum or
plasma concentrations) and/or dietary intake of vitamin D and iron along with measure-
ment of health outcomes related to skeletal muscle and inflammation were included in the
review. Publications after 2010 were included, and articles were only included as reference
sources if published in peer-reviewed journals in the English language. Relevant articles
were identified and checked for eligibility by two independent researchers. Relevant ar-
ticles were categorized according to the specific aims of the narrative literature review:
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(1) Role of Vitamin D on Skeletal Muscle Health, (2) Role of Iron on Skeletal Muscle Health,
(3) Interrelationship between Vitamin D, Iron and Chronic Inflammation, (4) Animal Food
Sources as a Strategy to Improve Skeletal Muscle Health.

3. Discussion
3.1. Vitamin D and Skeletal Muscle Health
3.1.1. Vitamin D and Skeletal Muscle Physiology

Vitamin D is a fat-soluble prohormone that provides key functions in multiple en-
docrine and autocrine processes throughout the body. Vitamin D can be obtained by both
food sources and solar ultraviolet B (UVB) of 290–315 nm and in conjunction, is utilized to
synthesize cholecalciferol, or vitamin D3 [61,62]. This production of vitamin D is depen-
dent upon the solar elevation in which vitamin D is predominately produced when the
elevation angle is greater than 45 degrees [63]. Once synthesized in the skin from sunlight
or absorbed from food, vitamin D3 binds to vitamin D-binding protein (VDBP) and is
transferred to the liver where it is converted to 25-hydroxycholecalciferol (25(OH)D) and
transported to the kidney for further processing. Within the kidney, 25(OH)D is activated
to the form of 1,25-dihydroxycholecalciferol [1,25(OH)2D], or calcitriol [64–66]. This ac-
tive form can then perform functions such as calcium and phosphate regulation through
the binding of vitamin D receptor (VDR). Vitamin D receptor is present on many body
tissues including skeletal muscle, intestines, myocardium, bone, nervous system, as well
as immune cells, indicating inadequate vitamin D effects multiple tissues within the body,
resulting in a potential link to multiple pathological diseases including cardiovascular
disease, inflammatory conditions, and respiratory illness [67–71].

The mechanism for the role vitamin D has on skeletal muscle involves VDR expression
found in skeletal muscle cells [72–74]. Expression of VDR in the nucleus of skeletal muscle
cells is necessary for vitamin D uptake [75], and reduced VDR concentrations have affected
the contractility of muscle cells and may affect skeletal muscle repair and recovery [76,77].
Animal studies have demonstrated that mice without the VDR gene had smaller muscle
fibers, lower body size and weight, and impaired movement compared to mice with
VDR gene [78]. Additionally, VDR concentrations have been shown to increase after
supplementation of 1,25(OH)2D3 and 25(OH)D3 in muscle cells, which was suggested to be
linked to muscle cell regeneration [79].

Further support for the importance of VDR in skeletal muscle health was demonstrated
in human studies. Expression of VDR primarily has been found to be located on fast-
twitch muscle fibers [80], and interestingly, it has been identified that fast-twitch muscle
fibers following vitamin D supplementation [81]. Thus, this provides support for the
importance of VDR concentration, related to vitamin D status, for improving skeletal muscle
health in humans. Supplementation with vitamin D3 in vitamin D insufficient females
resulted increased VDR concentration [82], indicating that adequate VDR and vitamin
D concentrations can support muscle fiber growth. Additionally, vitamin D actions on
skeletal muscle through VDR may also influence calcium regulation and muscle contraction,
anabolic or growth pathways, oxidative phosphorylation and mitochondrial function, and
muscle inflammation [83].

3.1.2. Vitamin D Status and Skeletal Muscle Health

Vitamin D mechanistically appears to influence skeletal muscle health. Therefore,
this effect on skeletal muscle health in conjunction with a high prevalence of vitamin D
deficiency in certain populations such as youth, athletes, and older adults warrants an
examination of the associations between vitamin D and measurements of muscle mass,
muscle strength, and muscle function. Table 1 reports studies examining associations
between vitamin D status and skeletal muscle health. Many studies in athletic populations
reported associations between concentrations of 25(OH)D and measurements of perfor-
mance [84–88]; however, other studies reported no associations between vitamin D and
performance outcomes [89,90]. Koundorakis et al. reported correlations between serum
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25(OH)D concentrations and tests of anaerobic and aerobic performance. These included
moderate to high positive associations between serum 25(OH)D and jumping ability and
VO2max (r = 0.394–0.740) and moderate negative associations between serum 25(OH)D and
sprint times (r = −410–−0.649) during soccer pre- and post-season [84]. However, in male
hockey players, there were no associations between serum 25(OH)D and aerobic exercise
variables determined during a graded exercise test [89]. Forney et al. reported a positive
association between serum 25(OH)D and VO2max (r = 0.360) but not with tests of anaerobic
performance or muscle strength [90]. Additionally, submaximal aerobic performance and
aerobic power was better in athletes with higher serum 25(OH)D levels compared to those
with levels considered deficient (<35 ng·mL−1 and <30 ng·mL−1, respectively) [87,88]. Peak
torque was found to be 12–17% higher in those with higher serum 25(OH)D levels [85,86].
These results suggest that while evidence supporting a positive association between vi-
tamin D and athletic performance is inconclusive, many studies suggest that vitamin D
levels are moderately related to performance. It is important to note that a majority of the
studies were performed in young adult male athletes with varying tests of performance.
Future studies inclusive of male and female athletes from a variety of athletic backgrounds
is necessary.
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Table 1. Cross-sectional studies examining associations between vitamin D status and muscle health.

Author, Year, Country Study Participants
(Mean ± SD) Measurements Conclusions

Athletes

Koundourakis et al.,
2014, Greece [84]

Caucasian male soccer players, mean age:
25.6 ± 6.2 years
n = 67

Serum 25(OH)D concentrations and performance of
the squat jump, countermovement jump, sprint
performance, and VO2max,

Concentrations of serum 25(OH)D were positively associated with
an increase in performance during the squat jump, counter
movement jump, VO2max (r = 0.394–0.740), and negatively
associated with sprint performance at 10 m and 20 m
(r = −410–−0.649) before the soccer season (pre) and during the
six-week off-season period (post) (p > 0.01)

Fitzgerald et al., 2014,
United States [89]

Professional male ice hockey players,
mean age: 20.1 ± 1.5
n = 52

Serum 25(OH)D concentrations and performance
during skate treadmill graded exercise testing

Concentration of serum 25(OH)D was not associated with
VO2max, max heart rate, peak respiratory exchange ratio, final
stage completed, and total exercise time completed during the
graded exercise test (p = 0.22–0.71)

Hamilton et al., 2014,
Qatar [85]

Male soccer players stratified based on
25(OH)D concentration (<10–>30 ng/mL)
mean age: 24.4 ± 8.1
n = 342

Serum 25(OH)D concentrations and lower limb
isokinetic performance (peak torque)

Soccer players with serum 25(OH)D levels >30 ng·mL−1 displayed
17% greater concentric and 13% greater eccentric hamstring peak
torque in the non-dominant leg compared to those with 25(OH)D
levels of ≤10 ng·mL−1 (p = 0.015–0.021)

Forney et al., 2014,
United States [90]

Recreationally active college students,
mean age: 23.0 ± 0.7 years
n = 39; n = 20 males, n = 19 females

Serum 25(OH)D concentrations and performance
during aerobic testing (Bruce Protocol [VO2max]),
anaerobic power (Wingate), strength (upright bench
press, bicep curl, triceps pushdown, leg curl, leg
extension, and upright row [8-repetition max]), and
power (maximal vertical and horizontal jump).

Concentrations of serum 25(OH)D were associated with VO2max
(r = 0.360, p = 0.018), however, there was no association of 25(OH)D
with anaerobic power, muscular strength, and muscular power

Ksiazek et al., 2016,
Poland [86]

Polish premier league soccer players,
mean age: 22.7 ± 5.3 years
n = 43

Serum 25(OH)D concentrations and performance
during hand grip strength, lower-limb isokinetic
strength, and aerobic performance (VO2max)

Soccer players with serum 25(OH)D concentrations >20 ng·mL−1

displayed a 12% greaterpeak torque compared to those with
25(OH)D levels of ≤20 ng·mL−1 (p ≤ 0.05)
A significant positive correlation between 25(OH)D levels and
concentric leg extension peak torque (r = 0.410, p < 0.040).

Zeitler et al., 2018,
Austria [87]

Healthy recreational athletes age:
18–65 years; 40.5 ± 9.2 (males),
38.7 ± 9.8 (females)
n = 581; n = 287 males, n = 284 females

Serum 25(OH)D concentrations and performance
during maximal and submaximal treadmill running

Males with serum 25(OH)D levels <20 ng·mL−1 had significantly
lower submaximal performance on the treadmill compared with
those with normal 25(OH)D levels (p = 0.045)
Associations between 25(OH)D levels and maximal and
submaximal treadmill performance in males and females
displayed no significant differences
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Table 1. Cont.

Author, Year, Country Study Participants
(Mean ± SD) Measurements Conclusions

Most et al., 2021,
Germany [88]

88 male handball and 24 male ice hockey
players stratified based on 25(OH)D
concentration (<30 and >30 ng/mL)
mean age: 26.1 ± 5.2 years
n = 112

Serum 25(OH)D concentrations and performance
during a maximal cycle ergometer test (W/kg)

Athletes with serum 25(OH)D levels <30 ng·mL−1 achieved an
11% higher maximal aerobic power compared to those with
insufficient levels (>30 ng·mL−1) (p = 0.030)

Older Adults

Marantes et al., 2011,
United States [91]

Age-stratified, random sample of males
and females ages 21–97 years old, mean
age: 57.0 ± 18.0 years.
n = 700; n = 325 males, n = 375 females

Concentrations of serum 25(OH)D and 1,25(OH)2D,
fat mass and muscle mass, handgrip strength,
isometric leg extension strength

Lower serum 25(OH)D levels were inversely associated with
greater fat mass, while lower 1,25(OH)2D levels were positively
associated with lower muscle mass and muscle strength in males
and females

Mastaglia et al., 2011,
Argentina [4]

Females over age 70 years attending bone
health assessments at the Buenos Aires
Hospital, mean age: 71.0 ± 4.0 years.
n = 54

Lower limb lean mass, muscle function (walking
speed, chair stand, balance), muscle strength (hip
flexors and abductors, leg extensors), levels of
calcium, phosphorus, serum 25(OH)D
concentrations, and urinary calcium and creatinine

Older adults with serum 25(OH)D levels ≥20 ng·mL−1 (n = 25)
had 11% better scores on muscle function tests, 0.4 s faster walking
speed, and were 14% and 13% stronger in tests of leg extension
and hip abduction strength, respectively, than those with serum
25(OH)D levels <20 ng·mL−1 (n = 29).

Toffanello et al., 2012,
Italy [20]

Older adults aged 65–98 years from a
large cohort study in Italy (Pro.V.A),
mean age: 75.6 ± 7.5.
n = 2694

Physical Performance (balance, chair stand, gait
speed, 6 min walking test), handgrip strength,
quadriceps strength, levels of PTH andserum
25(OH)D

Levels of serum 25(OH)D were positively associated with the chair
stand, gait speed, 6 min walking test, and handgrip strength
(p < 0.001). Concentrations of 100 nmol·L−1 was determined to be
related to greater muscle function

Tieland et al., 2013,
The Netherlands [92]

Older adults >age 65 years who were
considered frail or pre-frail, mean age:
79.0 ± 7.8 years.
n = 127

Serum 25(OH)D, creatinine, glucose, and insulin
concentrations, dietary intake, body composition,
leg strength (leg press and leg extension), handgrip
strength, and physical performance (SPPB)

Levels of serum 25(OH)D were associated with appendicular
skeletal muscle mass (β = 0.012, p = 0.050). Levels of 25(OH)D and
vitamin D intake were positively associated with higher SPPB
scores (β = 0.020–0.180, p = 0.020–0.038).

Gumieriro et al., 2015,
Brazil [93]

Older adults with a hip fracture and older
than 65 years admitted to hospital, mean
age: 80.0 ± 7.0 years.
n = 100

Serum 25(OH)D concentrations, handgrip strength,
mid-upper arm muscle circumference, length of
hospital stay, mortality

Participants with lower serum 25(OH)D concentrations had 40%
lower handgrip strength and 52% higher mortality rate. Levels of
serum 25(OH)D predicted handgrip strength when adjusted for
age and sex (β = −1.945, p = 0.020).

Iolascon et al., 2015,
Italy [94]

Post-menopausal females aged 50 years
or older, mean age: 65.9 ± 7.7 years.
n = 80; n = 46 with low vitamin D levels,
n = 34 with normal vitamin D levels

Handgrip strength, isometric leg extension strength,
SPPB, gait speed, serum 25(OH)D concentrations

Serum 25(OH)D concentrations were positively associated with
handgrip strength (r = 0.234), leg extensor strength (r = 0.234), and
inverselyl associated with time to complete physical performance
tests such as walking speed (r = −0.457) and chair stand
(r = −0.564). Those with serum 25(OH)D levels ≥30 ng·mL−1 had
better results for handgrip strength, leg extension strength, and
SPPB scores (p = 0.001–0.003)
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Table 1. Cont.

Author, Year, Country Study Participants
(Mean ± SD) Measurements Conclusions

Verlaan et al., 2017, The
Netherlands [6]

Subsample of sarcopenic participants
from the PROVIDE study, which were
≥65 years old, mean age: 71.0 ± 4.0 years.
n = 132; sarcopenic participants (n = 66)
and non-sarcopenic controls (n = 66)

Body composition (appendicular muscle mass and
fat mass), muscle strength and function (handgrip
strength, SPPB), ADLs, frailty status, nutritional
status, and levels of serum 25(OH)D, vitamin B12,
and folate

Serum 25(OH)D levels were not different between groups;
however, there was a greater prevalence of vitamin B12 deficiency
in sarcopenic individuals

Aspell et al., 2019,
Ireland [95]

Older adults aged 60 years or older from
the English Longitudinal Study of Aging,
mean age: 69.8 ± 6.9 years.
n = 4157

Serum 25(OH)D concentrations, handgrip
strength, SPPB

A greater number of older adults had low handgrip strength and
SPPB score in the lowest serum 25(OH)D concentration quintile
compared to the others quintiles (p < 0.0001–0.01). After adjusting
for confounding factors, vitamin D deficiency was positively
associated with low SPPB score [OR 1.65, p < 0.01) and positively
predicted low handgrip strength (OR 1.44, p < 0.001).

Conzade et al., 2019,
Germany [96]

Older adults aged 65 years or older, mean
age: 75.7 ± 6.6 years.
n = 702

Muscle mass, handgrip strength, gait speed, TUG,
Serum 25(OH)D levels

Low levels of serum 25(OH)D (<25 nmol·L−1) were had a 0.94%
greater loss in muscle mass and 3.06% increase in time to complete
TUG compared to higher levels (≥50 nmol·L−1) but was not
related to change in handgrip strength or gait speed.

Vaes et al., 2019, The
Netherlands [97]

Older adults 65 years or older that
attended the screening visit of two
clinical trials (D-DOSE and D-FIT), mean
age: 74.0 ± 6.0 years.
n = 756

Serum 25(OH)D levels, handgrip strength, gait
speed, TUG, isometric leg extension strength

Older adults with lower serum 25(OH)D levels (<50 nmol·L−1 and
50–75 nmol·L−1) had inverse relationships for time to complete
TUG (β = 0.73–0.83, p = 0.01–0.05) and lower scores for gait speed
(β = −0.04, p < 0.05), but there no relationships observed with
handgrip or leg extension strength. Those with lower 25(OH)D
levels were also more likely to be categorized as frail.

Youth

Dong et al., 2010, United
States [98]

Adolescents aged 14–18 years old, mean
age: 16.2 ± 1.2 years.
n = 599

Levels of serum 25(OH)D, time spent in physical
activity, cardiovascular fitness determined from
oxygen consumption during a treadmill test

Positive associations were found between serum 25(OH)D levels
and unadjusted and adjusted vigorous physical activity
(r = 0.132–0.139, p = 0.002–0.01) and maximal oxygen consumption
(r = 0.100–0.212, p < 0.01–0.025).

Gracia-Marco et al., 2012,
Europe (Sweden, Greece,
Italy, Spain, Hungary,
Belgium, France,
Germany, Austria) [99]

Adolescents aged 12.5–17.5 years old
across Europe that completed the blood
sample analysis as part of the
HELENA-CSS study, mean age:
15.0 ± 1.2 years.
n = 1089; males, n = 509, females, n = 580

Standing long jump, 20 m shuttle run to estimate
VO2max, red blood cell parameters, biomarkers of
iron status (sTfR and ferritin), other micronutrients
(vitamins A, E, C, B6, and B12, folate, and serum
25(OH)D) concentrations

Concentrations of serum25(OH)D were positively correlated with
estimated VO2max (from 20 m shuttle run) (β = 0.091, p = 0.030)
and standing broad jump (β = 0.125, p = 0.010) in female
adolescents.
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Table 1. Cont.

Author, Year, Country Study Participants
(Mean ± SD) Measurements Conclusions

Valtueña et al., 2013,
Europe (Sweden, Greece,
Italy, Spain, Hungary,
Belgium, France,
Germany, Austria) [100]

European adolescents ages
12.5–17.5 years, mean age:
14.9 ± 1.2 years.
n = 3000, n = 1006 had samples for
25(OH)D and included in the analysis

Serum 25(OH)D concentrtions, BMI, fat mass,
fat-free mass, fat mass index, fat-free mass index,
20 m shuttle run to estimate VO2max, handgrip
strength, standing long jump

In males, VO2max had a positive correlation with serum 25(OH)D
concentrations (r = 0.108, p = 0.022). Linear regression
demonstrated a positive association between VO2max and serum
25(OH)D concentrations (β = 0.189, p = 0.002) and a negative
associaton between BMI and serum 25(OH)D concentrations
(β = −0.125, p = 0.023). In females, handgrip strength was
positively associated with serum 25(OH)D concentrations
(β = 0.168, p = 0.002). Greater long jump performance was a
positively ssociated with higher serum 25(OH)D levels in males.

Carson et al., 2015,
Ireland [101]

Males and females ages 12 and 15 years
from Northern Ireland.
n = 1015; (12-year-old males, n = 266;
12-year-old females, n = 260; 15-year-old
males, n = 239; 15-year-old girls, n = 250)

Serum 25(OH)D concentrations, BMI, fat mass,
fat-free mass, fat-free mass index, handgrip
strength, jump height, jump power, 20 m shuttle
run to estimate VO2max

Serum 25(OH)D concentrations in the highest tertile
(>51 nmol·L−1) were positively associated with greater muscle
strength in the 15-year-old males (β = 3.90, p < 0.001), but this
relationship was not present in any other group categorized by age
or sex. There were no associations between serum 25(OH)D
concentrations and muscle mass, muscle power or VO2max

Bezrati et al., 2016,
Tunisia [102]

Physically active males aged 7–15 years,
mean age: 11.4 ± 2.0, 11.8 ± 2.2, and
11.0 ± 1.9 years for vitamin D deficient,
insufficient, and sufficient, respectively.
n = 125

Serum 25(OH)D concentrations, body fat
percentage, vertical jump, broad jump, triple hop,
sprint agility, and trunk force

Serum 25(OH)D levels were positively associated with trunk force,
vertical jump, and broad jump (β = 0.165–0.552, p < 0.001) and
inversely related to 10 m sprint, 20 m sprint, and shuttle run
(β = −4.330–06.436, p < 0.001).

Blakeley et al., 2018,
United States [103]

Children in fourth through eighth grades
in Boston area, mean age: 11.2 ± 1.3 years.
n = 350

Handgrip strength, levels of HDL cholesterol,
triglycerides, and serum 25(OH)D
concentrations, BMI

There were no associations between handgrip strength and serum
25(OH)D concentrations.

Wakayo et al., 2018,
Ethiopia [104]

Ethiopian school-age children
11–18 years old, median age: 15 years.
n = 174

Serum 25(OH)D concentrations, handgrip strength There was no association between handgrip strength and serum
25(OH)D levels
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In older adults, vitamin D showed consistent low to moderate relationships with mus-
cle mass [91,92,96], muscle strength [4,20,91,93–95] and muscle function [4,20,92,94,95,97],
with only a few of the studies reviewed finding no associations with skeletal muscle health.
For example, while Conzade et al. reported a positive relationship between serum 25(OH)D
concentrations and changes in muscle mass and an inverse relationship with time to
complete TUG, there were no relationships with handgrip strength and gait speed [96]. Fur-
thermore, Vaes et al. reported that older adults with serum 25(OH)D levels <50 nmol·L−1

and 50–75 nmol·L−1 had lower scores for tests of muscle function compared to those
with levels >75 nmol·L−1 but observed no relationships with tests of muscle strength [97]
(Table 1). Similarly, in youth, positive relationships were consistently reported with tests
of anaerobic (broad jump, vertical jump, sprints) performance and aerobic performance
(estimated VO2max) [98–100,102] (Table 1). However, there were mixed results with tests
of muscle strength and serum 25(OH)D concentrations [101,103,104]. These results indicate
that vitamin D levels are impactful on skeletal muscle mass and function across the lifespan,
but the effects on muscle strength is inconclusive. In addition to these findings, it is reported
that 25(OH)D metabolite accumulates in skeletal muscle cells, suggesting that maintaining
muscle mass can also play a role in preserving vitamin D status in times when deficiency
may become prevalent, suggesting that skeletal muscle health may have an influence on
vitamin D levels [105,106].

3.1.3. Vitamin D Interventions and Skeletal Muscle Health

Multiple studies have examined the effects of vitamin D supplementation on muscle
mass, strength, and function, typically with doses ranging from 1000 to 4000 IU·d−1 over
4–12 weeks to over 60,000 IU·week−1 for up to 4 months (Table 2). Contrasting results of the
effects vitamin D supplementation has on muscle health have been reported, potentially due
to the large variety in dosage, type of vitamin D supplementation, duration of study, and
target population [107,108]. In athletes, vitamin D supplementation has shown conflicting
results with measurements of athletic performance. While some studies reported an increase
in maximal strength performance for leg extensions, leg curls, and chin ups [109,110], other
studies found no change in strength when compared to a control [111–115]. Close et al.
demonstrated an increase in anaerobic performance (vertical jump height and 10 m sprint)
after 6 weeks of 5000 IU vitamin D supplementation [112], while other studies showed no
effect on anaerobic performance after supplementation [111,113,115]. One study reported
an increase in VO2 max after 5000 IU·d−1 for 8 weeks [114], while another reported no
changes in VO2 max after 12 weeks of 3000 IU·d−1 [115]. No studies in athletes examined
the effects of vitamin D supplementation on muscle mass.
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Table 2. Experimental studies examining the effects of vitamin D supplementation on muscle health.

Author, Year, Country Study Participants Supplemental Treatment Duration Measurements Conclusions

Athletes

Shanely et al., 2014,
USA [111]

Professional football, tennis, lacrosse,
baseball players, and professional
wrestlers. n = 33 mean age:
16.3 ± 0.25 years.

600 IU·d−1 (Portobello
mushroom powder) vs.
Placebo

6-weeks
Serum 25(OH)D concentrations, isometric
deadlift strength and vertical
jump performance

No associations between serum 25(OH)D
concentrations with isometric muscle strength or
vertical jump performance. Isometric strength and
vertical jump performance was not different between
supplement and placebo group.

Close et al., 2013,
UK [112]

Professional rugby, soccer, flat jockeys
and national hunt jockeys. n = 61

5000 IU·month−1 vs. placebo 6-weeks
Serum 25(OH)D concentrations, isometric
strength, 10 m sprint performance and
vertical jump performance

There was approximately a 3-inch increase in vertical
jump height (p = 0.008) and 0.04-s time improvement
in 10 m sprint performance (p = 0.008) in the
supplementation group with no change in
the placebo.

Close et al., 2013,
UK [113]

Professional rugby and soccer
players. n = 30

20,000 or 40,000 IU·week−1

vs. placebo
6 or 12-weeks

Serum 25(OH)D concentrations, dynamic
strength (1-RM bench press, 1-RM leg
press) and vertical jump performance

Serum 25(OH)D concentrations increased in both
6-week and 12 week periods (p < 0.0005) with
concentrations higher after 6-weeks of 40,000 IUs
compared to 20,000 IUs (p = 0.016). However, serum
25(OH)D concentrationswere not associated with
improvements in 1-RM bench press, 1-RM leg press
and vertical jump performance following 6 or
12-week of supplementation.

Jastzebska et al., 2016,
Poland [114]

Well trained soccer players.
n = 36 5000 IU·d−1 vs. placebo 8-weeks

Serum 25(OH)D concentrations, 30-s
Wingate test for peak power, sprint tests
for 5, 10, 20, and 30 m, squat jump,
countermovement jump

Supplementation group displayed an increase in all
power tests except for 30 m sprint time (p < 0.001);
however, mean change scores were not different
between supplementation and placebo groups.

Todd et al., 2016,
Ireland [115] Gaelic football players. n = 42 3000 IU·d−1 vs. placebo 12-weeks Serum 25(OH)D concentrations and

VO2max

Serum 25(OH)D concentrations increased following
supplementation, however, supplementation had no
effect on VO2max.

Wyon et al., 2016,
UK [109] Judo athletes. n = 22 150,000 IU once vs. placebo 8 days Serum 25(OH)D concentrations, maximal

isokinetic leg extension and leg curls

Supplement group displayed a 13% increase in
muscle strength following 8 days of supplementation
(p ≤ 0.001).

Fairbairn et al., 2017,
New Zealand [110] Professional rugby players. n = 57 50,000 IU once every 2 weeks 11–12 weeks

Serum 25(OH)D concentrations, 30 m
sprint performance and maximal
dynamic strength (weighted chin-up
1-RM, bench pull 1-RM, and bench press
1-RM)

No difference in 30 m sprint performance; however,
there was a 5.5 kg increase in dynamic strength
(weighted chin-up 1-RM), (p = 0.002).
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Table 2. Cont.

Author, Year, Country Study Participants Supplemental Treatment Duration Measurements Conclusions

* Lips et al., 2010, USA,
Mexico, The
Netherlands, Germany,
Canada [116]

Older adults aged 70 years or older
who were ambulatory and had
25(OH)D levels between 6 and
20 ng·ml−1, mean age: 77.6 ± 6.6 and
78.5 ± 62.0 years in the placebo and
experimental groups, respectively.
n = 226 randomized, 202 completed
the study.

8400 IU vitamin D3 weekly
(n = 105) or placebo (n = 97) 16 weeks Serum 25(OH)D concentrations, postural

sway, SPPB, and levels PTH

25(OH)D levels increased from approximately 14 to
26 ng·mL−1 (p < 0.001) in the supplementation group;
however, there were no changes in postural sway or
SPPB scores for either group

** Ceglia et al., 2013,
USA [82]

Older females aged 65 years or older
who were ambulatory,
community-dwelling, and
postmenopausal, mean age:
78.0 ± 5.0 years.
n = 24 randomized, 21 included in
analysis

4000 IU vitamin D3 (n = 11)
or placebo (n = 13) 4 months

Serum 25(OH)D concentrations, leg
extension strength, muscle fiber type and
intramyonuclear VDR from biopsies of
the vastus lateralis

The supplementation group had a much greater
increase in 25(OH)D levels after 4 months (36.4 vs.
4.2 nmol·L−1 increase, p < 0.001), as well as a 10.6%
increase in total muscle fiber cross-sectional area
(p = 0.048) and 29.7% increase in VDR concentration
(p = 0.025) compared to changes of −7.4% and 7.8%,
respectively, in the placebo group.

Lagari et al., 2013,
USA [117]

Older adults aged 65–95 years who
were ambulatory, and community
dwelling, mean age: 73.4 ± 6.4 years.
n = 105 randomized, n = 86
participated in sub-study

400 IU or 2000 IU vitamin D3
daily 6 months

Physical performance (gait speed, timed
sit-to-stand, single leg balance, gallon jug
test, handgrip), body composition, levels
of serum 25(OH)D, calcium, creatinine,
and spot urine calcium

There was no improvement in physical performance
for either group; however, supplementation was
more effective in those with low baseline 25(OH)D
levels (<30 ng·dL−1. The relative change in serum
25(OH)D (%) was positively associated to change in
chair stand test score (5.1%, p = 0.033) and inversely
associated with an increase in fat mass (p = 0.027).

Bauer et al., 2015, The
Netherlands [118]

Older adults aged 65 years or older
with mild to moderate physical
limitations and low skeletal muscle
index, mean age: 77.3 ± 6.7 and
78.1 ± 7.0 years for the experimental
and placebo group, respectively.
n = 380 were randomized, 302
completed all three study visits

Active control product (20 g
whey protein, 3 g leucine, 9 g
carbohydrate, 3 g fat, 800 IU
vitamin D) n = 184, or
isocaloric control, n = 196
consumed twice daily

13 weeks
Handgrip strength, SPPB, appendicular
muscle mass, serum 25(OH)D
concentrations

Handgrip strength increased by 0.79 kg in 13 weeks
in the active group (p = 0.005), with no significant
increase in the control. The SPPB scores increased in
both groups (p < 0.001), with chair stand time
improving more in the active group (p = 0.018). An
estimated mean difference of 0.17 kg of appendicular
muscle mass showed a significant increase over the
placebo (p < 0.001).

Cangussu et al., 2015,
Brazil [119]

Post-menopausal females aged
50–65 years, mean age:
55.6 ± 6.6 years.
n = 160 randomized and included as
intention to treat, n = 140 analyzed
per protocol

1000 IU Vitamin D3 (n = 80)
or identical placebo (n = 80) 9 months

Handgrip strength, Chair stand, lean
body mass and fat mass assessed by DXA,
serum 25(OH)D concentrations,
creatinine, calcium, and parathyroid
hormone levels

The supplementation group had a 45.4% increase in
serum 25(OH)D levels at 9 months compared to the
18.5% decrease seen in the placebo group. Lean mass
decreased 6.8% over 9 months only in the placebo
group (p = 0.030). The supplementation group had a
25.3% increase in chair stand performance, whereas
there were no changes in the placebo (p < 0.0001).
Neither group had a change in handgrip strength.
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Table 2. Cont.

Author, Year, Country Study Participants Supplemental Treatment Duration Measurements Conclusions

* Apaydin et al., 2018,
Turkey [120]

Postmenopausal females ages
50–68 years with vitamin D levels
<20 ng·mL−1., mean age: 51.6 ± 5.8
and 51.58 ± 5.54 years in the daily
and single dose groups, respectively.
n = 60

800 IU daily (n = 32) or a
single bolus of 300,000 IU
(n = 28) of vitamin D3

3 months
Serum 25(OH)D concentrations, muscle
strength of the quadriceps and
hamstrings

There were no differences in muscle strength
between groups; however, the daily dose group
showed greater non-significant increases over time.
Serum 25(OH)D levels increased in both groups but
were higher in the single dose compared to the daily
dose group.

** Vaes et al., 2018,
The Netherlands [121]

Older adults aged 65 years or older
with 25(OH)D levels between 20 and
50 nmol·L−1 and were considered
frail or prefrail, mean age: 74.0 ± 6.0
years.
n = 78

Daily supplements of 10 µg
25(OH)D3 (n = 26), 20 µg
vitamin D3 (n = 24), or a
placebo (n = 25)

6 months

Muscle strength (leg extension and
flexion, handgrip strength), Physical
performance (TUG, SPPB, postural sway),
serum 25(OH)D concentrations, muscle
fiber type from biopsies of the vastus
lateralis, Body composition (appendicular
lean mass, BMI)

The two supplementation groups had an increase in
serum 25(OH)D levels over time, with the 10 µg
25(OH)D3 showing the greatest increase (p < 0.01).
There were no differences between groups for muscle
strength or performance

* Hajj et al., 2019,
Lebanon [122]

Older adults who were
pre-sarcopenic and vitamin D
deficient, mean age: 73.3 ± 2.1 years.
n = 128

vitamin D supplementation
of 10,000 IU of vitamin D3
(n = 64) or a placebo (n = 64)

6 months
Handgrip strength, appendicular skeletal
muscle mass, serum 25(OH)D
concentrations

The supplement group had a greater change in
serum 25(OH)D levels (10.13 to 27.98 ng·mL−1,
p < 0.001) compared to the placebo (10.56 to
15.71 ng·mL−1, p < 0.001). Handgrip strength
increased approximately 0.85 kg (p = 0.007), and
appendicular skeletal muscle mass increased 0.65 kg
(p = 0.001) at 6 months, whereas the placebo group
had no differences over time.

Molmen et al., 2021,
Norway [123]

Older adults with healthy lung
function or diagnosed with COPD,
ages 65–77, mean age:
68.0 ± 5.0 years.
n = 95 enrolled, 78 completed

Vitamin D3 supplementation
of 10,000 IU per day for two
weeks and 2000 IU per day
for the remainder (n = 34) or
the study or a placebo
(n = 44)

12 weeks of
vitamin D sup-
plementation
only, followed
by 13 weeks of
supplementa-
tion +
resistance
training

One repetition maximum (1 RM) of leg
extension and leg press, number of
repetitions at 50% of 1 RM, isokinetic
peak torque, VO2max, Wmax,
sit-to-stand, 6 min step test, muscle
thickness, leg lean mass, blood analysis
for total testosterone, cortisol, growth
hormone, IGF-1, SHBG, androstenedione,
serum 25(OH)D concentrations, PTH,
calcium, albumin, creatinine, creatine
kinase AST, CRP, triglycerides, LDL,
HDL, thyroid hormones, and iron status
variables, and muscle fiber cross-sectional
area and nuclei number from biopsies.

Overall, supplementation resulted in a 42 nmol·L−1

increase in serum 25(OH)D concentrations (p < 0.001)
but did not lead to any additional improvement in
training-related effects.
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Table 2. Cont.

Author, Year, Country Study Participants Supplemental Treatment Duration Measurements Conclusions

Youth

** Ward et al., 2010,
UK [124]

Post-menarchal females ages
12–14 years, mean age:
13.8 ± 0.6 years.
n = 73, n = 72 completed intervention

4 doses per year of
150,000 IU vitamin D2
(n = 36) or placebo (n = 36)

12 months

Muscle force, power velocity, and
jumping height during countermovement
vertical jumps, grip strength, serum
25(OH)D concentrations, PTH, bone
mineral density

Serum 25(OH)D concentrations increased by
12.3 nmol·L−1 (p < 0.001) in the intervention group
while decreasing by −0.8 nmol·L−1 in the placebo
group. Mean PTH decreased in both groups. There
were no significant changes between groups for
muscle parameters or bone mineral density.

Wright et al., 2018,
USA [125]

Children age 9–13 years in the United
States, mean age: 11.3 ± 1.2 years.
n = 324

0, 400, 1000, 2000, or 4000 IU
vitamin D3 per day 12 weeks

Serum 25(OH)D and 1,25(OH)2D
concentrations, body composition
(fat-free mass, fat mass, body fat percent,
forearm and calf muscle cross-sectional
area, muscle density, intramuscular
adipose tissue, and handgrip strength.

Changes in muscle mass and strength over the
12 weeks were not related to changes in 25(OH)D,
even with a 34.9% (p < 0.001) increase in serum
25(OH)D levels. However, increases in 25(OH)D
were inversely associated with forearm
intramuscular adipose tissue (r = −0.17, p = 0.029).

Mortensen et al., 2019,
Denmark [126]

Children aged 4–8 years in
Copenhagen, mean age:
6.6 ± 1.5 years.
n = 117

10 µg·day−1 (n = 38),
20 µg·day−1 (n = 39), or a
placebo (n = 40)

20 weeks

Handgrip strength. BMI, fat mass index,
fat-free mass index, and serum 25(OH)D,
IGF, and IGF-binding protein
concentrations

At baseline, serum 25(OH)D concentrations were
positively associated with handgrip strength
(non-adjusted: β = 0.73–0.74, p = 0.005–0.006,
adjusted: β = 0.38–0.39, p = 0.022–0.025), fat-free mass
index (non-adjusted: β = (0.26, p = 0.001, adjusted:
β = 0.19, p = 0.006), and IGF binding protein
(β = 0.19, p = 0.010) in females. Levels of serum
25(OH)D decreased by 24.2 µg·day−1 in the placebo
group and increased by 4.9–17.4 µg·day−1 (p < 0.001)
in both intervention groups. There were no differences
between groups after the intervention for handgrip
strength or fat-free mass; however, IGF-1 was higher
in the 20 µg·day−1 group compared to the placebo

* Denotes studies that specifically examined vitamin D deficient individuals. ** Denotes studies that specifically examined vitamin D insufficient individuals.
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In older adults, the effects of vitamin D supplementation on strength were overall
positive. Hajj et al. reported a greater change in handgrip strength compared to a placebo
(10.13 to 27.98 ng·mL−1, p < 0.001 versus 10.56 to 15.71 ng·mL−1, p < 0.001) [122]. Bauer et al.
observed an increase of 0.79 kg in handgrip strength over 13 weeks (p = 0.005); however,
this supplementation also included whey protein and leucine, which may have contributed
to the increase in strength [118]. Multiple studies have examined the effects of supplemen-
tation on tests of muscle function including the Short Physical Performance Battery (SPPB),
chair stand, time-up and go, postural sways, and tests of walking speed. Increases in SPPB
and chair stand performances were observed after 800–1000 IU of vitamin D compared to a
placebo [118,119], but no differences were reported in other studies [116,117,121,123,127].
Similarly, studies that examined the effects of vitamin D on muscle mass were gener-
ally positive. In those receiving vitamin D supplementation, appendicular muscle mass
increased [118,122] and lean mass was maintained over 9 months while decreasing in the
placebo group [119]. Additionally, Ceglia et al. reported a 10.6% increase in muscle fiber
cross-sectional area and 29.7% increase in VDR concentration, indicating a potential mech-
anistic influence of vitamin D on skeletal muscle [82]. These results indicate that while
vitamin D supplementation may have a potential positive influence on muscle strength and
function in older adults, there is more evidence supporting a beneficial effect on muscle
mass in this population. Additionally, in all populations reviewed, the dosage and duration
of treatment varied, ensuing in inconclusive results.

Few studies were observed reporting the effects of vitamin D supplementation on
skeletal muscle health in a youth population [124–126]. These studies also varied in age,
duration, and dosage of vitamin D supplementation. While each intervention resulted
in an increase in serum 25(OH)D levels, there were no positive effects in muscle mass,
strength, or function when compared to a placebo [124–126]. This suggests that vitamin D
supplementation may be more effective and necessary as an individual ages, potentially due
to reduced dietary intake, reduced sun exposure and ability of the skin to produce vitamin
D, and impaired absorption [128,129], as well as impairments in vitamin D actions on
skeletal muscle through mitochondrial dysfunction and compromised anabolic pathways
with age [130]. Several studies indicate a relationship between serum 25(OH)D levels
and muscle mass and strength, suggesting a mechanistic link between low vitamin D
levels and declines in muscle mass, strength, and function. Vitamin D deficiency has
been extensively researched in sarcopenic older adults, suggesting that while deficiency of
vitamin D may lead to sarcopenia and related adverse outcomes such as higher risk of falls,
muscle fiber atrophy, and disability during hospitalization [131,132], supplementation has
shown conflicting results in improving sarcopenia [133,134] However, the conflicting results
in intervention studies cannot confirm vitamin D supplementation has an effective way to
increase performance or prevent and/or treat sarcopenia in older adults. It is more likely
that protein sources including a variety of nutrients including vitamin D have a greater
effect. For example, 12–13-week interventions of supplementation including vitamin D and
leucine-enriched whey protein showed improvements in muscle mass and lower extremity
strength and function in sarcopenic older adults [8,118,135], specifically if adequate protein
was consumed [8,118,135].

Although many prospective cross-sectional and intervention studies have examined
vitamin D and skeletal muscle health (Tables 1 and 2), conflicting results indicate that
while there is potential for positive benefits of maintaining an adequate vitamin D status,
there is no conclusive evidence that vitamin D levels beyond optimal range provide any
enhancement to skeletal muscle health in a variety of populations. However, there appears
to be a greater response in an older population, suggesting that maintaining levels through
dietary intake and supplementation becomes more important with age. Additionally, the
studies reviewed showed great diversity in participant characteristics, outcome measure-
ments, and/or dosage amount and duration even within the separate population groups,
which may have influenced the response or association between vitamin D and skeletal
muscle health.
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3.2. Iron and Skeletal Muscle Health
3.2.1. Iron and Skeletal Muscle Physiology

Iron is an essential mineral for multiple processes in the body that influence skeletal
muscle performance such as oxygen transport, electron transport, and red blood cell
production [136–138]. There is approximately 3–4 g of iron within the human body, in
which about 70% of the body’s iron is found within hemoglobin (Hb) in red blood cells and
myoglobin (Mb) within skeletal muscle [139]. Specifically, skeletal muscle contains about
10–15% of the iron in the body, mainly within oxidative fibers high in myoglobin [140]. The
iron within the body is meticulously recycled to replace iron losses that occur within the
gastrointestinal tract, skin, hair, sweat, and menses [141,142]. However, despite this efficient
regulatory process, iron deficiency remains the most common nutritional deficiency in the
world [139,143,144], typically from diminished iron absorption or increased iron loss, which
is greater in females compared to males due to loss during menstruation [145]. Additionally,
a vegan or vegetarian diet can be a risk factor for developing anemia, suggesting that
dietary choices can be impactful for maintaining optimal iron status [146]. However, iron
overload in thalassemia is an opposing challenge of iron deficiency that is influenced by
iron regulation [147,148]. With the potential adverse health outcomes of iron overload,
such as increased morbidity, maintaining an optimal iron status is necessary.

A number of biomarkers are utilized to reflect parts of the iron metabolism process,
and therefore, are useful in isolation and in conjunction with one another. A common
marker used to determine iron deficiency is ferritin. Ferritin is reflective of the body iron
stores [149,150] and is used to determine the first stage of iron deficiency [139,151] defined
as a lack of body iron stores. Ferritin levels <12–15 µg·L−1 indicate depleted iron stores;
however, cutoff criteria between 15 and 35 µg·L−1 have often been utilized to diagnosis
iron deficiency [47,152,153]. It is important to note that ferritin is an acute phase protein
and is elevated with the presence of inflammation, so diagnosis with ferritin alone warrants
caution in those with inflammation [154]. Correction for inflammation and measurement
of inflammatory status are recommended when examining ferritin [155,156].

Decreased transferrin saturation or increased soluble transferrin receptor (sTfR) por-
trays the second stage of iron deficiency, reflecting reduced erythropoiesis. Transferrin
saturation of <15–20% is considered indicative of iron deficiency [139]. An elevated sTfR
indicates tissue iron deficiency and shows an inverse relationship with iron deficiency
severity [157]. Together, the ratio of serum sTfR and serum ferritin can provide an index
that reflects body iron. This measurement is effective for monitoring fluctuations in iron
status [158].

The last stage of iron deficiency results in iron deficiency anemia with the addition
of Hb as a biomarker [159]. Concentrations of Hb is a commonly measured parame-
ter due to its affordability and accessibility; however, Hb is not specific to iron due to
other potential contributors such as folate or vitamin B12 deficiency or anemia of chronic
inflammation [139,160]. The inclusion of a second biomarker, such as ferritin or sTfR, simul-
taneously with Hb can confirm the diagnosis of iron deficiency anemia. Cutoff values range
based on sex, age, and ethnicity [161]. According to the World Health Organization [159],
diagnosis of anemia utilizing Hb concentrations have cutoff criteria of <115 g·L−1 for ages
5 to 11 years, <120 g·L−1 for ages 12–14 years, and <120 g·L−1 and 130 g·L−1 for females
and males, respectively, 15 years or older [159,162].

Iron is essential for skeletal muscle function largely due to several pathways. While
known for its necessary role for Hb production in red blood cells, iron is required for many
processes for energy metabolism [163,164]. In particular, oxidative metabolism requires iron
for adequate oxygen supply and the transfer of electrons during redox reactions [165,166].
Additionally, the majority of iron in skeletal muscle is within slow twitch muscle fibers that
are abundant in myoglobin, in which oxidative metabolism occurs [166,167]. Enzymatic
complexes within the electron transport chain rely on iron to function, indicating that an
adequate supply of iron is essential for the oxidation of fuel sources for energy [164,165].
This indicates that the aerobic capacity of an individual greatly relies on the oxygen-carrying
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capacity of the blood as well as the muscle oxidative capacity [140], both of which are
heavily dependent upon iron.

3.2.2. Iron and Skeletal Muscle Health

Multiple studies have examined associations between iron status and parameters
of skeletal muscle health (Table 3). In youth populations, the association between iron
biomarkers and performance seemed to largely depend on what performance metric were
utilized. Wang et al. reported that iron deficiency was related to lower fat-free associated
VO2max within females, and both males and females with iron deficiencies had lower
energy expenditure at leisure compared to adequate iron group [168]. Arsenault et al.
reported that females with low ferritin levels had lower levels of performance during
a shuttle run test, whereas males with low ferritin levels had lower long jump scores
compared to those of normal ferritin levels [169]. Lastly, in a study conducted by Gracia-
Marco et al. Hb concentrations were associated with estimated VO2max results in male
adolescents only [99]. These varying outcomes provide insight into iron deficiency playing
a role in oxygen transport directly influencing aerobic activities. The influence of iron
status on anaerobic activities is further warranted to understand the role of iron on muscle
strength, health, and function within youth populations.
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Table 3. Cross-sectional studies examining associations between anemia, iron status and muscle health.

Author, Year, Country Study Participants Measurements Conclusions

Athletes

DellaValle & Hass, 2012,
USA [46]

Female rower athletes
n = 165,
n = 44 of rowers were identified as iron
depleted without anemia (IDNA) [serum
ferritin < 20.0 µg·L−1]; n = 16, as anemic
(hemoglobin < 12.0 g·dL−1).

Physical performance of 48 nonanemic rowers
(n = 24 normal, n = 24 depleted) was assessed
during a 4 km rowing event (VO2max, time
and energetic efficiency), ferritin, sTfR, and
Hb levels

Rowers with IDNA had 0.3 L·min−1 lower VO2max and
VO2peak (p = 0.02–0.03) and higher lactate concentration during a
4 km row assessment (p = 0.02). Relationships between iron status
and endurance performance (VO2max, VO2peak, time, and
energetic efficiency), between groups was dependent on the
rowers’ training load. A positive correlation was present between
VO2peak and serum ferritin (r = 0.29, p = 0.05), but no other
measures of iron status with performance. IDNA may influence
the training load of athletes affecting performance.

Tsai et al., 2019,
Taiwan [170]

Males Taiwanese Military
n = 3666

3000 m run test, 2 min sit-ups and 2 min
push-up test, levels of Hb and hematocrit

After adjusting for age, service occupation, BMI, waist size, and
blood pressure, mild anemic males were more likely to be the
worst 10% performers in the 3000 m run test (Odds Ratios 1.47,
p = 0.043). However, mild anemic males had a higher possibility
to be the best 10% performers in the 2 min push-ups test (Odds
Ratio 1.68, p = 0.001). There was no associations between anemic
status and 2 min sit-up test.

Shoemaker et al., 2019,
USA [171]

Male (n = 179; mean age 12.0 ± 2.1 years) and
female (n = 70; mean age 12.0 ± 2.2 years)
youth athletes

Athletic performance (vertical jump, broad
jump, agility drill times, 20-yard dash time,
power push up force), dietary intakes, levels
of ferritin, sTfR, and Hb

Athletic performance was consistently related to Hb in males
(r = 0.237–0.375, p < 0.001–0.05) and with sTfR (r = 0.521–0.649,
p < 0.001–0.004) and iron intake (r = 0.397–0.568, p = 0.001–0.027)
in females.

Older Adults

Juárez-Cedillo et al., 2014,
Mexico [172]

Older adults from the Study on Aging and
Dementia, mean age by Hb quintiles:
71.7 ± 7.6, 70.8 ± 7.0, 71.6 ± 7.7, 69.7 ± 7.3,
and 70.8 ± 7.4 years from lowest to highest
Hb quintile, respectively.
n = 1933

Levels of Hb, frailty status (weight loss,
exhaustion, grip strength, and walking speed)

Greater risk of frailty was present in those with lower Hb
concentrations, with concentrations of Hb of 10.5 and 11.5 g·dL−1

having greater likelihood of frailty (Odds Ratio 6.3 and 2.3)
compared to concentrations of 15.0 g·dL−1 (Odds Ratio 0.81).

Kim et al., 2014,
Korea [173]

Older adults in South Korea from the
KNHANES IV study that were 60 years or
older, mean age: males, 69.0 ± 6.3; females,
69.3 ± 6.4 years.
n = 2332

Ferritin concentrations, HOMA-IR, sarcopenic
status based on appendicular skeletal
muscle mass

Ferritin concentrations were higher in the sarcopenic females
compared to the non-sarcopenic females (70.7 vs. 85.4 ng·mL−1,
p = 0.001). Appendicular skeletal muscle was negatively
associated with ferritin concentrations (males; r = −0.111,
p = 0.001, females; r = −0.104, p < 0.001).
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Table 3. Cont.

Author, Year, Country Study Participants Measurements Conclusions

Pires Corona et al., 2015,
Brazil [174]

Older adults in Sao Paulo, Brazil, mean age
70.0 years.
n = 1256

Levels of Hb, frailty status (weight loss,
exhaustion, grip strength, and walking speed)

Mean Hb concentrations were lower in frail older adults
compared to non-frail older adults (13.3 g·dL−1 vs. 14.3 g·dL−1,
p < 0.001). Frail individuals were more likely to have lower Hb
than non-frail individuals, independent of confounding health
conditions (Odds Ratio 3.27, p < 0.001).

Moon et al., 2015,
Korea [175]

Korean males 65 years or older from the
KNHANES and young males not meeting
study criteria included as a reference group,
mean ages: 71.6 ± 5.0 and 30.7 ± 5.9 years,
respectively.
n = 1464

Levels of Hb, Skeletal Muscle Index Low muscle mass was related to presence of anemia, independent
of potential confounding factors (Odds Ratio 2.83).

Ruan et al., 2019, China,
Ghana, India, Mexico,
Russia, South Africa [176]

Older adults in China age 50 years or older
that were part of the World Health
Organization Study on Global Ageing and
Adult Health, mean age 62.6 ± 0.2 # years.
n = 13,175

Levels of Hb, frailty status
Presence of anemia was associated with frailty, in which for each
1 g·dL−1 increase in Hb concentration, there was a 4% decrease in
the odds of frailty (Odds Ratio 0.96, p < 0.001).

Neidlein et al., 2021,
Germany [177]

Hospitalized older adults aged 65 years or
older, mean age: 81.4 ± 6.2 years.
n = 224

Levels of ferritin, transferrin, iron, and Hb,
CRP, handgrip strength, SPPB score, isometric
leg extension strength. Iron supplementation
protocol was recorded if provided during
hospital stay

In those with iron deficiency, frailty scores were higher (4 vs. 3,
p < 0.05), Hb was lower (males; 11.1 g·dL−1 vs. 12.4 g·dL−1,
p < 0.01, females; 10.7 g·dL−1 vs. 11.7 g·dL−1, p < 0.001), and CRP
was higher (3.2 mg·dL−1 vs. 1.9 g·dL−1, p < 0.01). There were no
differences in muscle strength and function parameters between
those with were iron deficient or non-iron deficient. However, a
positive association was observed between Hb and handgrip
strength at baseline and at hospital discharge in those with iron
deficiency (β = 0.242–0.641, p = 0.020–0.039).

Youth

Arsenault et al., 2011,
Colombia [169]

Youth aged 5–12 years in Colombia.
n = 1945

Standing long jump, 36 m shuttle run, and
levels of Hb, ferritin, vitamin B12, complete
blood count, CRP, erythrocyte folate

There were no differences in performance measurements between
anemic and non-anemic youth. Females with low ferritin had
0.6 s slower performance on the shuttle run than females with
normal ferritin levels (p = 0.020). Males with low ferritin had 7 cm
lower jump scores than those with normal ferritin (p = 0.030).

Gracia-Marco et al., 2012,
Sweden, Greece, Italy,
Spain, Hungary, Belgium,
France, Germany,
Austria [99]

Adolescents aged 12.5–17.5 years old across
Europe that completed the blood sample
analysis as part of the HELENA-CSS study.
n = 1089; males, n = 509, females, n = 580

Standing long jump, 20 m shuttle run to
estimate VO2max, red blood cell parameters,
biomarkers of iron status (sTfR and ferritin),
other micronutrients (vitamins A, E, C, B6, and
B12, folate, and serum 25(OH)D) concentrations

Concentrations of Hb was positively associated with estimated
VO2max (from 20 m shuttle run) in male adolescents (β = 0.192,
p = 0.002).

# Indicates Standard Error.
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Similar observations were observed in athletic populations where iron status seems to
be more influential to the performance of aerobic-based activities. In a study conducted by
DellaValle & Hass, female rower athletes that were categorized as iron depleted without
anemia (IDNA) (serum ferritin < 20.0 µg·L−1), had lower VO2max and higher blood lactate
concentrations during a 4 km rowing test [46]. In addition, the authors suggested that
iron status also likely played a role in training load of the athletes where those athletes
categorized as IDNA had lower training times than the non-anemic group during a 4-week
observation. In addition, Tsai et al. reported that mildly anemic males enlisted within the
Taiwan Military were likely to be the worst 10% performers during a standard 3000 m run
test but were likely to be the best 10% performers during an anaerobic test such as the
2 min push-up test [170]. Shoemaker et al. also indicated within youth athletic population
that performance during aerobic fitness tests such as vertical jump, broad jump, agility drill
times, 20-yard dash time, power push up force, were related to Hb status in males and with
sTfR and iron intake in females [171]. Together these studies further support the notion
that iron plays a role in aerobic metabolism and cardiorespiratory fitness; however, the role
on iron status and anaerobic fitness tests require further investigation.

Within the older adult population, iron status seems to play a role in frailty. For
example, multiple studies reported that lower Hb concentrations were associated
with higher frailty scores or associated with a greater risk of frailty than non-frail
individuals [172,174,176,177]. However, in older adults, iron status seemed to vary based
on muscle strength metrics. For example, low Hb levels were reported to not be associated
with grip strength in older adults in Brazil [174]; however, in hospitalized older adults
there was a positive association between Hb levels at baseline and at discharge within
those with iron deficiency. Together, these associations suggest that low iron status is
related to decreased aerobic and anaerobic performance. While few studies examined the
associations between iron status and muscle mass, low Hb concentrations were related to
lower muscle mass and the presence of frailty in older adults [172–176]. However, there
was no concluding evidence on muscle strength and function measurements.

3.2.3. Iron Interventions and Skeletal Muscle Health

Iron supplementation is a common method utilized to correct iron deficiency, particu-
larly in athletic populations. Oral supplementation doses ranging from 40 to 400 mg·d−1

for treatment durations of 6–24 weeks has been effective in improving iron status [178–181].
However, there are contrasting results regarding the effectiveness of iron supplementation
for performance measurements reflective of skeletal muscle health. Multiple studies have
examined the effects of iron supplementation on performance in athletes, yet there is a lack
of studies examining if iron supplementation influences skeletal muscle mass or is effective
in other healthy populations such as youth or older adults (Table 4). In aerobic-based
athletes (rowers, runners, and cyclists), iron supplementation over 6 weeks was effective
in improving aerobic performance such as 4 km time trial and VO2max for rowers and
runners [179,180]. However, a shorter intervention of 80 mg·d−1 showed no improvement
in muscle recovery from cycling performance [182]. One study examined muscle strength
measurements in female volleyball players. Iron supplementation of 325 mg·d−1 over
11 weeks improved strength in two power exercises and total strength over six different
exercises [181]. These studies indicate that improving iron status via supplementation may
be effective in improving performance-based measurements of skeletal muscle health. Fu-
ture research should examine the effects of improving iron status on skeletal muscle mass,
strength, and function in other vulnerable populations such as youth and older adults.
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Table 4. Experimental studies examining the effects of iron supplementation on muscle health.

Author, Year,
Country Study Participants Supplemental Iron Treatment Duration Measurements Conclusions

Athletes

DellaValle & Hass,
2014, USA [179] 31 Rowers

Treatment group: 100 mg·d−1

FeSO4 (n = 15)
Placebo: (n = 16)

6-weeks

Iron status (Hb, iron ferritin,
transferrin receptor), body
composition, performance (4
km time trial, VO2max,
energetic efficiency, and
blood lactate)

Treatment group showed a 0.3 g·dL−1 improvement in
Hb (p = 0.04), slower lactate response during the 4 km
time trial, and (12.2 nmol·L−1 vs. 11.4 nmol·L−1 at
post-treatment compared to placebo, p < 0.001), and a
4.3 kcal higher energy expenditure (p = 0.03)
post-treatment.

Garvican et al., 2014,
Australia [180]

27 distance runners with
low or suboptimal
iron status

Intravenous (IV) iron (550 ± 171
mg for low iron status, 375 ± 39
mg for suboptimal iron status) or
oral supplementation of one
(low) or two (suboptimal) tablets
of 305 mg ferrous sulfate and 105
mg elemental iron) daily

6-weeks

Iron status (Hb, sTfR, ferritin,
erythropoietin, transferrin,
Hb mass) and performance
(VO2max, lactate threshold,
running economy)

Both IV and oral supplementation showed a
83.7–417.5% increase ferritin at 6 and 8 weeks and a
−5.6–−9.9% decrease in sTfR concentrations. VO2max
increased, with a more profound increase in runners
with low iron status (1.2–3.3 mL·kg−1·min−1).

Mielgo-Ayuso et al.,
2015, Spain [181]

22 Elite female volleyball
players (27.0 ± 5.6 years)

Treatment group: 325 mg·d−1

ferrous sulphate daily (n = 11)
Placebo: (n = 11)

11-weeks

Iron status (serum iron,
ferritin, transferrin saturation
index, Hb), and strength
(bench press, military press,
half-squat, power clean, clean
and jerk, and pull-over)

Treatment group showed significantly greater levels of
serum iron, ferritin, transferrin saturation index, Hb
compared to placebo group. Improvements in bench
press (38.2 to 43.1 kg) clean and jerk (27.7 to 35.1 kg),
power clean (33.3 to 35.1 kg), and total mean strength
(35.2 to 41.9 kg occurred after the 11 weeks in the
treatment group compared to placebo group (p < 0.05).
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3.3. Interrelationship between Vitamin D, Iron, and Chronic Inflammation
3.3.1. Anti-Inflammatory Role of Vitamin D

In addition to its role on skeletal muscle health, vitamin D is thought to have anti-
inflammatory actions through activation and differentiation of inflammatory cells, lead-
ing to a reduction in risk of infection and inflammation [12,13,183,184]. Vitamin D has
immunomodulatory benefits including the enhancement of antimicrobial peptides and
defensins to improve cellular immunity and reduce cytokine storms linked to infection.
Adequate levels of vitamin D are related to the decrease in production of pro-inflammatory
cytokines and an increase in anti-inflammatory cytokines [14–18]. Additionally, Shoemaker
et al. recently reviewed the effects of vitamin D supplementation on reducing the risks of
respiratory tract infections and viral infections including SARS-CoV-2 and indicate that
sub-optimal vitamin D status increases risk for incidence, complication, and mortality due
to infection and the presence of inflammation (manuscript in press). Therefore, vitamin D
is a potential nutritional strategy that may reduce chronic inflammation.

The relationship between vitamin D status and inflammation has been studied previ-
ously in older adults [185,186]. Furthermore, vitamin D supplementation has demonstrated
beneficial effects on chronic inflammation [7,14–16,187]. For example, Liberman et al. re-
ported that 13 weeks of vitamin D and protein supplementation was effective in preventing
increases in inflammatory cytokines compared to a placebo in older adults [7]. Similarly,
Pereira et al. reported that 12 weeks of oral nutritional supplementation rich in vitamin
D, HMB, and protein improved multiple biomarkers related to inflammation, immune
function, and overall muscle health [188].

3.3.2. Connection between Vitamin D and Iron Status

Vitamin D and iron are both essential nutrients for skeletal muscle health, suggesting
that optimal status in both micronutrients may interactively benefit skeletal muscle health.
Vitamin D is important for the regulation of iron metabolism; therefore, low vitamin D status
may result in low iron status [9,11,34]. Due to the relationship observed between vitamin
D action on pro-inflammatory cytokines and mechanisms behind iron regulation [9,35],
examining the physiological functions of vitamin D and iron status on skeletal muscle
health and inflammation is an important next step in promoting health and performance.
This theorized interaction is displayed in Figure 1. The connection between vitamin D
and iron status is thought to be associated with hepcidin, an antimicrobial peptide that is
essential for the regulation of iron metabolism [9,35]. Iron absorption and excretion is a
highly regulated process, in which iron absorption increases with deficiency and decreases
when iron stores are full. Systemic iron status, erythropoiesis requirements, and presence
of inflammation can all influence this regulatory process [136]. The presence of high
inflammation results in an increase in hepcidin production, causing iron to sequester and
limit iron-supported erythropoiesis [189]. This leads to diminished ability to absorb iron,
thus leading to iron deficiency anemia.

Additionally, vitamin D can mediate the expression of hepcidin through the binding of
VDR with a gene promotor called HAMP gene to downregulate hepcidin production [35].
Furthermore, the role vitamin D has in decreasing expression of inflammatory cytokines
that have a stimulating role on hepcidin production may indirectly contribute to this
integration. Through in vitro studies, there is evidence that adequate levels of vitamin
D are associated with reduced concentrations of hepcidin due to the suppression of the
HAMP gene, as well as due to reduced concentrations of pro-inflammatory cytokines such
as IL-1β and IL-6 [11]. This suggests the potential for vitamin D levels to influence iron
regulation through hepcidin, specifically in the presence of inflammation. Additionally,
vitamin D supplementation has been found to decrease hepcidin, and thus may have
benefits in altered iron status, particularly in those with chronic inflammation [11]. While
typically associated with anemia related to inflammation, it is possible that this mechanism
may also be related to iron deficiency with or without anemia due to the reduction in iron
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necessary to support erythropoiesis. This suggests that those with chronic inflammation
may have greater iron requirements to increase circulating iron concentrations and promote
red blood cell production, indicating the need for nutritional support with both vitamin D
and iron.
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Relationships between low vitamin D status and low iron status are reported, provid-
ing further support for this nutritional interaction [49,50,190]. Vitamin D deficiency and
low iron status are prevalent in multiple populations including older adults [22,40,44,45,51],
children [52–55], and athletes [47,56,57], emphasizing the potential influence these nutrients
may have on skeletal muscle health throughout the lifespan. Additionally, associations
between vitamin D deficiency and low iron status have been demonstrated. For example,
Malczewska-Lenczowska et al. reported that female athletes with iron deficiency also
had lower vitamin D concentrations. Female athletes with vitamin D deficiency also had
lower ferritin and iron concentrations and higher total iron binding capacity and sTfR,
indicating low iron status [49]. Additionally, vitamin D supplementation (3000 IU·day−1)
was effective in preventing a decline in Hb and hematocrit and improve transferrin levels,
as well as concentrations of vitamin D in elite male rowers [191]. These findings support
the association between vitamin D and iron status in athletes, although it is unclear which
of the nutrients is the cause or the effect in the relationship. Further research is needed to
examine if this nutrient interaction is influential to skeletal muscle health.

A retrospective study in children aged 10–20 years demonstrated an association
between vitamin D deficiency and both anemia and iron deficiency when accounting for
contributing factors [192]. The relationship between Hb and vitamin D was more prominent
in female children, compared to males, suggesting that those vulnerable to nutritional
deficiencies may be most affected by this nutritional interaction with skeletal muscle
health through the growth and development stage. Similarly, in a pediatric population of
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inflammatory bowel disease patients, children with vitamin D concentrations≥ 30 ng mL−1

had lower hepcidin and higher Hb concentrations when controlling for inflammation [193].
In older adults, the prevalence of vitamin D deficiency was higher in those with anemia
due to inflammation (56%) and nutritional deficiency (48%) [51]. These findings suggest
that children and older adults are at risk for compounding nutritional deficiencies, along
with inflammation, that may be influential to the muscle growth and atrophy typically
observed at each life stage. Therefore, adequate consumption of nutrients such as iron and
vitamin D is essential for these populations.

3.4. Animal Food Sources

Adequate consumption of vitamin D and iron may be key in enhancing muscle
mass, strength, and performance. Animal-source foods are abundant in vitamin D and
iron, which may help individuals reach optimal, bioavailable intakes of these nutrients
to support skeletal muscle health [58–60]. Specifically, beef is rich in bioavailable heme
iron that may reduce the risk of iron deficiency and anemia [194,195]. Heme iron is found
only in animal-source foods and are better absorbed than plant sources containing non-
heme iron [195]. In particular, beef sources including ground beef, beef liver, and bottom
round beef cuts are abundant sources of iron, containing 2–5 g of heme iron per 3 oz.
serving. Previous studies have indicated the consumption of iron-rich red meat, along with
resistance training, have shown beneficial effects on muscle mass, muscle strength, and
reduce inflammatory markers [58,59], providing support for iron’s role in muscle health.

While vitamin D originates from sunlight exposure, dietary intake of vitamin D can
be obtained from a variety of food sources in which approximately 60% of intake comes
from animal-source foods such as fish, meat, and eggs [196]. Dietary intake of vitamin D
range from 3.8 to 7.2 µg·d−1 in youth, 3.6 to 5.4 µg·d−1 in adults, and 3.9 to 5.1 µg·d−1 in
older adults [197], which is lower than the recommended intake between 10 and 15 µg·d−1

(400–600 IU) [198]. Fortified milk provides a majority of the vitamin D within the American
diet [199], with approximately 3 µg per cup [200]. Additionally, other key sources of
vitamin D include beef liver and other beef sources, fatty fish such as salmon, eggs, and
chicken [201]. Previous studies have observed positive results in vitamin D status after
supplementing with vitamin D-fortified milk [202], suggesting potential for increasing
muscle health through food sources.

Adequate nutritional intake is essential for muscle growth, performance, and prevent-
ing of sarcopenia. In particular, nutrients abundant in animal food sources such as vitamin
D, iron, and protein, have been related to athletic performance, functional performance, and
muscle growth [58,59,203–205]. Criticism of the current Recommended Daily Allowance
(RDA) of 0.8 g·kg−1·d−1 warrants an increase specifically when protein anabolism is ef-
fected such as during the aging process and during exercise [206,207]. Sarcopenic older
adults had lower intakes of protein, lipids, and micronutrients including iron and vitamin
D [208,209]. Additionally, oral nutritional supplementation rich in protein and vitamin D
resulted in improvement of markers of health, strength, and inflammation in malnourished,
sarcopenic older adults [188]. These results indicate that an animal-source food matrix
may be optimal when trying to enhance skeletal muscle function and reduce the risk of
chronic inflammation.

Dietary protein from animal sources has long been established as beneficial for
skeletal muscle by increasing muscle protein synthesis due to the essential amino acid
content [210,211]. Animal protein sources effectively improved skeletal muscle strength
and mass in healthy young adults and older adults [58,59,203,212,213], indicating func-
tional benefits of including dietary animal-source foods. Red meat, such as beef, and dairy
products are two groups of animal-source foods that show promise for improving skeletal
muscle health, potentially due to the nutrient content of these foods.

Multiple studies have examined the effects of beef intake on skeletal muscle-based out-
comes in older adults [58,59,214–216]. Recent reviews have concluded that beef and/or the
nutrients found within beef may improve muscle function [214,217]. Asp et al. investigated
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the relationship between beef intake and muscle mass in older adults ages 60–88 years,
reporting that beef intake was positively related to mid-arm muscle area. Furthermore,
regression analysis predicted that a 1 oz increase in beef consumption per day would
result in a 2.23 cm2 increase in mid-arm muscle area [58]. In agreement, Morris & Jacques
also predicted a linear increase in muscle mass (appendicular skeletal muscle index) in
association with a 100 g per week increase in beef intake [213]. Lean red meat enhanced
the effects of resistance training on muscle mass and strength in older females [59] and
in 1 repetition maximum leg extension strength in older males [215]. In contrast, when
examining the effects of lean beef in addition to resistance training, no additional benefits
were observed in older adults when beef was consumed twice a week for 24 weeks [216].
Additionally, lean beef and protein supplementation had no positive effect on fat-free mass
in older adults [215,218]. Meals containing pork, beef, or chicken showed similar impact
on body composition and strength, indicating that high-quality protein sources, in general,
have the same effect on skeletal muscle health [219,220]. Furthermore, consumption of beef
protein isolate, chicken protein isolate, or whey protein all resulted in increases in lean body
mass, regardless of source of protein [203]. Higher intake of protein source foods including
red meat, poultry, fish, dairy, soy, nuts, seeds, and legumes were positively associated with
higher percent skeletal muscle mass over time in older adults, indicating that higher intake
of animal-source foods can help maintain skeletal muscle with age [212]. These studies
indicate conflicting skeletal muscle health outcomes with animal protein consumption;
however, adequate consumption of protein sources in general appear to be a beneficial
method for preserving muscle mass and strength. Future random controlled trials are
required to provide further support of animal-source foods such as beef and poultry as
dietary sources to promote skeletal muscle health.

Fortified dairy products are also nutrient-dense foods with the potential to improve
skeletal muscle health [204,205]. In addition to many dairy products being fortified with
vitamin D, they are rich in protein and many micronutrients including vitamin B12, calcium,
riboflavin, and zinc, that are important for muscle health and function [221]. Consumption
of dairy milk with additional protein improved fat-free mass, strength, and power in
young males when consumed following resistance training [222]. However, in older adults,
consuming higher protein dairy milk did not further improve the benefits obtained from
resistance training alone on fat-free mass, power, or physical performance, but did improve
maximal strength measurements [223].

4. Conclusions

Vitamin D and iron are nutrients that have a role in enhancing skeletal muscle health.
While the supplementation of these nutrients has conflicting results, overall, vitamin D
in combination with protein has been shown to increase muscle mass, as well as high-
protein foods rich in vitamin D and iron. There was an overall positive effect of vitamin
D on muscle mass, with mixed results on muscle strength and function. The influence
of vitamin D appeared to be more profound within older adults. There was an overall
positive effect of iron on both aerobic and anaerobic performance, with mixed results
on muscle strength and function. While vitamin D and iron deficiency commonly occur
simultaneously, there are few studies examining the effects this has on skeletal muscle
health and inflammation. Future studies are required to examine if adequate dietary intake
of these nutrients influence levels of inflammation.

While consumption of isolated nutrients such as iron and vitamin D may have some
positive outcomes, an interaction of combined nutrients, in addition to physical activity,
is most effective in improving skeletal muscle health, thus promoting qualities that will
reduce inflammation and promote health well-being. Due to the high nutrient density,
animal-source foods, including animal protein sources such as lean beef and dairy products,
can provide a nutrient matrix that may be necessary for optimal absorption and utilization
to promote skeletal muscle health. Thus, there is a need for future trials examining the role
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animal-source foods and associated nutrients have on skeletal muscle health in populations
that may have higher nutritional requirements such as older adults, youth, and athletes.
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