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The number needed to treat (NNT) is an efficacy index commonly used in
randomized clinical trials. The NNT is the average number of treated patients
for each undesirable patient outcome, for example, death, prevented by the
treatment. We introduce a systematic theoretically-based framework to model
and estimate the conditional and the harmonic mean NNT in the presence
of explanatory variables, in various models with dichotomous and nondi-
chotomous outcomes. The conditional NNT is illustrated in a series of four
primary examples; logistic regression, linear regression, Kaplan-Meier esti-
mation, and Cox regression models. Also, we establish and prove mathe-
matically the exact relationship between the conditional and the harmonic
mean NNT in the presence of explanatory variables. We introduce four differ-
ent methods to calculate asymptotically-correct confidence intervals for both
indices. Finally, we implemented a simulation study to provide numerical
demonstrations of the aforementioned theoretical results and the four exam-
ples. Numerical analysis showed that the parametric estimators of the NNT
with nonparametric bootstrap-based confidence intervals outperformed other
examined combinations in most settings. An R package and a web applica-
tion have been developed and made available online to calculate the con-
ditional and the harmonic mean NNTs with their corresponding confidence
intervals.
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1 THE NNT

1.1 Introduction

The number needed to treat (NNT) is an index that is widely used in efficacy analysis and cost-effectiveness analysis in
randomized clinical trials, as well as in epidemiology and meta-analysis.1-6 It is assumed that the outcome Y is dichoto-
mous and may be beneficial or nonbeneficial. The NNT is the average number of patients that have to be treated in
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order to observe one less adverse outcome,7 or alternatively, the NNT can be defined as the average number of patients
that are needed to treat in order to attain one more beneficial outcome due to treatment. These are two equivalent
definitions since avoiding an adverse effect can be defined as a treatment benefit. Let the probability of treatment
benefit be ps; hence the NNT was initially defined by Laupacis et al8 as 1∕ps. Consider now that the probability
of a beneficial outcome for treated patients pt is composed of two additive components: the probability of a bene-
ficial outcome due to treatment ps (ie, the probability of treatment benefit), plus the probability pc of a beneficial
outcome that is not due to treatment. Therefore, the probability of treatment benefit is defined as ps = pt − pc, that
is termed the absolute risk difference (ARD). Although the NNT is a commonly used efficacy measure, it is not
without limitations. Among the limitations of the NNT are difficulties in its interpretation,7,9-12 a bi-modal sampling
distribution9 and unbounded disjoint confidence intervals (CIs). There are five main criticisms of the statistical prop-
erties of the NNT estimator. First is the singularity at 0 of the inverse of the ARD. Most of the criticism is directed
toward this issue and its consequences, which include the difficulty to construct and interpret its CIs.9,13 In particu-
lar, Grieve9 applied Bayesian analysis to construct CIs with respect to the original definition of the NNT. Rohmel13

proposed that if the ARD is statistically significant and does not contain zero, it is appropriate to invert the CIs. A
comprehensive review of the NNT’s statistical limitations can be found in Hutton.10 Recently Vancak et al14 resolved
the pitfall of singularity at 0 by introducing a modification to the original definition of the NNT. The modified
NNT is

NNT ≡ g(ps) =

{
1∕ps, ps > 0,
∞, ps ≤ 0.

(1)

We adopt this modified version of the NNT. Laupacis et al8 proposed estimating this unadjusted NNT by replac-
ing the unknown probabilities of a beneficial outcome in each arm with the corresponding proportions of benefi-
cial outcomes. Therefore, the second criticism pointed to the bias of Laupacis’ estimator with respect to the true
NNT.15 Third, the NNT is well defined only for dichotomous outcomes. However, in many clinical settings, the out-
come Y is nondichotomous. Therefore, a dichotomization of the outcome is required,16 which has limitations such
as loss of information.17,18 Dichotomization often relies on the definition of the minimal clinically important dif-
ference (MCID)19 that is denoted by 𝜏. Therefore, for nondichotomous outcomes, without loss of generality, we
define the beneficial outcome as I = I{Y > 𝜏}, where I = 1 if the beneficial outcome occurs, and 0 otherwise.14

Fourth, the NNT does not account for time-dependent outcomes and thus can be misleading.11,12 Fifth, the interpre-
tation and the definition of the NNT are debatable since different clinical scenarios may result in the same NNT.20

Grieve,9 and Hutton10 challenged the common claim that the NNT is an easily interpretable index by emphasiz-
ing the statistical properties of the estimator of the NNT that are commonly neglected. Suissa21 and Smeeth et al22

present its miscalculations in various settings, while Kristiansen et al7 present misinterpretation of the original
NNT using an empirical study. We suggest that Vancak et al’s modification of the NNT makes it easier to under-
stand and interpret the index, and the this article clarifies the appropriate use of the NNT with time-dependent
outcomes.

In Section 2, we introduce the conditional NNT, which is an NNT that is conditioned on a given value of the explana-
tory variables. Next, we present the harmonic mean NNT (hereafter, harmonic NNT), which is defined by applying the
function g as defined in (1) to the marginal probability of treatment benefit. This presentation is followed by the derivation
of these NNTs’ corresponding asymptotically unbiased and efficient estimators, alongside their asymptotic distributions.
In this section, we discuss two primary examples: logistic regression and linear regression. In Section 3, we derive the
NNT accommodated to right-censored data conditioned and unconditioned on explanatory variables. Subsequently, we
define the harmonic NNT accommodated to right-censored data. Then, we derive their corresponding asymptotically
unbiased estimators alongside the asymptotic distributions. In this section, we discuss two main examples that are based
on the Kaplan-Meier and Cox model. For all estimators we provide asymptotically correct CIs using four different meth-
ods: transformation, delta method, nonparametric and parametric bootstrap. In Section 4, we present a simulation study
to illustrate the conditional and the harmonic NNTs in the examples discussed above. Notably, we compare point esti-
mators, the lengths, and the coverage rates of the four CIs methods. Finally, we refer readers to the nntcalc R package23

and the corresponding web application24 to calculate the conditional and the harmonic NNTs with their correspond-
ing CIs. The R package and the web application are made available for users online.* Detailed proofs appear in the
Appendix.
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2 ADJUSTED NNT IN REGRESSION ANALYSIS

2.1 Adjustment of the NNT

The need for adjustment of the NNT was recognized in parallel with the increased popularity of this index. The first
known attempt to adjust the NNT was by Riegelman and Schroth.25 Ebrahim,26 and Misselbrook and Armstrong,27

further acknowledged the need for a specified adjustment and made the distinction between the overall and the con-
ditional NNT. In particular, Ebrahim26 acknowledged the need to condition the NNT on both time and explanatory
variables. There, regression was advocated for that purpose, however, practical tools were not presented. Altman and
Andersen28 conducted initial research on accommodating the NNT to right-censored data based on the Kaplan-Meier
estimators. A detailed criticism of the use of NNT in the context of survival analysis and time-to-event data was presented
by Kristiansen and Dorte,7 and further by Snapinn and Jiang.11 The main points of criticism were that the NNT may vary
substantially over time, and hence convey different information as a function of the specific time-point of its calcula-
tion. Moreover, Snapinn and Jiang11 showed examples where the information conveyed by the NNT may be incomplete
or even contradictory compared to the traditional statistics of interest in survival analysis. Ola et al29 adjusted the NNT
for a particular explanatory variable in the context of cost-effectiveness analysis and redefined it as the cost needed to
treat. More comprehensive research on adjustment of the NNT for explanatory variables was conducted by Bender and
Blettner30 and Austin.31

2.2 Conditional and harmonic NNT in regression analysis

Bender and Blettner30 and Austin31 adjusted the NNT for explanatory variables in logistic regression. In particular,
Bender and Blettner30 and Bender et al32 adjusted the NNT in the context of cohort data. In this situation, the covari-
ates may have a different distribution in the exposed and the unexposed arms. Therefore, a distinct NNT was proposed
for each arm. Notably, to adjust the NNT to covariate distributions in the control (unexposed) arm, they renamed it the
Number Needed to be Exposed (NNE). Furthermore, to account for the effect direction, they divided the NNE into NNEH
and NNEB, where H stands for a harmful effect (ie, negative valued NNE), and B for a beneficial effect (ie, positively
valued NNE). In these two works, the authors suggested to use the multivariate delta method for the CI construction
of the adjusted NNE. In addition to the NNE, they presented the Exposure Impact Number (EIN) to adjust the NNT
to the covariates’ distribution in the treated (exposed) arm.30,32 Later on, Bender and Vervolgyi,33 presented the esti-
mation of harmonic NNT, based on the fit of the logistic regression model in the context of randomized clinical trials.
In all these works, the authors used the multivariate delta method to compute the CIs of the index. In the context of
time-to-event, Altman and Andersen28 proposed inversion of the CIs of the absolute risk reduction to construct CIs for
the NNT. Austin34 introduced the harmonic NNT and suggested using the nonparametric bootstrap for construction
of its CI.

2.3 Definition of the conditional NNT(x)

In this subsection we introduce the adjusted NNT for explanatory variables and/or covariates X in the context of regression
analysis. Consider the following scenario: At the baseline, for every clinical trial study participant, a vector of background
measurements X is taken. Each clinical trial study participant is randomly allocated either to the control c or the treatment
arm t. Usually the explanatory variables include sex, age, baseline severity and treatment. Randomization ensures that all
baseline covariates of patients in both treatment groups share the same joint parent distribution. The outcome variable Y ,
defined as in Section 1, is a scalar function of the baseline and the endpoint measurements. Without loss of generality, let
the beneficial outcome I be defined as I ≡ I{Y > 𝜏}; hence, conditioning on the allocated arm is defined as Ia ≡ I{Y >

𝜏|A = a}, where a ∈ {c, t}. Define the marginal and the conditional probability of beneficial outcome in the ath arm by
E[Ia] = pa and E[Ia|X = x] = pa(x), respectively. Consequently, we define the conditional probability of treatment benefit
given a covariate X as

ps(x) ≡ E[It − Ic|X = x] ≡ pt(x) − pc(x), ∀x ∈  , (2)
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where  is the support set of the covariate X . Hence, we define the conditional NNT(x) for every x in  as

NNT(x) ≡ g(ps(x)) =

{
(pt(x) − pc(x))−1

, pt(x) > pc(x),
∞, pt(x) ≤ pc(x).

(3)

The conditional NNT(x) allows us to calculate the NNT for every possible value x of the covariate X . Equation 4 below
establishes the connection between the conditional NNT(x) and the harmonic NNT. Let the NNT be as defined in (1) and
the NNT(x) as defined in (3). Then,

g(ps) = g (E[ps(X)]) . (4)

Equation (4) states that, since an expectation of the conditional probability of treatment benefit ps(X) w.r.t. X results in
the average (marginal) probability of treatment benefit ps, therefore, the harmonic NNT can be calculated by applying g as
defined in (1) to E[ps(X)]. Moreover, as g is a convex function for all x in  , by applying Jensen’s inequality35 it is evident
that

E[g(ps(X))] ≥ g(E[ps(X)]). (5)

Averaging the NNT(x) instead of averaging the ps(x)will result in biased NNT. Moreover, it may lead to a wrong conclusion
since the distribution of g(ps(X)) can be dominated by its extreme values. Consider, for example, a scenario where there
is a possible realization x0 of the covariates X such that ps(x0) = 0, while for every other realization x, x ≠ x0, ps(x) >
0. Therefore, NNT(x0) ≡ g(ps(x0)) = ∞: thus the NNT computed as a mean on the NNT scale equals infinity, that is,
E[g(ps(X))] = ∞. However, if E[ps(X)] > 0, consequently, the NNT computed as a mean on the risk scale is finite, that is,
NNT ≡ g(E[ps(X)]) < ∞.

2.4 Estimation of NNT(x)

This section introduces the parametric approach to conditional NNT(x) estimation. Assume that the conditional prob-
ability of treatment benefit ps(x) can be described via a vector of unknown parameters 𝜃T

0 = (𝜃
T
c , 𝜃

T
t ). Assume that the

probability of beneficial outcome in the ath arm is pa(x; 𝜃) = p(x; 𝜃a), for a ∈ {c, t}. Consequently, ps(x; 𝜃) = p(x; 𝜃t) −
p(x; 𝜃c), and by (3), NNT(x) ≡NNT(x; 𝜃) ≡ g(ps(x; 𝜃)). Notably, ps(x; 𝜃) is the average treatment effect that is commonly a
nonlinear function of the covariates X . The fundamental problem of causal inference states that it is impossible to observe
both It and Ic within the same clinical trial study participant,36 as the participant is allocated to either the treatment or
the control arm. Therefore, we observe only one of the two possibilities, while the missing one can be estimated using a
model. Thus, we estimate NNT(x; 𝜃) by replacing the unknown parameters 𝜃 with their corresponding point estimators.

For the estimation of the harmonic NNT, the marginal distribution of X is required. Usually such a distribution is
unavailable; therefore we propose to estimate E[ps(X; 𝜃)] using the corresponding sample average and then applying g as
defined in (1) to the result, that is,

̂NNT = g

(
1
n
∑
a,ia

ps
(

xia ; ̂𝜃c, ̂𝜃t
))

. (6)

Namely, for the harmonic NNT, we use a parametric model to estimate the conditional risk difference ps(x; 𝜃) given a
set of covariates X , then average it over the empirical distribution of the covariates, and finally take its inverse. Next we
present two examples to compute the conditional and the harmonic NNTs: logistic regression and linear regression.

Example 1: NNT(x) in logistic regression

Let X = (X1, … ,Xp)T be the vector of explanatory variables with a support set  , where  ⊆ Rp. Assume that the
response variable Y is dichotomous, that is, Y ∈ {0, 1}. Without loss of generality, let the beneficial outcome be defined as
Y = 1. Assume that given realization x, and an allocated arm a, Y follows a Bernoulli distribution with probability
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pa(x) ≡ p(x; 𝛽a), where p(x; 𝛽a) ≡ (1 + exp{−𝛽0a −
∑p

j=1xj 𝛽ja})−1
. In this model, 𝜃

T = (𝛽T
c , 𝛽

T
t ), where 𝛽

T
a =

(𝛽0a, … , 𝛽pa), for a ∈ {c, t}. It can be shown that the conditional probability of treatment benefit is

ps(x; 𝜃) =
e𝛽0t+

∑p
j=1xj𝛽jt − e𝛽0c+

∑p
j=1xj𝛽jc(

1 + e−𝛽0t−
∑p

j=1xj𝛽jt
)(

1 + e−𝛽0c−
∑p

j=1xj𝛽jc
) . (7)

The MLE of the NNT(x) is attained by applying g to ps(x; 𝜃) and replacing the unknown parameters with their correspond-
ing MLEs. The MLE of the harmonic NNT is calculated by applying g to the corresponding sample average of ps(x; ̂𝜃) as
defined in (6).

Example 2: NNT(x) in normal linear regression

Let X = (X1, … ,Xp)T be the vector of explanatory variables with a support set , where ⊆ Rp. Assume that the response
variable Y , given a realization x and an allocated arm a, follows a normal distribution N

(
𝛽0a +

∑p
j=1xja𝛽ja, 𝜎

2
)

. In this
model, 𝜃T = (𝛽c, 𝛽t, 𝜎

2), where 𝛽T
a = (𝛽0a, … , 𝛽pa), for a ∈ {c, t}, and the formal model is

Yia = 𝛽0a +
p∑

j=1
xjia𝛽aj + 𝜖ia , ia = 1, … ,na, a ∈ {c, t}. (8)

It can be shown that the conditional probability of treatment benefit is

ps(x; 𝜃) = Φ

(
𝜏 − 𝛽0c −

∑p
j=1xj𝛽jc

𝜎

)
− Φ

(
𝜏 − 𝛽0t −

∑p
j=1xj𝛽jt

𝜎

)
. (9)

The MLE of the conditional NNT(x) is attained by applying g to ps(x; 𝜃) and replacing the unknown parameters with their
corresponding MLEs. The MLE of the harmonic NNT is calculated by applying g to the corresponding sample average of
ps(x; ̂𝜃) as defined in (6). Note that for these two examples, model parameters can be shared by both arms. In other words,
p(x; 𝜃c) and p(x; 𝜃t) can be modeled either separately with different parameters 𝜃c and 𝜃t or jointly with common param-
eters that are shared by models of the two arms. These specifications change neither the estimation nor the asymptotic
properties of the NNT(x) estimators.

2.5 Theoretical properties of the NNT(x) estimator

To this end, the following assumptions are required.

A.1 The response variable Y , given X = x and A = a, follows a parametric model with a true parameter 𝜃0. In this case,
the true conditional NNT is given by NNT(x) ≡ g(ps(x; 𝜃0)).

A.2 There are na observations in the ath arm, a ∈ {c, t}, and n = nc + nt is the total number of observations. Assume
that nc∕nt → 𝛼, as n → ∞.

A.3 The probability of treatment benefit, ps(x; 𝜃), is a differentiable function w.r.t. 𝜃; hence the composite function
g(ps(x; 𝜃)) where g as defined in (1), is also a differentiable function w.r.t. 𝜃 for ps(x; 𝜃) > 0, and ∇g(ps(x; 𝜃0)) ≠ 0.

A.4 The standard regularity conditions of the MLEs asymptotics hold.35

A.5 E[ps(X; 𝜃0)] > 0, and ∇g (E[ps(X; 𝜃0)]) ≠ 0.

Theorem 1. Let ̂𝜃n be the MLE of 𝜃0, I(𝜃0) its fisher information matrix, and Z ∼ N(0, 1). Then,

1. g(ps(x; ̂𝜃n)) and g
(

1
n

∑
ia,a

ps(xia ; ̂𝜃n)
)

are the MLEs of the conditional NNT(x) and the harmonic NNT, respectively.

2. g(ps(x; ̂𝜃n))
a.s.
−→NNT(x), and g

(
1
n

∑
ia,a

ps(xia ; ̂𝜃n)
) a.s.
−→ NNT.

3. For every x, such that ps(x) > 0,
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i.
√

n
(

g(ps(x; ̂𝜃n)) −NNT(x)
) D
−→ ||I−1∕2(𝜃0)∇g(ps(x; 𝜃0))||Z,

ii.
√

n
(

g
(

1
n

∑
ia,a

ps(xia ; ̂𝜃n)
)
−NNT

) D
−→ ||I−1∕2(𝜃0)∇g(E[ps(X; 𝜃0)])||Z,

where ∇g(ps(x; 𝜃0)) and ∇g(E[ps(X; 𝜃0)]) are the gradients of NNT(x) and NNT, respectively, evaluated at 𝜃0.

For a detailed proof of Theorem 1 please refer to the Appendix. Notably, for every x such that ps(x) ≤ 0, NNT(x) ≡ ∞.
Therefore, the MLE of NNT(x) converges almost surely to infinity. In such a case, discussion of the NNT(x) distribution
is meaningless.

2.6 CIs of harmonic NNT and conditional NNT(x)

In this subsection we present four different methods of CI construction. These methods will be further used to construct
asymptotically-correct CIs for the conditional and the harmonic NNT. These results are summarized in Theorem 2.

Approach 1: Transformation

Let X1,X2, … be a sequence of independent identically distributed (i.i.d) random variables with E[Xi] = 𝜇0 and Var(Xi) =
𝜎

2
0 . Denote 𝜃T

0 = (𝜇0, 𝜎
2
0 ). By the univariate Central Limit Theorem (CLT)

√
n (Xn − 𝜇0)

𝜎0

D
−→ Z, (10)

where Z ∼ N(0, 1), and n → ∞. For a monotonically decreasing function h, for example, the one defined in (1), the
univariate-CLT-based asymptotically-correct (1 − 𝛼)100% level CI for h(𝜇0) is

h

(
Xn + z1−𝛼∕2

𝜎0√
n

)
≤ h(𝜇0) ≤ h

(
Xn − z1−𝛼∕2

𝜎0√
n

)
, (11)

where z
𝛼

is the 𝛼th quantile of the standard normal distribution.

Approach 2: Delta method

Let X1,X2, … be a sequence of independent and identically distributed p−dimensional random vectors, with E[X] = 𝜇0
and Var(X) = 𝚺0, where 𝚺0 is a positive definite covariance matrix of X . Denote 𝜃T

0 = (𝜇0,𝚺0). By the multidimensional
CLT √

n(Xn − 𝜇0)
D
−→ 𝚺1∕2

0 Zp, (12)

where Zp ∼ Np(0, I). Let h ∶ Rp → R be a differentiable function over the parametric setΘwith a nonzero gradient∇h(𝜇0).
Consequently, the delta-method-based asymptotically-correct (1 − 𝛼)100% level CI for h(𝜇0) is

h(Xn) −
1√
n
|| ̂𝚺1∕2∇h(Xn)||z1−𝛼∕2 ≤ h(𝜇0) ≤ h(Xn) +

1√
n
|| ̂𝚺1∕2∇h(Xn)||z1−𝛼∕2, (13)

where || ⋅ || is the Euclidean norm.

Approach 3: Nonparametric bootstrap

Assume that the original sample is of n realizations of a random vector X . The constant of interest is a real valued
scalar function h at some point x, that is, h(x). The bootstrap algorithm37 takes n samples with replacements from the n
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aforementioned observations. This is repeated B times with B samples, each of size n. For each of these samples
b = 1, … ,B, an estimator hb(x) is calculated. Using the 𝛼∕2 and the 1 − 𝛼∕2 quantiles of the empirical distribution of
h1(x), … , hB(x) we obtain a nonparametric-bootstrap-based asymptotically-correct (1 − 𝛼)100% level CI

hB(x)
𝛼∕2 ≤ h(x) ≤ hB(x)1−𝛼∕2. (14)

Approach 4: Parametric bootstrap

Assume that the original sample consists of n observations, which are assumed to be realizations of a parametric distri-
bution that depends on the unknown vector of parameters 𝜃0. This vector is estimated by ̂

𝜃n. Assume that the sample
distribution of the estimator ̂𝜃n is N(𝜃0,𝚺n(𝜃)). The parametric bootstrap algorithm37 takes the estimator ̂𝜃n and its sam-
pled covariance matrix as a replacement of 𝜃0, and the corresponding covariance matrix 𝚺(𝜃0). Then we sample B times,
where B is some large positive integer, from N( ̂𝜃n,𝚺n( ̂𝜃n)). For each of the B samples of parameters ̂𝜃b, a function h( ̂𝜃b),
for b = 1, … ,B, is calculated, where h is a scalar function. This results in a sample of B estimators of h(𝜃0). Using the
normality of this sample, the parametric-bootstrap-based asymptotically-correct (1 − 𝛼)100% level CI is

h( ̂𝜃n) − z1−𝛼∕2�̂�h( ̂𝜃B) ≤ h(𝜃0) ≤ h( ̂𝜃n) + z1−𝛼∕2�̂�h
(
̂
𝜃

B), (15)

where �̂�2
h( ̂𝜃B)

is the bootstrap sample standard deviation. An advantage of the parametric bootstrap is that in order to obtain
an effective CI, usually significantly fewer samples are required, compared to its nonparametric counterpart.

Theorem 2. Let assumptions A.1-A.5 hold, and let g(ps(x; ̂𝜃n)), and g
(

1
n

∑
ia,a

ps
(

xia ; ̂𝜃n
))

be the MLE of NNT(x) and NNT,
respectively. Therefore, for a fixed x, where ps(x) > 0, the asymptotically-correct transformation-based, delta-method-based,
nonparametric-bootstrap-based, and parametric-bootstrap-based (1 − 𝛼)100%-level CIs are given in (11), (13), (14), and
(15), respectively. In this case, h(𝜃0) = g(ps(x; 𝜃0)) and h(𝜃0) = g(E[ps(X; 𝜃0)]), for NNT(x) and NNT, respectively. The func-
tion g is defined in (1), and ̂𝚺0 is the inverse of the observed Fisher information matrix evaluated at ̂𝜃, that is, ̂I−1(𝜃0) ≡
I−1( ̂𝜃n).

Note that since NNT(x) ≥ 1 for all x, the lower confidence limit of NNT(x) can be truncated at 1 with no effect on the
coverage rate.

3 HARMONIC NNT(Y) AND CONDITIONAL NNT(Y|X)
IN SURVIVAL ANALYSIS

3.1 Introduction

Laubender and Bender,38 Austin,34 and Yang and Yin39 presented and elaborated on an NNT for right-censored data in
the Cox proportional hazard and parametric accelerated failure models. Laubender and Bender38,40 derived the harmonic
NNE and EIN in the framework of the Cox model, with four types of CIs. Three types were based on the resampling
method conditional on the covariates:41 the normal approximation, the basic bootstrap and the percentile bootstrap. The
fourth type was a multivariate delta-method CI based on the theory of martingales.40 Yang and Yin39 proposed an alter-
native measure to the NNT that is based on the restricted mean survival time instead on the absolute risk difference. All
these works analyzed model-specific scenarios with naturally dichotomous outcomes without providing a general mod-
eling framework. The singularity point of the original definition often led to categorization of the NNT into different
measures as a function of the allocated arm and the sign of its estimator, and resulted in CIs that consist of a union of two
disjoint infinite intervals. In addition, different authors used varying approaches and terminology to define and compute
the conditional and the harmonic NNTs.

3.2 Definition of NNT(y) and NNT(y|x)

Let the outcome variable Y be the time to event or time until death. For a fixed time point y ≥ 0, define the beneficial
outcome as I = I{Y > y}. Let the cumulative distribution of Y be F(y), and define the survival function as S(y) = 1 − F(y).
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In survival analysis we may not observe the realization Y due to loss of follow-up or for other reasons. Namely, we assume
that all clinical trial study participants start at time 0, but some are censored before the end of the trial. Therefore, we
observe T = min{Y ,C}, where C is right-censoring time. The beneficial outcome, given allocated arm a, is Ia(y) ≡ I{Y >

y|A = a}, where a ∈ {c, t}. The marginal probability of a beneficial outcome in the ath arm is Sa(y); thus, the marginal
probability of treatment benefit is ps(y) ≡ St(y) − Sc(y). Consequently, we define the NNT(y) as

NNT(y) ≡ g(ps(y)), y ≥ 0. (16)

Let X = (X1, … ,Xp)T be the risk factors. Define the conditional NNT(y|x) as

NNT(y|x) = g(ps(y|x)), ∀x ∈  , y ≥ 0, (17)

where ps(y|x) = pt(y|x) − pc(y|x), and g is the function defined in (1). Similarly to the harmonic NNT, the harmonic NNT(y)
is calculated by applying g to E[ps(y|X)], where the expectation is taken w.r.t. X .

3.3 Estimation of NNT(y)

Let Sa(y) be an unspecified survival function of the ath arm, a ∈ {c, t}, at a fixed time point y. To estimate the NNT(y),
we need a suitable estimator of Sa(y), which is also the marginal probability of a beneficial outcome in the ath arm. Let
n = nc + nt be the total number of clinical trial study participants that are observed at the baseline time point y = 0. The
next example and the subsequent theorems present the nonparametric MLE of NNT(y) and its theoretical properties.

Example 3: NNT(y) using the Kaplan-Meier nonparametric MLE

Let ̂Sa(y) ≡ pKM
a (y) be the product limit Kaplan-Meier’s nonparametric MLE;42 formally, for any fixed time y ≥ 0 we have

pKM
a (y) =

∏
yj≤y

(
1 −

dja

nja

)
, a ∈ {c, t}, (18)

where nja is the number of clinical trial study participants in risk at time yj, and dja is the total number of failures at time yj
in the ath arm. Therefore, we define the NNTKM(y) to be the estimator of NNT(y) by applying g as defined in (1) to the
difference between the corresponding Kaplan-Meier’s estimators. Formally,

NNTKM(y) = g
(

pKM
s (y)

)
, (19)

where pKM
s (y) = pKM

t (y) − pKM
c (y). Notably, NNTKM(y) can be stratified by more than two levels. Furthermore, when there

is no censoring, it can be shown that NNTKM(y) coincides with Laupacis NNTL, where the beneficial outcome is defined
as I{Y > y}. See Lemma 2 in the Appendix for detailed proof. Similar results for the parametric logistic regression and
the parametric linear regression approaches are presented in Section 2.4.

3.4 Theoretical properties of the NNT(y)’s estimator

The asymptotic properties of NNT(y)’s parametric estimator are presented in Theorem 1, by replacing x with y. Therefore,
we focus only on the theoretical properties of the nonparametric MLE. For further theorems we need another assumption.

A.6 Let [0, 𝜂) be the follow-up time interval, where 𝜂 is a time point such that there is at least one more observation to
its right in each of the arms.

Theorem 3. Let assumptions A.2 and A.6 hold, and assume that the survival time Y is independent of the right-censoring
time C, and Z ∼ N(0, 1). Then, for any fixed time point y in [0, 𝜂)
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1. NNTKM(y) is the nonparametric MLE of NNT(y).
2. NNTKM(y)

a.s.
−→ NNT(y).

3. For every fixed y, such that ps(y) > 0,
√

n(NNTKM(y) − NNT(y))
D
−→ 𝜎0(y)Z, where 𝜎2

0 (y) is the asymptotic variance of√
nNNTKM(y).

For a detailed proof of Theorem 3 please refer to the Appendix. We proceed to the construction of CIs that are based on
the large-sample distribution of the NNTKM(y).

Theorem 4. For every fixed y ∈ [0, 𝜂), such that ps(y) > 0, the asymptotically-correct transformation-based,
delta-method-based, nonparametric-bootstrap-based, and parametric-bootstrap-based (1 − 𝛼)100%-level CIs are given
in (11), (13), (14), and (15), respectively. In this case, h(ps(y)) = g(ps(y)), and ̂𝚺(y) is NNT4

KM(y)�̂�
2
s (y), where �̂�2

s (y) is the
estimated variance of pKM

s (y) that is based on Greenwood’s formula.43

3.5 Estimation of the NNT(y|x)

If the structure of ps(y|x) is assumed to be fully parametric, then the estimation is done in the same manner as in the
parametric models of conditional NNT(x), that is, by replacing the unknown parameters with their estimators. Therefore,
we focus our attention only on the semiparametric structures. We start with a definition of the hazard function. The
hazard function is the instantaneous rate of occurrence of the event. Formally,

𝜆(y) = lim
dy→0

P(y ≤ Y < y + dy|Y ≥ y)
dy

= − 𝜕

𝜕y
ln S(y). (20)

Therefore, the probability of beneficial outcome in the ath arm, Sa(y), can be expressed as a function of the cumulative
hazard function up to time y, Λa(y), that is,

Sa(y) = exp {−Λa(y)} , a ∈ {c, t}, (21)

where Λa(y) ≡ ∫[0,y] 𝜆a(x)dx. Next, define 𝜆a(y|x) to be the hazard function given the risk factors x ∈  , and an allocated
arm a ∈ {c, t}. Therefore, the conditional probability of beneficial outcome in the ath arm is pa(y|x) = exp{−Λa(y|x)}.
The most commonly-used model for the conditional hazard function is Cox’s proportional hazard model.44

Example 4: NNT(y|x) in Cox regression

Let X = (X1, … ,Xp)T be the vector of risk factors with a support set  ⊆ Rp. Assume that given a realization x =
(x1, …̇ , xp)T , and an allocated arm a, the hazard function is

𝜆a(y|x) = 𝜆(y) exp
{
𝛽

T
a x
}
. (22)

Namely, the baseline hazard 𝜆(y) has a nonparametric structure, while the adjustment for the risk factors follows a
parametric model. In this model, 𝜃0 = (Λ0(y), 𝛽T

0 ), where Λ0(y) is the cumulative baseline hazard function up to time y,
𝛽

T
0 = (𝛽

T
c , 𝛽

T
t ), and 𝛽

T
a = (𝛽0a, … , 𝛽pa), for a ∈ {c, t}. The conditional cumulative hazard function in the ath arm is

Λa(y|x) = Λ0(y) exp
{
𝛽

T
a x
}

. Therefore, using (22), the conditional probability of beneficial outcome in the ath arm is

pa(y|x) = exp
{
−Λ0(y) exp

{
𝛽

T
a x
}}

= S(y)exp{𝛽T
a x}
,

where S(y) is the baseline survival probability. Following (2), the conditional probability of treatment benefit is

ps(y|x; 𝜃0) = S(y)exp{𝛽T
t x} − S(y)exp{𝛽T

c x}
. (23)

The semiparametric estimator of the conditional NNT(y|x), is attained by applying the function g from (1) to the esti-
mated ps(y|x; 𝜃0), where 𝛽T

0 is replaced with its maximum partial likelihood estimators (MPLE),44 andΛ0(y)with Breslow’s
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nonparametric MLE.45 The partial likelihood does not depend on the baseline hazard function 𝜆(y), which allows
estimating the model coefficients 𝛽0 without dealing with the nonparametric baseline hazard, which is estimated after-
ward using the calculated MPLEs. The calculated semiparametric estimator of the conditional NNT(y|x) we denote by
NNTCOX (y|x) since it is based on the Cox proportional hazard regression model and is estimated via the Cox partial like-
lihood method. Under this model, the estimator of the harmonic NNT(y), which is denoted by NNTCOX (y), is calculated
by applying g to the corresponding sample average of ps(y|x; ̂𝜃) as defined in (6).

3.6 Theoretical properties of the NNT(y|x)’s estimator

In this section we present the asymptotic analysis of the conditional NNT(y|x) semiparametric estimator and its corre-
sponding CIs. The generalization of the presented results to other survival models is straightforward using the principles
presented below. Thus, we will focus only on the Cox model. To this end, additionally to A.1-A.6., we require the next two
assumptions.

A.7 E[X exp{𝛽T
0 X}]2 is bounded uniformly in the neighborhood of 𝛽0.

A.8 Λ0(y) < ∞ for all finite and positive y.

Theorem 5. Assume that A.1 to A.8 hold, and that the true model follows the Cox proportional hazard structure with an
unspecified baseline hazard, such that C and Y are independent conditionally on the risk factors X. Let ̂𝛽T

n and ̂Λ(y) be the
MPLE and Breslow’s nonparametric MLE, respectively. Then, for any fixed time point y ∈ [0, 𝜂), and for all x ∈  ,

1. NNTCOX (y|x) a.s.
−→NNT(y|x), and NNTCOX (y)

a.s.
−→NNT(y).

2. For every fixed time point y ∈ [0, 𝜂), such that ps(y|x) > 0,
i.
√

n (NNTCOX (y|x) − NNT(y|x)) D
−→ ||I−1∕2(𝛽0)∇g(ps(y|x; 𝛽0))||Z,

ii.
√

n (NNTCOX (y) − NNT(y))
D
−→ ||I−1∕2(𝛽0)∇g (E[ps(y|X; 𝛽0)]) ||Z,

where ∇g(ps(y|x; 𝛽0)) and ∇g(E[ps(y|X; 𝛽0)]) are the gradients of NNT(y|x) and NNT(y), respectively, evaluated at 𝛽0,
I(𝛽0) is the Fisher information matrix, and Z ∼ N(0, 1).

For a detailed proof of Theorem 5 please refer to the Appendix. The construction of the CIs is done in the same manner
as in Theorem 2, and presented in Theorem 6.

Theorem 6. Let assumptions A.1 to A.8 hold. For every x ∈  , and a fixed time point y ∈ [0, 𝜂), such that
ps(y|x; 𝛽0) > 0, the asymptotically-correct transformation-based, delta-method-based, nonparametric-bootstrap-based, and
parametric-bootstrap-based (1 − 𝛼)100%-level CIs are given in (11), (13), (14), and (15), respectively. In this case, h(𝜃0) =
g(ps(y|x; 𝛽0)), and h(𝜃0) = g(E[ps(y|X; 𝛽0)]), for NNT(y|x) and NNT(y), respectively. The sample covariance matrix ̂𝚺0 is
estimated using Fisher’s observed information matrix I−1( ̂𝛽n) that is based on Cox MPLEs of 𝛽0.

For a detailed derivation of the sample variance of NNTCOX (y|x) in Theorem 6, please refer to the Appendix. For every
fixed x ∈  , both empirical processes

√
n(NNTCOX (y|x) − NNT(y|x)), and

√
n(NNTCOX (y) − NNT(y)) converge weakly to

a corresponding Gaussian process.46 These processes have zero mean and covariance structures that can be derived from
lemma 6.1 in Tsiatis.47

4 SIMULATION STUDY

In this section, a simulation analysis of the aforementioned four examples (logistic regression, linear regression,
Kaplan-Meier, and Cox regression) to compute the conditional and the harmonic NNTs and their corresponding 95% level
CIs is presented. The harmonic NNTs were calculated, as described in (6), using the empirical distribution of the covari-
ates. For all settings, sample sizes of 200, 400, and 800 were implemented, with 400 iterations for each sample size. The
simulation results of the point estimators and the lengths of the corresponding finite CIs are summarized using boxplot
charts. In addition, tables of the CIs’ mean coverage rates are presented. This simulation can be replicated using the R
package that has been developed and made available for users from the author’s GitHub repository. Setting I illustrates the
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logistic regression model with a continuous explanatory variable. Setting II illustrates the Kaplan-Meier and the Cox pro-
portional hazard models under the Weibull distribution. Setting III (please see Appendix) illustrates the linear regression
model with a continuous explanatory variable. For all settings, the true harmonic NNT was computed by Monte Carlo
numerical integration.

Setting I: Logistic regression

In this setting, the explanatory variable X is a normally distributed variable with 𝜇X = 2 and 𝜎

2 = 1. The response
variable Y , given a realization x and an allocated arm a ∈ {c, t}, follows a Bernoulli distribution with probability
p(x; 𝛽a) = (1 + exp{−𝛽0a − 𝛽1ax})−1, where 𝛽T

c = (𝛽0c, 𝛽1c) = (−2, 1), and 𝛽T
t = (𝛽0t, 𝛽1t) = (0, 0.5). Without loss of general-

ity, the beneficial outcome is defined as I{Y = 1}. The conditional NNT(x) can be calculated for every x. However, for
this illustration we chose only three representative values: 1.5, 2, and 2.5. The true values of NNT(1.5), NNT(2), and
NNT(2.5) are 3.32, 4.33, and 6.46, respectively. The true value of the harmonic NNT, computed over the full covariate
distribution used in the simulation, is 4.54. The conditional NNT(x)’s, x = 1.5, 2, 2.5, point estimators and the corre-
sponding CIs with their mean coverage rates are illustrated in Figures 1 and 2, and Table 1. The point estimators of
the harmonic NNTs with the corresponding CIs and their mean coverage rates are presented in Figures 3 and 4, and
Table 2.

Setting II: Survival analysis

In this setting, the data were generated with the survsim R package.48 Specifically, the explanatory variable X is a nor-
mally distributed variable with 𝜇X = −1.5 and 𝜎2 = 1. The allocated arm A is a binomial random variable with probability
of 0.5, and n = nc + nt. The response variable Y , given a realization x and an allocated arm a ∈ {c, t}, follows the Weibull

F I G U R E 1 Parametric MLEs of the Conditional NNT(x), for x = 1.5, 2, 2.5, in the logistic regression model (for a formal definition of
NNT(x) in the logistic regression model see Equation (7)), for n = 200,400, 800

F I G U R E 2 CI lengths by construction method (DL, delta method; NBS, nonparametric bootstrap; PBS, parametric bootstrap; TR,
transformation) of the conditional NNT(x), x = 1.5, 2, 2.5, in the logistic regression model, for n = 200,400, 800. The box-plots of certain
transformation-based CIs were not displayed, since they are either infinite or too large, and thus distort the figure
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T A B L E 1 Setting I: conditional NNT(x), for x = 1.5, 2, 2.5, in the logistic regression model (for a formal definition of NNT(x) in the
logistic regression model see Equation (7))

NNT(1.5) NNT(2) NNT(2.5)

N DL TR NBS PBS DL TR NBS PBS DL TR NBS PBS

200 1.00 1.00 0.94 0.93 1.00 1.00 0.95 0.93 1.00 1.00 0.94 0.59

400 1.00 1.00 0.94 0.93 1.00 1.00 0.94 0.92 1.00 1.00 0.95 0.80

800 1.00 1.00 0.94 0.94 1.00 1.00 0.94 0.94 1.00 1.00 0.94 0.92

Note: Mean coverage rates of the pointwise CIs by construction method (DL, delta method; NBS, nonparametric bootstrap; PBS, parametric bootstrap; TR,
transformation), and sample sizes of n = 200,400, 800.

F I G U R E 3 Harmonic NNT in the logistic regression model, for n = 200,400, 800. Parametric MLE; NNT MLE. Laupacis’
nonparametric MLE; NNT L

F I G U R E 4 CI lengths by construction method (DL, delta method; NBS, nonparametric bootstrap; PBS, parametric bootstrap; TR,
transformation) of the harmonic NNT in the logistic regression model, using the parametric (NNT MLE) and the nonparametric (NNT L)
MLEs, for n = 200,400, 800. For the parametric MLE, the box-plots of transformation-based CIs were not displayed, since they are either
infinite or too large, and thus distort the figure

T A B L E 2 Setting I: harmonic NNTs in the logistic regression model

NNTMLE NNTL

N DL TR NBS PBS DL TR NBS

200 1.00 1.00 0.95 1.00 0.86 0.95 0.95

400 1.00 1.00 0.95 1.00 0.94 0.96 0.96

800 1.00 1.00 0.94 0.94 0.85 0.91 0.91

Note: Mean coverage rates of the pointwise CIs by construction method (DL, delta method; NBS, nonparametric bootstrap; PBS,
parametric bootstrap; TR, transformation), and sample sizes of n = 200,400, 800. Based on the parametric maximum likelihood
estimator, NNTMLE , and the nonparametric maximum likelihood estimator, NNTL.
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distribution with 𝜆(x) = exp
{
− 𝛽0+𝛽a+𝛽1x

𝛼

}
, where 𝛽0 = 1, 𝛽a = 2, 𝛽1 = 1, and 𝛼 = 0.5. Consequently, the conditional

hazard function is

𝜆a(y|x) = 𝜆(y) exp
{
−𝛽0a + 𝛽1x

𝛼

}
,

such that 𝛽0c = 1, and 𝛽0t = 3. The beneficial outcome is defined as I{Y > y}. The conditional NNT(y|x) can be calculated
explicitly for every realization x, and any time point y. We chose a representative time point y = 8. For each time point y,
we chose three representative values of x: −2.5, −2, and −1.5. The censoring mechanism follows the Weibull distribution
with 𝛼 = 0.01, and 𝛽0 = 12. The overall resulting censoring rate was approximately 58%. Particularly, the event rate in
the control arm was approximately 40%, and in the treatment arm was approximately 45%. However, the mean follow-up
time in the treatment arm was 5.75 time units, while in the control arm 1.03 time units. The true values of the condi-
tional NNT(8|x), are 9.9, 6.18, and 4.40, for x of −2.5, −2, and −1.5, respectively. The true value of the harmonic NNT(8),
computed over the full covariate distribution used in the simulation for this time point, is 4.43. The point estimators of
the conditional NNT(8|x) and the corresponding CIs with their mean coverage rates are illustrated in Figures 5 and 6,
and Table 3. The point estimators of the harmonic NNT(8) with the corresponding CIs and their mean coverage rates are

F I G U R E 5 Semiparametric estimators of the conditional NNT(y|x), for y = 8, and x = −2.5,−2,−1.5, using the Cox regression model
(for a formal definition of NNT(y|x) in survival analysis see Equation (23)), for n = 200,400, 800

F I G U R E 6 CI lengths by construction method (DL, delta method; NBS, nonparametric bootstrap; PBS, parametric bootstrap; TR,
transformation) of the conditional NNT(y|x), for y = 8, and x = −2.5,−2,−1.5, using the Cox regression model, for n = 200,400, 800. The
box-plots of certain transformation-based CIs were not displayed, since they are either infinite or too large, and thus distort the figure

T A B L E 3 Setting II: conditional NNT(y|x)s, for y = 8, and x = −2.5,−2,−1.5, in the Cox regression model (for a formal definition of
NNT(y|x) in survival analysis see Equation (23))

NNT(8|− 2.5) NNT(8|− 2) NNT(8|− 1.5)

N DL TR NBS PBS DL TR NBS PBS DL TR NBS PBS

200 1.00 0.99 0.96 0.91 1.00 1.00 0.96 0.90 0.99 0.99 0.95 0.91

400 1.00 1.00 0.94 0.86 1.00 1.00 0.94 0.82 1.00 0.99 0.94 0.86

800 1.00 1.00 0.95 0.83 1.00 1.00 0.94 0.80 0.99 1.00 0.94 0.81

Note: Mean coverage rates of the pointwise CIs by construction method (DL, delta method; NBS, nonparametric bootstrap; PBS, parametric bootstrap; TR,
transformation), and sample sizes of n = 200,400, 800.
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F I G U R E 7 Harmonic NNT in the Cox regression model, for y = 8, and n = 200,400, 800. Cox semiparametric estimator NNTCOX (y);
NNT-COX(8). Kaplan-Meier nonparametric MLE NNTKM(y); NNT-KM(8)

F I G U R E 8 Pointwise CI lengths by construction method (DL, delta method; NBS, nonparametric bootstrap; PBS, parametric
bootstrap; TR, transformation) of the harmonic NNT(8) in survival analysis, based on the semiparametric estimator (NNT(8) Cox) and the
nonparametric MLE (NNT(8) KM), for n = 200,400, 800. For the nonparametric NNT(8), the box-plots of transformation-based CIs were not
displayed, since they are either infinite or too large, and thus distort the figure

T A B L E 4 Setting II: harmonic NNT(y), for y = 8, in the Cox regression model

NNTCOX (8) NNTKM(8)

N DL TR NBS PBS DL TR NBS

200 0.99 0.97 0.94 0.96 1.00 1.00 0.94

400 1.00 0.99 0.95 0.92 1.00 1.00 0.95

800 0.99 0.99 0.94 0.92 1.00 1.00 0.93

Note: Mean coverage rates of the pointwise CIs by construction method (DL, delta method; NBS, nonparametric bootstrap; PBS, parametric bootstrap; TR,
transformation), and sample sizes of n = 200,400, 800. Based on the semiparametric estimator, NNTCOX (y), and the nonparametric maximum likelihood
estimator, NNTKM(y), for y = 8.

presented in Figures 7 and 8, and Table 4. For Setting III of Simulation study that illustrates the linear regression model,
please refer to the Appendix.

Simulation summary

1. In all settings: For the conditional NNTs, the parametric estimators converge to their true values. For the harmonic
NNT, where the model is correctly specified, both the parametric and the nonparametric estimators converge to the
true value of the parameter. The correctly specified parametric estimators appear to be more stable compared to the
nonparametric alternative.

2. In all settings, the transformation-based CIs appear to be consistently larger compared to other alternatives. Frequently,
infinitely large. Consequently, their coverage rates were frequently 100%. This can be explained by the behavior of the
function g as defined in (1), in the vicinity of x = 0. Namely, for small positive values of x, g behaves as 1∕x; hence
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large standard errors of the estimated probability of treatment benefit result in wide CIs. All the three other methods
of CIs construction mitigate this sensitivity by taking the standard error of the transformation g itself, rather than
transforming the standard error of the estimated probability of treatment benefit.

3. For all settings the bootstrap-based CIs, either parametric or nonparametric, were the most efficient CIs. Specifi-
cally, the parametric method mostly produced the tightest CIs, however with a certain extent of undercoverage, while
the nonparametric-bootstrap-based CIs tended to be slightly larger and more accurate. The delta-method-based CIs
were usually larger with a perfect or near perfect coverage rate. In addition, similarly to Laubender and Bender,38

we observed that bootstrap-based CIs are computationally demanding tasks that consume considerable processing
time.

4. For all settings, the larger the true NNT, the more biased and less stable were the point estimators and thus the CIs
were less accurate. This stems from the convexity of g as defined in (1). The larger bias resulted in less accurate CIs.
Since all CIs are symmetric w.r.t. the point estimators, their limits were also biased upwards, which resulted in lower
coverage rates. The larger the true NNT, either conditional or harmonic, the larger sample size that is required in order
to obtain more accurate point estimates and associated confidence limits.

5. The overall simulation results are consistent with the theoretical considerations (in Sections 1,2, and 3). Although all
CI types are asymptotically-correct, the parametric CIs exploit the asymptotic normality of the MLE. In particular,
the asymptotic normality of the ML estimators of NNT is derived from the asymptotic normality of the regression
coefficients. There are three layers of approximation. The first layer is for the regression coefficients themselves since
we use sample sizes under 1000 which may represent some RCTs in certain domains of research. The second is for the
normality of the estimated probability of treatment benefit which is a nonlinear function of the regression coefficients.
The third is for the normality of the estimated NNT itself, since it is a convex transformation g of the probability
of treatment benefit. The normal approximation of the sample distribution of the NNT may thus require very large
sample sizes to be accurate. The nonparametric BS-based CIs do not use the asymptotic normal distribution, rather
just the empirical quantiles of the NNT’s sample distribution. Therefore, they are not sensitive to deviations from the
normality assumption. CIs constructed by nonparametric bootstrap conformed to their nominal confidence coefficient
in the scenarios described.

5 SUMMARY AND DISCUSSION

We have introduced a systematic framework to model and estimate the conditional and the harmonic NNT in the pres-
ence of explanatory variables, in various models, with dichotomous and nondichotomous outcomes. The conditional NNT
was illustrated in a series of four examples: Logistic and linear regressions, alongside Kaplan-Meier and Cox-regression
models. We established the relationship between the conditional and the harmonic NNT in the presence of explana-
tory variables. We introduced four different methods to calculate the asymptotically-correct CIs for both NNT measures.
Additionally, we conducted a simulation study to provide a numerical illustration of the theoretical results with the four
examples. The results indicate that the parametric MLE with nonparametric bootstrap-based CIs are the preferable esti-
mators in all settings. For large NNT values, the point estimators were more biased and less stable. Transformation-based
CIs tend to be too wide or even infinite with a perfect coverage rates. The delta-method CIs were usually finite, however
larger than the bootstrap counterparts, with perfect or near perfect coverage rate. The bootstrap-based CIs were usu-
ally smaller, with the parametric bootstrap-based CIs frequently suffering from undercoverage, and the nonparametric
attaining the expected coverage rates. For smaller NNT values,< 5, the bootstrap-based CIs, both parametric and nonpara-
metric, performed well with approximately expected coverage rates, while the transformation-based and delta-method
based CIs were usually much larger with perfect coverage rates. An R package and a corresponding web application† to
calculate the conditional and the harmonic NNTs with their corresponding CIs, has been developed and made available
for users online.

The NNT is not without limitations. NNT is an index for presenting results and not analyzing data. As pointed out by
several authors,7,11 the NNT is a one-dimensional index for conveying particular information and not a magical number
to summarize comprehensive data analysis. Hence, it should not be the only statistic presented in a summary of analysis,
and the user should acknowledge its caveats. However, the popularity of the NNT in various applications indicates the
usefulness of this index and the need for an easy-interpretable statistic to convey the efficacy of an intervention. Unfor-
tunately, as no clear methodological recommendations regarding the use of NNT have been formulated, calculations and
interpretations of the NNT are sometimes misleading and even erroneous. Our work aims to address these problems by
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providing concise statistical analysis, recommendations, and practical tools for appropriate use of the NNT in clinical
trials.

Some scenarios that may arise in certain real-world data applications were not addressed in this article. Such sce-
narios include complex patterns of missing data and irregular or less frequent data structures, for example, longitudinal
studies and time series with informative or nonmonotonic missingness. Another possible aspect that can be addressed is
bias correction of the point estimators of the conditional and harmonic NNTs. These are directions for future research.
Nonetheless, we have demonstrated how the NNT with its corresponding asymptotically-correct CIs can be effectively
estimated in various widely-used statistical models, and provided the users with an R package and a web application to
implement these calculations.

ENDNOTES
∗The R package and the simulations source code: https://github.com/vancak/NNTcalculator.
†The web application: https://nntcalc.iem.technion.ac.il.
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APPENDIX

Lemma 1. Let ̂𝜃n be the MLE of 𝜃0, and let g(E[ps(X; 𝜃0)]and g(ps(x; 𝜃0)) be the NNT and the NNT(x), respectively. Therefore,

i. Var
(√

n
(

g
(

1
n

∑
ia,a

ps(xia ; ̂𝜃n

)
− g (E[ps(X; 𝜃0)])

)) a.s.
−→ ||I−1∕2(𝜃0)∇g(E[ps(X; 𝜃0)])||,

ii. Var
(√

n
(

g
(

ps(x; ̂𝜃n
))
− g (ps(x; 𝜃0))

) a.s.
−→ ||I−1∕2(𝜃0)∇g(ps(x; 𝜃0))||,

where g is defined in (1), and I(𝜃0) is the Fisher information matrix.

Proof. Let assumptions A.1-A.5 hold. For every x ∈  , such that ps(x; 𝜃0) > 0, the gradient of g is

∇
𝜃
g(ps(x; 𝜃)) = −g2(ps(x; 𝜃))

⎛⎜⎜⎜⎜⎝

𝜕

𝜕𝜃1
p(x; 𝜃t) − 𝜕

𝜕𝜃1
p(x; 𝜃c)

⋮
𝜕

𝜕𝜃p
p(x; 𝜃t) − 𝜕

𝜕𝜃p
p(x; 𝜃c)

⎞⎟⎟⎟⎟⎠
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which is estimated by replacing 𝜃0 with its MLE. Since g(E[ps(X; 𝜃)]) is bounded in the neighborhood of 𝜃0, we
can interchange the derivative and the expectation, that is, 𝜕∕𝜕𝜃jg(E[ps(X; 𝜃)]) = −g2(E[ps(X; 𝜃)])E[𝜕∕𝜕𝜃jps(X; 𝜃)], or
explicitly

∇
𝜃
g(E[ps(X; 𝜃)]) = −g2(E[ps(X; 𝜃)])E

⎛⎜⎜⎜⎜⎝

𝜕

𝜕𝜃1
p(X; 𝜃t) − 𝜕

𝜕𝜃1
p(X; 𝜃c)

⋮
𝜕

𝜕𝜃p
p(X; 𝜃t) − 𝜕

𝜕𝜃p
p(X; 𝜃c),

⎞⎟⎟⎟⎟⎠
.

This gradient can be estimated by replacing the expectation operator with a corresponding sample mean, namely,

̂∇g (E[ps(X; 𝜃)]) = −g2

(
1
n
∑
ia,a

ps(xia ; ̂𝜃n)

)
1
n
∑
ia,a
∇ps(xia ; 𝜃)

|||𝜃= ̂𝜃n
. (A1)

Therefore, the asymptotic variance of NNT and NNT(x) can be derived by an application of the delta method to the
asymptotic distribution of ̂𝜃n. ▪

Proof of Theorem 1

Proof. Let assumptions A.1-A.5 hold, and let ̂𝜃n be the MLE of 𝜃0. Then,

1. Both g(ps(x; ̂𝜃n)) and g
(

1
n

∑
i1,a

ps(xia ; ̂𝜃n)
)

are functions of ̂𝜃n; hence by the invariance property of the MLEs,35 they
are the MLEs of NNT(x) and NNT, respectively.

2. Both estimators are continuous mappings of ̂𝜃n. Therefore, by the continuous mapping theorem,35 g(ps(x; ̂𝜃n)) and
g
(

1
n

∑
i1,a

ps(xia ; ̂𝜃n)
)

are strongly consistent estimators of NNT(x) and NNT, respectively.

3. Since
√

n( ̂𝜃n − 𝜃0)
D
−→ N(0, I−1(𝜃0)), hence by the delta method,35 and Lemma 1, for every x ∈  , such that ps(x) > 0,

i.
√

n
(

g
(

1
n

∑
ia,a

ps(xia ; ̂𝜃n)
)
− NNT

) D
−→ ||I−1∕2(𝜃0)∇g(E[ps(X; 𝜃0)])||Z,

ii.
√

n
(

g
(

ps(x; ̂𝜃n)
)
− NNT(x)

) D
−→ ||I−1∕2(𝜃0)∇g(ps(x; 𝜃0))||Z,

where ∇g(E[ps(X; 𝜃0)]) and ∇g(ps(x; 𝜃0)) are the gradients of NNT and NNT(x), respectively, w.r.t. 𝜃, evaluated at the
true parameter(s) 𝜃0.

▪Proof of Theorem 3

Proof. Let assumptions A.2 and A.6 hold, and assume that the survival time Y is independent of the right-censoring
time C. Then for every fixed time point y ∈ [0, 𝜂),

1. By the invariance property of the MLE,35 NNTKM(y) is the nonparametric MLE of the NNT(y).
2. By the continuous mapping theorem,35 strong consistency of the MLE is preserved under continuous mappings; hence

NNTKM(y)
a.s.
−→NNT(y).

3. By the asymptotic normality of the NNTKM(y) and the delta method,35 for every fixed time point y ∈ [0, 𝜂), such that
ps(y) > 0,

√
n(NNTKM(y) − NNT(y))

D
−→ 𝜎0(y)Z, where 𝜎2

0 (y) is the asymptotic variance of
√

nNNTKM(y).
▪

Lemma 2. In the absence of censoring, for every fixed time point y ∈ [0, 𝜂), NNTKM(y) coincides with NNTL, where the
beneficial outcome is defined as I{Y > y}.

Proof. Let the time to event be Y , and let the pKM
a (y), for a ∈ {c, t}, be defined as in (18). If no censoring occurs, nja −

dja = nj+1,a, namely the number of clinical trial study participants at risk in time yj+1 is the number of clinical trial study
participants at risk minus the total number of events (deaths) in time yj. Therefore,

pKM
a (y) =

∏
yj≤y

(
1 −

dja

nja

)

=
∏
yj≤y

(nja − dja

nja

)
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= n1a − d1a

n1a
⋅

n2a − d2a

n2a
· · ·

nj−1,a − dj−1,a

nj−1,a
⋅

nj,a − dj,a

nj,a

= n2a

n1a
⋅

n3a

n2a
· · ·

nj,a

ny−1,a
⋅

nj+1,a

nj,a

=
nj+1,a

n1,a

= 1
na

na∑
i=1

I{Yi > y},

the last equality stems from the fact that the total number of clinical trial study participants at risk at time y1, denoted by
n1a, is the total number of clinical trial study participants in the ath arm. In addition, ny+1,a is the total number of clinical
trial study participants in the ath arm that did not have an event up to time y, that is, ny+1,a =

∑na
i=1I{Yi > y}. Therefore,

for uncensored data, NNTKM(y) is the function (1) applied to the sample proportions, which is, by definition, the NNTL
with threshold 𝜏 = y. ▪

Proof of Theorem 5

Proof. Let assumptions A.1-A.8 hold, and let ̂𝛽n be the MPLEs of 𝛽0 in the Cox model. Therefore, for any fixed time point
y ∈ [0, 𝜂), and for all x ∈  ,

1. Since ̂
𝛽n

a.s
−→ 𝛽0, thus by the continuous mapping theorem35 NNTCOX (y|x) a.s.

−→NNT(y|x).
2. Since

√
n( ̂𝛽n − 𝛽0)

D
−→ ||I−1∕2(𝛽0)||Z,47 therefore by the delta method,35 and Lemma 1, for every fixed time point y ∈

[0, 𝜂), such that ps(y|x) > 0, and E[ps(y|X)] <∞,
i.
√

n (NNTCOX (y|x) − NNT(y|x)) D
−→ ||I−1∕2(𝛽0)∇g(ps(y|x; 𝛽0))||Z,

ii.
√

n (NNTCOX (y) − NNT(y))
D
−→ ||I−1∕2(𝛽0)∇g (E[ps(y|X; 𝛽0)]) ||Z,

where ∇g(ps(y|x; 𝛽0)) and ∇g(E[ps(y|X; 𝛽0)]) are the gradients of NNT(y|x) and NNT(y), respectively, evaluated at 𝛽0,
and I(𝛽0) is the true Fisher information matrix.

▪

Sample variance of NNT(y) and NNT(y|x) in Theorems 4, and 6
In this section we calculate the sample variances in the CIs that were presented in Theorems 4 and 6. For the calculation
of the sample variance that was presented in Theorem 2, see Lemma 1.

Calculation of the sample variance of NNTKM(y) in Theorem 4
Let assumptions A.2 and A.6 hold. Then, by application of the delta method35 to the sample variance of pKM

t (y) − pKM
c (y),

which is estimated using the Greenwood’s formula,43 we derive the sample variance of NNTKM(y)

̂Var(NNTKM(y)) = NNT4
KM(y)

⎛⎜⎜⎝
(

pKM
t (y)

)2∑
yj≤y

djt

njt(njt − djt)
+
(

pKM
c (y)

)2∑
yj≤y

djc

njc(njc − djc)

⎞⎟⎟⎠ .
Consequently, it can be shown44 that in the absence of censoring, NNTKM(y)’s Greenwood-type CI coincides with NNTL’s
Wald-type CI with threshold 𝜏 = y.

Derivation of the sample variance of NNTCOX (y|x) in Theorem 6
We divide the proof into two different models: (1) no treatment by covariate interaction model, and (2) treatment by
covariate interaction model.

Proof. Let assumptions A.1-A.8 hold, and let the probability of treatment benefit be defined as in (23), namely ps(y|x; 𝛽0) =
S(y)exp{𝛽T

t x} − S(y)exp{𝛽T
c x}, where 𝛽T

0 = (𝛽
T
c , 𝛽

T
t ). The variance of NNTCOX (y|x) is based on the sample variance of p̂s. Conse-

quently, the sample variance is based both on the estimators of the baseline hazard S(y), and the regression coefficients 𝛽0.



3318 VANCAK et al.

Since the Breslow estimator of the baseline hazard is based on the estimators of 𝛽0, the sample variance of NNTCOX (y|x),
at a fixed time point y, is based on the sample variance of 𝛽0’s MPLEs and the functional form of g(ps(y|x; 𝛽0)). ▪

No treatment by covariate interaction model
Let 𝛽T

0 = (𝛽1, … , 𝛽p, 𝛽𝛼) be the regression coefficients of the model. These coefficients correspond to a set of explanatory
variables (X1, … ,Xp,A)T , where A is an indicator variable, such that A equals 1 if the clinical trial study participant is in
the treatment arm t, and 0 if the clinical trial study participant is in the control arm c. The gradient of ps(y|x; 𝛽0) consists
of two main summands (parts). The first part, designated by m1(y; x, ̂𝛽), is derived from the parametric structure of the
Cox model, and is given by

m1(y; x, ̂𝛽) ≡ ∇𝛽ps(y|x)|||𝛽T
0 = ̂𝛽

T = − ̂Λ(y; ̂𝛽)
(

k1(y| ̂𝛽; x), … , kp(y| ̂𝛽; x), k𝛼(y| ̂𝛽; 1))T
,

where
kl(y| ̂𝛽; x) = (pt(y|x, ̂𝛽)exT

̂
𝛽 − pc(y|x, ̂𝛽)exT

̂
𝛽

)
xl, l = 1, … , p

and
k
𝛼
(y| ̂𝛽; 1) = pt(y|x, ̂𝛽)exT

̂
𝛽

,

for A = 1. The second part, designated by m2(y; x, ̂𝛽), is derived from the Breslow45 NPMLE of the baseline hazard, and is
given by

m2(y; x, ̂𝛽) =
(

k1(y|x, ̂𝛽), … , kp(y|x, ̂𝛽), kt(y|x, ̂𝛽))T
,

where the first p entries of this vector are

kl(y|x, ̂𝛽) = (pt(y|x, ̂𝛽)ex′ ̂𝛽 − pc(y|x, ̂𝛽)ex′ ̂𝛽
)
Λ′
𝛽l
(y; ̂𝛽), l = 1, … , p,

and the last term is

kt(y|x, ̂𝛽) = pt(y|x, ̂𝛽)ex′ ̂𝛽Λ′
𝛽
𝛼

(y; ̂𝛽).

Some algebra yields

Λ′
𝛽l
(y; ̂𝛽) =

∑
yja≤y

⎡⎢⎢⎣
⎛⎜⎜⎝

dja∑
a∈{c,t}

∑
j∈Ra(yj)

exp
{∑p

l=1
̂
𝛽 lxalj
}⎞⎟⎟⎠

2 ∑
a∈{c,t}

∑
j∈Ra(yj)

exp

{ p∑
l=1

̂
𝛽 lxalj

}
xalj

⎤⎥⎥⎦ ,
for l = 1, … , p, and a ∈ {c, t}, and

Λ′
𝛽
𝛼

(y; ̂𝛽) =
∑
yja≤y

⎡⎢⎢⎣
⎛⎜⎜⎝

dja∑
a∈{c,t}

∑
j∈Ra(yj)

exp
{∑p

l=1
̂
𝛽 lxalj
}⎞⎟⎟⎠

2 ∑
j∈Rt(yj)

exp

{ p∑
l=1

̂
𝛽 lxtlj

}⎤⎥⎥⎦ .

Treatment by covariate interaction model
Let 𝛽T

t and 𝛽T
c be variationally independent p-dimensional vectors of unknown parameters. In this case

m1(y; x; ̂𝛽) = ∇𝛽ps(y|x)|
𝛽

T
0 = ̂𝛽

T = ̂Λ(y; ̂𝛽)
(
−kt1(y| ̂𝛽 t; x1), … ,−ktp(y| ̂𝛽 t; xp), kc1(y| ̂𝛽c; x1) … , kcp(y| ̂𝛽c; xp)

)T
,

where
kal(y| ̂𝛽a; xl) = pa(y|x; ̂𝛽a)ex′ ̂𝛽a xl, l = 1, … , p, and a ∈ {c, t},

and

m2(y; x, ̂𝛽) =
(

pt(y|x; ̂𝛽 t)exT
̂
𝛽 t − pc(y|x; ̂𝛽c)exT

̂
𝛽c

)
∇
𝛽
Λ(y; ̂𝛽)T .
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The generalization to include interactions is straightforward. Notably, the second part of ps(y|x; 𝛽)’s estimated gradient,
m2(y; x; ̂𝛽), was originally neglected in the NNTCOX (y|x)’s delta-method-based CI in Laubender and Bender,38 and only
later on Reference 40 estimated using the counting processes and the theory of martingales.

Consequently, the sample variance of the estimated ps(y|x; 𝛽0) in the Cox model, can be approximated by||I−1∕2( ̂𝛽)(m1(y; x, ̂𝛽) +m2(y; x, ̂𝛽))||2. Therefore, by application of the delta method35 to the asymptotic distribution of
ps(y|x, ̂𝛽),47 we derive the estimated sample variance of the conditional NNTCOX (y|x)

̂Var(NNTCOX (y|x)) = NNT4
COX (y|x, ̂𝛽)||I−1∕2( ̂𝛽)(m1(y; x, ̂𝛽) +m2(y; x, ̂𝛽))||2. (A2)

In order to obtain the estimated sample variance of the harmonic NNTCOX (y), one needs to replace ps(y|x; ̂𝛽) and
∇ps(y|x; 𝛽)|||𝛽T= ̂𝛽T with their corresponding sample averages as presented in (A1).

Simulation study Setting III: Linear regression
In this setting, the explanatory variable X is a normally distributed variable with 𝜇X = 3 and 𝜎2 = 1.52. The response
variable Y , given realization x and an allocated arm a ∈ {c, t}, follows a normal distribution N(𝛽0 + 𝛽ax, 1), where 𝛽0 = 1,
𝛽c = 0.5, and 𝛽t = 1. The MCID threshold 𝜏 is 3. In other words, we define the beneficial outcome as I{Y > 3}. The
conditional NNT(x) can be calculated for every x. However for this illustration we chose only three representative values:
1.2, 1.3, and 1.4. The true values of NNT(1.2), NNT(1.3), and NNT(1.4) are 7.63, 6.52, and 5.64, respectively. The true
value of the harmonic NNT, computed over the full covariate distribution used in the simulation, is 2.65. The NNT(x)’s,
x = 1.2, 1.3, 1.4, point estimators and the corresponding CIs with their mean coverage rates are illustrated in Figures A1
and A2, and Table A1. The point estimators of the harmonic NNTs with the corresponding CIs and their mean coverage
rates are presented in Figures A3 and A4, and Table A2.

F I G U R E A1 Parametric MLEs of the conditional NNT(x), x = 1.2, 1.3, 1.4, in the linear regression model with normally distributed
error term (for a formal definition of NNT(x) in the linear regression model see Equation (9)), for n = 200,400, 800

F I G U R E A2 CI lengths by construction method (DL, delta method; NBS, nonparametric bootstrap; PBS, parametric bootstrap; TR,
transformation) of the conditional NNT(x), x = 1.2, 1.3, 1.4, in the linear regression model with normally distributed error term, for
n = 200,400, 800. The box-plots of certain transformation-based CIs were not displayed, since they are either infinite or too large, and thus
distort the figure
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T A B L E A1 Setting III: conditional NNT(x), for x = 1.2, 1.3, 1.4, in the linear regression model with normally distributed error (for a
formal definition of NNT(x) in the linear regression model see Equation (9))

NNT(1.2) NNT(1.3) NNT(1.4)

N DL TR NBS PBS DL TR NBS PBS DL TR NBS PBS

200 0.91 0.93 0.93 0.87 0.91 0.93 0.93 0.87 0.92 0.93 0.94 0.92

400 0.91 0.94 0.93 0.89 0.91 0.94 0.92 0.89 0.91 0.94 0.93 0.91

800 0.96 0.96 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

Note: Mean coverage rates of the pointwise CIs by construction method (DL, delta method; NBS, nonparametric bootstrap; PBS, parametric bootstrap; TR,
transformation), and sample sizes of n = 200,400, 800.

F I G U R E A3 Harmonic NNT in the linear regression model with normally distributed error term, for n = 200,400, 800. Parametric
MLE; NNT MLE. Laupacis’ nonparametric MLE; NNT L

F I G U R E A4 Pointwise CI lengths by construction method (DL, delta method; NBS, nonparametric bootstrap; PBS, parametric
bootstrap; TR, transformation) of the harmonic NNT in the linear regression model with normally distributed error term, using the
parametric (NNT MLE) and the nonparametric (NNT L) MLEs, for n = 200,400, 800

T A B L E A2 Setting III: harmonic NNTs in the linear regression model with normally distributed error

NNTMLE NNTL

N DL TR NBS PBS DL TR NBS

200 0.90 0.95 0.92 0.89 0.73 0.82 0.83

400 0.93 0.95 0.92 0.92 0.97 0.99 0.98

800 0.98 0.97 0.95 0.98 0.82 0.90 0.90

Note: Mean coverage rates of the pointwise CIs by construction method (DL, delta method; NBS, nonparametric bootstrap; PBS, parametric bootstrap; TR,
transformation), and sample sizes of n = 200,400, 800. Based on the parametric maximum likelihood estimator, NNTMLE , and the nonparametric maximum
likelihood estimator, NNTL.
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