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Abstract: Thermally conductive and electrically insulating composites are important for the thermal
management of new generation integrated and miniaturized electronic devices. A practical and
eco−friendly electrostatic self−assembly method was developed to prepare boron nitride−multilayer
graphene (BN−MG) hybrid nanosheets. Then, BN−MG was filled into silicone rubber (SR) to
fabricate BN−MG/SR composites. Compared with MG/SR composites with the same filler loadings,
BN−MG/SR composites exhibit dramatically enhanced electrical insulation properties while still
maintaining excellent thermal conductivity. The BN−MG/SR with 10 wt.% filler loading shows a
thermal conductivity of 0.69 W·m−1·K−1, which is 475% higher than that of SR (0.12 W·m−1·K−1)
and only 9.2% lower than that of MG/SR (0.76 W·m−1·K−1). More importantly, owing to the electron
blocking effect of BN, the electron transport among MG sheets is greatly decreased, thus contributing
to the high−volume resistivity of 4 × 1011 Ω cm for BN−MG/SR (10 wt.%), which is fourorders
higher than that of MG/SR (2 × 107 Ω·cm). The development of BN−MG/SR composites with
synergetic properties of high thermal conductivity and satisfactory electrical insulation is supposed
to be a promising candidate for practical application in the electronic packaging field.

Keywords: thermally conductive; electrically insulating; electrostatic self−assembly; boron nitride;
multilayer graphene; silicone rubber

1. Introduction

With the rise of communication technology, artificial intelligence, the Internet, and
other technologies, the design of electronic equipment is developing rapidly toward the
direction of integration and miniaturization [1]. Due to the significantly increased power
density of electronic equipment, efficient heat dissipation leads to urgent demands for
thermal interface materials (TIMs) with high thermal conductivity to maintain the life
and reliability of electronic devices [2]. Silicone rubber (SR) has been widely used in the
field of electronic packaging as TIMs by virtue of its high heat resistance and excellent
electrical insulation [3,4]; however, because the average free path of phonons is reduced by
the amorphous arrangement of SR molecular chains [5], the thermal conductivity of SR is
only about 0.12 W·m−1·K−1, which cannot meet the requirements of heat dissipation of
electronic components under high power density. Adding high intrinsic thermal conductive
inorganic fillers such as carbon nanotubes [6,7], SiO2 [8,9], and Al2O3 [10,11] into the SR
matrix is the most commonly used method to improve the thermal conductivity of SR.

Graphene is a single−layer carbon atom crystal that isbound together by two−dimensional
sp2 hybrid bonds. Its unique low dimensional structure can significantly reduce the
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boundary scattering of phonons at the grain boundary and provide a special phonon
diffusion mode in graphene, which endows it with ultra−high thermal conductivity.
Balandin et al. [12] found that the thermal conductivity of suspended monolayer graphene
was about 5000 W·m−1·K−1, which is one of the currently known materials with the highest
thermal conductivity. It has been proved that the addition of graphene into the SR matrix
can efficiently improve the thermal conductivity of the obtained composites. SR/graphene
films were fabricated through spin−assisted LBL assembly and the film with 40 assem-
bly cycles has athermal conductivity of 2.03 W·m−1·K−1 in the in−plane direction [13].
The thermal conductivity of graphene/SR composites with only ~0.7 wt.% of graphene
prepared by Tian et al. reaches ~0.3 W·m−1·K−1 [14,15]. The thermal conductivity of
graphene nanoplatelets (GNPs)/SR composites with 8 wt.% of GNPs prepared by Song
et al. improves from 0.16 to 0.26 W·m−1·K−1 [16]; however, there is an inevitable decrease
in the electrical insulation property of the graphene−incorporated composite materials due
to the high electrical conductivity of graphene, thus resulting in electron leakage or even
short circuit of electronic equipment, which is unacceptable in the electronic industry.

In order to solve this problem, attempts have been made to reduce the electrical con-
ductivity of graphene sheets bycoating insulating particles or layers onto the surface of
graphene. Many insulating materials (e.g., silica [17,18], alumina [19,20],aluminum [21],
and MgO [22]) have been used to block the transport of electrons through the graphene−filled
polymer composites. Unfortunately, the heat transfer between graphene and the polymer
matrix is hindered to some extent because the thermal conductivities of these coating materi-
als are much lower than that of graphene, thus inevitably sacrificing the thermal conductiv-
ity of the composites; therefore, how to fully utilize the excellent thermal conductive ability
of graphene while keeping thehigh electrical resistivity of the graphene−incorporated
composites is still a challenge.

Hexagonal boron nitride (BN), a layered insulating material with the same atomic
structure asgraphene, possesses similar exotic properties tographite, e.g., relatively high
thermal conductivity (~360 W·m−1·K−1 [23]), mechanical robustness, and thermal stability.
It is thus extensively studied for application in the field of thermally conductive and insu-
lating composite materials. The thermal conductivity of SR/BN composite prepared by
Ou et al. with 50 wt% BN filler was 0.554 W·m−1·K−1 [24]. Yin et al. found that BN with an
average diameter of 30 µm can efficiently improve the thermal conductivity of SR/BN com-
posites and the in−plane thermal conductivity of the composite reached a maximum value
of 6.3 W·m−1·K−1 [25]. SR incorporated with BN−CNTs hybrid filler exhibited 75% higher
thermal conductivity relative to the neat SR [26]. Yang et al. prepared SR/aligned−BN
composite sheets by shearing the compound with the two−roll mill; the through−plane
thermal conductivity of the composite reached 5.4 W·m−1·K−1, which was ~33 times higher
than that of pure SR [27]. Moreover, two−dimensional BN is also considered to be one of
the most promising materials for integration with other 2D materials such as graphene [28]
to form new hybrid nanosheets for a wide range of applications; therefore, hybrid fillers
prepared by combining boron nitride with graphene is expected to balance the electrical
insulating property and thermal conductivity of the obtained silicon rubber/graphene
composites. However, due to the high chemical stability or inertness of BN [29,30], it is
difficult to hybridize directly with graphene. Surface functionalization of BN is an effective
method to promote the combination of the two components. Wei et al. [30] used poly-
dopamine to modify the surface of boron nitride sheets, which was then co−deposited
with Ag nanoparticles and mixed into the SR matrix to prepare a thermally conductive
as well as electrically insulating composite. The fabricated composite with a filler content
of 30 vol.% exhibits a thermal conductivity of 0.75 W·m−1·K−1 (about 5.76 times that
of pure SR) while maintaining a low AC conductivity of 1.89 × 10−11 S cm−1 at 100 Hz.
Xie et al. [31] modified BN by alkylation and then incorporated it with polypropylene ma-
trix to prepare a nanocomposite film with a high thermal conductivity of 2.74 W·m−1·K−1

and low dielectric loss of only 0.002 (with a low filler loading of 5.5 vol.%). Liu et al. [32]
used polyetherimide (PEI) resin to non−covalently modify the surface of boron nitride
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and composited it with polyetheretherketone (PEEK) matrix. The composite material with
30 wt.% filler loading reaches a high thermal conductivity of 1.01 W·m−1·K−1. So far, there
is little research on the effect of BN/graphene hybrids on the thermal conductivity and
electrical insulation of SR composites.

In our previous work, Fe3O4 functionalized multilayer graphene hybrid was filled
into the SR matrix and then induced by an external magnetic field to efficiently enhance
the through−plane thermal conductivity to 0.64 W·m−1·K−1 [33]. A kind of cellulose
nanofibers/BN composite film was fabricated and achieved a significant integration of
high in−plane thermal conductivity of 15.13 W·m−1·K−1 [34]. Herein, a further effort
to construct a thermally conductive and electrically insulating BN−coated MG hybrid
nanosheet by a facile electrostatic self−assembly methodwas carried out in this work.
Poly(dimethyldiallylammonium chloride) (PDDA), a strong cationic polyelectrolyte, was
selected to functionalize BN nanosheets, considering the fact that Kim et al. [35] and
Rouse et al. [36] found PDDA can wrap on carbon nanotubes (CNTs) through the electro-
static interaction between the −COO− of CNTs and the positive charges of PDDA backbone.
The positive charges on the backbone of PDDA attract the negative charges on the surface
of BN through electrostatic interaction so that PDDA can wrap on the surface of BN to
form PDDA functionalized BN (PDDA@BN). Then, the positively charged PDDA@BN can
further attract the negative charges on the surface of multilayer graphene (MG) through
electrostatic self−assembly to prepare BN coated MG hybrid nanosheets (BN−MG). Since
the coating of BN layers onto MG sheets is achieved through a non−covalent bonding
way, the integrity of the structure of graphene is not destroyed, which is very important
to maintain its high thermal conductivity. BN−MG−filled silicone rubber composites
(BN−MG/SR) prepared in this work exhibit excellent electrical insulation performance
while maintaining relatively high thermal conductivities.

2. Experimental
2.1. Materials

Hexagonal boron nitride (BN) with anaverage lateral size of 1 µm was purchased
from Suzhou Napu Materials Co., Ltd. (Suzhou, China). Multilayer graphenes (MG) with
anaverage lateral size of 1~4 µm were produced by a wet ball milling method reported
in our previous work [37]. Poly(dimethyldiallylammonium chloride) (PDDA, 20 wt.% in
water) was supplied by Wuxi Lansen Chemicals Co., Ltd. (Wuxi, China).Vinyl silicone
oil with vinyl content of 1 wt.% (viscosity = 1000 cps), hydroxy silicone oil containing
0.18 wt.% hydrogen content, and Pt−based catalyst with Pt content of 5000 ppm were
all purchased from Dongguan Dongsheng Industrial Co., Ltd. (Dongguan, China). Ethyl
acetate (A.R.) and anhydrous ethanol were obtained from Tianjin Damao Chemical Reagent
Factory (Tianjin, China).

2.2. Preparation of PDDA@BN

In total, 2 g of BN was ultrasonically dispersed in 200 mL of water containing
0.2 wt.% PDDA and 0.5 wt.% NaCl. A homogeneous suspension was formed and then
reacted for 12 h at room temperature under continuous stirring. After that, the resulting
PDDA functionalized BN (PDDA@BN) was separated by centrifugation, washed, and
filtered three times. The final product was dried in a vacuum oven at 70 ◦C for 12 h.

2.3. Preparation of BN−MG

In total, 0.5 g of PDDA@BN and 5 g of MG were ultrasonically dispersed in 500 mL
and 1000 mL of water, respectively. Then, the MG dispersion was slowly added to the
PDDA@BN dispersion, and the mixed suspension was stirred continuously for 1 h to
promote the self−assembly of PDDA@BN and MG through the electrostatic interaction
between the two. After, the final boron nitride−multilayer graphene hybrid nanosheets
(BN−MG) with a 1:10 mass ratio of BN to MG were obtained by precipitation, filtration,
and vacuum−drying at 70 ◦C for 12 h.
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2.4. Preparation of BN−MG/SR Composites

The BN−MG/SR composites with different loading of BN−MG (1 wt.%, 3 wt.%,
5 wt.%, 7 wt.%, and 10 wt.%) were prepared by the following solution blending method:
Firstly, a certain amount of BN−MG was ultrasonically dispersed into ethyl acetate, and
then vinyl silicone oil and hydroxy silicone oil were added into the BN−MG dispersion
and stirred uniformly. Subsequently, Pt catalyst was added to the above mixture and stirred
uniformly. After solvent volatilization in a fume hood, the mixture was vacuum pumped
to remove the air bubbles. Finally, the de−bubbled mixture was poured into a polypropene
(PP) mold and heated to 110 ◦C for 5 h to obtain fully cured BN−MG/SR composites. For
comparison purposes, multilayer graphene−filled silicone rubber composites (MG/SR)
with the same filler loadings were also prepared.

2.5. Characterization

The Zeta potentials of MG, BN, and PDDA@BN were measured with a nano−laser
particle size analyzer (Zatasizer Nano−ZS, Malvern). Before measurement, the samples
were uniformly dispersed in water. The crystal structure of MG, PDDA@BN, and BN−MG
was examined on an X−ray diffractometer (XRD, X’Pert Pro, PANalytical) with Cu Kα

radiation (λ = 0.154 nm) at a step size of 0.06◦ in the 2θ range of 10◦~80◦. The chemical
structure of MG, BN, PDDA@BN, and BN−MG was characterized using a Fourier trans-
form infrared spectrometer (FT−IR, IRTracer−100, SHIMADZU) with a scanning range
of 4000~400 cm−1. The thermal stabilities of BN, PDDA@BN, MG, BN−MG, MG/SR,
and BN−MG/SR samples were analyzed on a thermogravimetric analyzer (TGA55, TA)
at a heating rate of 20 ◦C·min−1 in a nitrogen flow (20 mL·min−1) from 40 ◦C to 800 ◦C.
The thermal conductivity and thermal resistance of BN−MG/SR and MG/SR samples
were tested by a heat flow method on an automatic thermal conductivity tester (DRL−III,
Xiangtan Xiangyi Instrument Co., Ltd., Xiangtan, China).The samples with a thickness
of 1~3 mm were cut into a circle with a diameter of 3 cm, and the applied pressure was
100 N. The volume resistivity of MG/SR and BN−MG/SR samples with a diameter of
10 cm and a thickness of 1~3 mm were tested by an electrometer (KEI−6517A, Keithey)
according to Chinese Standard (GB/T1410−2006). The threeelectrodes method was used
to measure the volume resistance (Rx) of the sample, and the volume resistivity of the
sample was obtained after calculation according to Formula (1).For the test of thermal
conductivity and volume resistivity, at least three duplicate samples were tested, and the
average value was taken.The morphology of BN, MG, BN−MG, BN−MG/SR, and MG/SR
was observed by scanning electron microscope (SEM, S−3700N, Hitachi). The powder
samples (BN, MG, and BN−MG) were dispersed in ethanol and dropped onto a silicon
sheet. The fresh cross−sections of BN−MG/SR and MG/SR composite samples were
obtained by tensile fracture.

VR = Rx × A
h

(1)

where VR is the volume resistivity of the sample (Ω cm), Rx is themeasured volume
resistance of the sample (Ω), A is the effective area of the protected electrode (cm2), and h
is the average thickness of the sample (cm).

3. Results and Discussions
3.1. Characterization of BN−MG

The schematic of the preparation route of the BN−MG hybrid nanosheets is shown in
Figure 1. Since there are multiple cations on the backbone of PDDA polyelectrolyte, the
addition of NaCl during “step 1” can partly shield the charges of PDDA, thus promoting
the molecular chains of PDDA to adopt random conformation [38,39]. Compared with the
rigid rod conformation of PDDA formed without NaCl addition, the attraction between the
positive charges on the backbone of PDDA with random conformation and the negative
charges on the surface of BN is increased, and therefore, more PDDA can wrap on the BN
surface to form PDDA−functionalized BN (PDDA@BN). In the following “step 2”, the
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positively charged PDDA@BN can further attract the negative charges on the surface of
graphene and lead to the coating of BN layers on the surface of graphene sheets through
electrostatic self−assembly.
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Figure 1. The schematic of the preparation route of BN−MG.

The photographs of the samples during the process of electrostatic self−assembly of
BN−MG are shown in Figure 2. In order to realize the coating of BN on the surface of MG
sheets, the cationic polyelectrolyte PDDA was used to functionalize BN first. As shown in
Figure 2a, PDDA@BN could be uniformly dispersed in water. When the PDDA@BN water
dispersion was mixed with MG dispersion with the mass ratio of 1:10 (PDDA@BN:MG),
the positively charged PDDA@BN combined with the negatively charged MG through elec-
trostatic self−assembly and the mixture gradually settled down in the aqueous dispersion
after 30 min, as shown in Figure 2c,d. This electrostatic self−assembly process is practical
and eco−friendly, which is suitable for large−scale preparation.
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Figure 2. Photos of PDDA@BN/water dispersion (a), MG/water dispersion (b), the mixture dis-
persion of PDDA@BN and MG just after mixing (c) and after 30 min (d) as a result of electrostatic
self−assembly.

Zeta potential can directly reflect the change of charges in the dispersions; the obtained
Zeta potential curves are shown in Figure 3. As for BN and MG, the Zeta potentials of the
two samples are −28 mV and −18 mV, confirming that both BN and MG are negatively
charged, which is due to the oxygen−containing functional groups such as hydroxyl on
the surface of BN and MG. After functionalization by PDDA, the zeta potential of BN
changes from −28 mV to 34 mV, which verifies that PDDA with multiple positive charges
successfully wrapped on the surface of BN, making the surface of BN positively charged.
The increase in the absolute value of Zeta potential indicates that BN can be dispersed more
uniformly and stably in an aqueous solution after functionalization by PDDA.



Nanomaterials 2022, 12, 2335 6 of 14

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 15 
 

 

Figure 2. Photos of PDDA@BN/water dispersion (a), MG/water dispersion (b), the mixture disper-

sion of PDDA@BN and MG just after mixing (c) and after 30 min (d) as a result of electrostatic 

self−assembly. 

Zeta potential can directly reflect the change of charges in the dispersions; the ob-

tained Zeta potential curves are shown in Figure 3. As for BN and MG, the Zeta potentials 

of the two samples are −28 mV and −18 mV, confirming that both BN and MG are nega-

tively charged, which is due to the oxygen−containing functional groups such as hydroxyl 

on the surface of BN and MG. After functionalization by PDDA, the zeta potential of BN 

changes from −28 mV to 34 mV, which verifies that PDDA with multiple positive charges 

successfully wrapped on the surface of BN, making the surface of BN positively charged. 

The increase in the absolute value of Zeta potential indicates that BN can be dispersed 

more uniformly and stably in an aqueous solution after functionalization by PDDA. 

 

Figure 3. Zeta potential curves of BN, MG, and PDDA@BN. 

FT−IR spectra of BN, PDDA@BN, MG, and BN−MG are shown in Figure 4. As for BN, 

the two strong absorption peaks at 1384 cm−1 and 815 cm−1 correspond to the in−plane 

stretching vibration and out−of−plane bending vibration of the B−N bond, respectively. 

Moreover, there is another strong absorption peak at 3460 cm−1, which is attributed to the 

stretching vibration of the hydroxyl group on the surface of BN. When compared with the 

FTIR spectrum of BN, the functionalized PDDA@BN exhibit the stretching vibration of the 

C−H bond at 2924 cm−1, indicating that PDDA has already been introduced into BN [38,39]. 

From the FTIR spectrum of MG, two main peaks at 3460 cm−1 and 1640 cm−1 are attributed 

to the stretching vibration of hydroxyl groups and stretching vibration of C=C bonds of 

MG, respectively. As expected, the characteristic absorption peaks attributed to BN and 

MG can be clearly observed on the FTIR spectrum of BN−MG, which verifies the success-

ful preparation of BN−MG. 

Figure 3. Zeta potential curves of BN, MG, and PDDA@BN.

FT−IR spectra of BN, PDDA@BN, MG, and BN−MG are shown in Figure 4. As for BN,
the two strong absorption peaks at 1384 cm−1 and 815 cm−1 correspond to the in−plane
stretching vibration and out−of−plane bending vibration of the B−N bond, respectively.
Moreover, there is another strong absorption peak at 3460 cm−1, which is attributed to the
stretching vibration of the hydroxyl group on the surface of BN. When compared with
the FTIR spectrum of BN, the functionalized PDDA@BN exhibit the stretching vibration
of the C−H bond at 2924 cm−1, indicating that PDDA has already been introduced into
BN [38,39]. From the FTIR spectrum of MG, two main peaks at 3460 cm−1 and 1640 cm−1

are attributed to the stretching vibration of hydroxyl groups and stretching vibration of
C=C bonds of MG, respectively. As expected, the characteristic absorption peaks attributed
to BN and MG can be clearly observed on the FTIR spectrum of BN−MG, which verifies
the successful preparation of BN−MG.
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Figure 4. FT−IR spectra of BN, PDDA@BN, MG, and BN−MG.

The crystal structure of PDDA@BN, MG, and BN−MG are shown in Figure 5. The
strong and sharp peak at 2θ = 26.0◦ is the characteristic peak of MGcorresponding to the
(002) crystal plane diffraction of MG. The strong characteristic (002) crystal plane diffraction



Nanomaterials 2022, 12, 2335 7 of 14

peak of BN is at 2θ = 26.9◦. Diffraction peaks at 2θ =41.6◦, 43.8◦, 50.2◦, 55.1◦, and 76.0◦

correspond to the (100), (101), (102), (004), and (110) crystal plane of BN in accordance
with the reference data of JCPDS card No.34−0421. When compared with MG, BN−MG
has five new diffraction peaks at 2θ = 41.6◦, 43.8◦, 50.2◦, 55.1◦, and 76.0◦. These new five
diffraction peaks correspond to the (100), (101), (102), (004), and (110) crystal planes of
BN and further confirm that BN had successfully coated on the surface of MG through
electrostatic self−assembly.
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Figure 5. XRD patterns of PDDA@BN, MG, and BN−MG.

The micro−morphology of BN, MG, and BN−MG are shown in Figure 6. The lateral
size of MG sheets is 1~4 µm, which can be confirmed by the SEM image of MG in Figure 6a.
It can be seen from Figure 6b that the lateral size of BN is about 1 µm. BN is sheet−like with
a smooth surface and a relatively uniform size distribution. The size difference between
BN and MG makes it possible for BN to coat the surface of MG. As shown in Figure 6c,
BN sheets stably coat the surface of MG sheets. This coating can reduce the direct contact
between MG sheets, thereby reducing the electrical conductivity of graphene. Since the
mass ratio of BN to MG in the BN−MG hybrid nanosheet is only 1:10, as well as the density
of BN, is much larger than that of MG, BN with fewer lamellae cannot completely coat the
surface of MG, which is of great significance for maintaining the high thermal conductivity
of BN−MG.
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Figure 6. SEM images of MG (a), BN (b), and BN−MG (c).

TGA tests were carried out under a nitrogen atmosphere to evaluate the thermal
stabilities of BN, PDDA@BN, MG, and BN−MG. The obtained curves are shown in Figure 7.
BN shows negligible weight loss (less than 1% at 750 ◦C), demonstrating its high thermal
stability. As for PDDA@BN, two degradation stages before 450 ◦C can be found in its TGA
curve. The first stage in the range of 100~200 ◦C is the volatilization of small molecular
impurities such as trace moisture remaining in the sample. The second stage, between
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300 ◦C and 400 ◦C, is mainly due to the decomposition of PDDA. Because of the small
wrapping amount of PDDA in PDDA@BN, no further weight loss above 450 ◦C can be
found after the decomposition of PDDA and thus maintains good thermal stability. By
comparison, the thermal stability of MG sheets prepared by the wet ball milling method
is not as good as that of BN due to the presence of hydroxyl groups on the MG surface;
however, the weight loss value of MG and BN−MG at 750 ◦C is only 1.7 wt.% and 1.8 wt.%,
respectively, proving the good thermal stability of both MG−based nanofillers.
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3.2. Characterization of BN−MG/SR

The suitable dispersion and compatibility of inorganic nanofillers in polymer−based
composites are crucial for the determination of the performance (e.g., mechanical properties,
thermal conductivity) of the composites. The cross−sectional images of the BN−MG/SR
composites with different BN−MG loadings are shown in Figure 8. It can be seen from
Figure 8a that the pure silicone rubber shows a relatively smooth morphology with many
wave−like folds. As for the composites (Figure 8b–f), the BN−MG hybrid fillers are
uniformly dispersed in silicone rubber matrix without obvious agglomeration, indicating
that the self−agglomeration tendency of MG has been reduced after BN coating. In addition,
with the increase in BN−MG loading, the cross−sections of the composites become rougher
and rougher, and the boundary between fillers and silicone rubber matrix becomes blurred.
Such change can further increase the contact areas between the BN−MG hybrid fillers
and polymer matrix, which can promote the formationof a continuous thermal conductive
network in the composites.

Thermal stability is one of the most important properties of composite materials,
which affects the processability and service life of composites. Figure 9 shows the TGA
curves of pure SR and BN−MG/SR composites with different filler loadings. It can be seen
that the pure silicone rubber starts to decompose at 292 ◦C and the main decomposition
stage is between 400 ◦C and 600 ◦C. The thermal degradation curves of BN−MG/SR
composites are similar to that of pure SR, indicating that the addition of BN−MG does
not change the degradation mechanism of the silicone rubber matrix. By comparing the
initial decomposition temperature (Td5%, temperature at 5% weight loss), as shown in the
inner table of Figure 9, the thermal stabilities of BN−MG/SR composites are increased
significantly when compared with that of pure SR. For example, the Td5% of pure SR is only
292 ◦C, whereasthetemperature for BN−MG/SR with 10 wt.% filler loading is as high as
382 ◦C, which is an increase of about 31%. The increase is related to the high thermal
stability of the inorganic nanofiller BN−MG (as revealed in Figure 7). Moreover, the
homogeneous dispersion of BN−MG in the composites can also play the role of physical
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crosslink points, which therefore partly prevent the polymer chains from moving, thereby
improving the resistance of the silicone rubber matrix to thermal degradation.
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BN−MG/SR and MG/SR with different filler loadings were prepared to compare
the effect of functionalized nanofillers on the thermal conductivity and thermal resistance
of the composites. As shown in Figure 10a,b, it can be seen that with the increase inthe
nanofiller loading, the thermal conductivities of BN−MG/SR and MG/SR composites are
increased, while the thermal resistance values of both show a downward trend. For the pure
SR, the thermal conductivity is only 0.12 W·m−1·K−1 and its thermal resistance is nearly
10.6 K·W−1. The introduction of MG and BN−MG significantly improves the heat conduc-
tion ability of the composites. As for the BN−MG/SR composite with 10 wt.% nanofiller
loading, it exhibits a very high thermal conductivity of 0.69 W·m−1·K−1 as well as a low
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thermal resistance of 3.0 K·W−1, which is nearly 475% higher and 72% less than the values
of the pure SR, respectively. In addition, we find that the thermal conductivities of the
BN−MG/SR composites are slightly lower than those of the MG/SR composites with the
same nanofiller loadings (e.g., 0.69 W·m−1·K−1 for BN−MG/SR−10% vs. 0.76 W·m−1·K−1

for MG/SR−10%). It is well known that there is a big difference inthermal conductivity
between BN (~360 W·m−1·K−1 [23]) and MG (~5000 W·m−1·K−1 [12]).The reason why the
BN−MG/SR composites still maintained high enough thermal conduction ability mightbe
related to the following reasons: (i) the reduced self−agglomeration tendency of MG after
coating by BN and good dispersion of BN−MG fillers in the silicone rubber matrix. As
shownin Figure 8, with the increase in BN−MG loadings, the boundary between fillers
and SR matrix becomesblurred;thus, more thermal conductive pathways formed, and the
continuity of thermal conductive networks increased; (ii) the functional groups could con-
tribute to forming greater interfacial adhesion between BN−MG fillers and SR matrix by
covalent bonding or van der Waals’ force, which helps to decrease the interfacial resistance
and generate more thermal conductive pathways and networks [40,41]; (iii) BN’s partly
coating on MG sheets is of great significance for maintaining the high thermal conductivity
of BN−MG.
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Figure 10. Thermal conductivity (a) and thermal resistance (b) of MG/SR and BN−MG/SR with
different filler loading.

In addition to the thermal conduction ability, the composites should also possess high
electrical resistivity in order to meet the insulation requirement of electronic packaging
materials. Figure 11a shows the volume resistivity of the BN−MG/SR and MG/SR com-
posites with different filler loadings. The volume resistivity of both BN−MG/SR and
MG/SR shows a decreasing trend when compared with that of pure SR. As shown in
Figure 11b, the volume resistivity of MG and BN−MG hybrid is about 10−2 Ω·cm and
107 Ω·cm, respectively. So, the filling ofMG or BN−MG will lead to adecrease inelectrical
resistivity of the SR matrix. The volume resistivities of the BN−MG/SR composites are
significantly higher than those of MG/SR with the same filler loading, showing their rela-
tively high electrical insulating property. As for the MG/SR composites, due to the super
high electrical conductivity of MG with graphite structure, the volume resistivities of the
composites sharply decrease from 5 × 1015 Ω·cm to only 2 × 107 Ω·cm, which drops off by
eightorders of magnitude and is far below the critical resistivity for electrical insulation
(1.0 × 109 Ω·cm [42]). By contrast, the BN−MG/SR composite with 10 wt.% loading
of BN−MG still maintains a high resistivity of 4 × 1011 Ω·cm, which decreases by only
fourorders of magnitude and satisfies the requirements of electrical insulation.
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Figure 11. Volume resistivity of MG/SR and BN−MG/SR with different filler loadings (a) and
volume resistivity of the fillers (b).

Takingthe thermal conductivity (as shown in Figure 10) and insulating property
(as shown in Figure 11) into account, the BN−MG/SR with 10 wt.% BN−MG loading
exhibits both good thermal conductivity and electrical insulation properties. The thermal
conductivity BN−MG/SR with 10 wt.% filler loading is 0.69 W·m−1·K−1, which is only 9.2%
lower than that of MG/SR with the same filler loading. In contrast, the volume resistivity
of the former is maintained at 4 × 1011 Ω·cm, which is fourorders of magnitude higher
than that of the latter. The reason why BN−MG/SR composites show synergetic properties
of high thermal conductivity and satisfactory electrical insulation can be explained by the
schematic shown in Figure 12. Continuous heat and electron conductive paths can be
established in the SR matrix by direct contact among MG sheets, but the direct contact
among MG sheets is effectively hindered by the BN layers coating the surface of MG. BN is
thermally conductive but also insulating, thereby, the conductive heat paths in the SR matrix
are still maintained, but the electron conductive paths are greatly blocked. In addition,
we also compared the thermal conductivity and volume resistivity of the BN−MG/SR
composite (with 10 wt.% filler loading) with those of other SR−based composites reported
in references (as listed in Table 1). The result proved that BN−MG hybrid filler prepared
in this study via the practical and eco−friendly electrostatic self−assembly method is a
promising candidate as a filler for practical application in the field of electronic packaging.
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Table 1. Comparison of thermal conductivity (TC) and volume resistivity (VR) of the BN−MG/SR
composite in this work with those of other SR−based composites.

Filler Filler Loading TC (W·m−1·K−1)/I * VR (Ω·cm) References/Year

Graphene (G) 3 wt.% − 2 × 105 [43] 2016
G 1.8 wt.% − 3.57 × 105 [44] 2022
G 2.53 wt.% 2.03/786% − [13] 2018
G 0.72 wt.% 0.30/50% − [15] 2017
G 0.67 wt.% 0.305/45% − [14] 2017

Boron nitride (BN) 50 phr 0.25/56% 2.5 × 1016 [27] 2019
BN 28 vol.% 0.4/122% − [25] 2021
BN 12.59 vol.% 0.225/40.6% 3.5 × 1016 [26] 2018
BN 20 wt.% 0.24/50% 3 × 1016 [24] 2019

Al2O3−G hybrid 31 wt.% − 5.1 × 1012 [20] 2021
Silica−G hybrid 2 wt.% 0.497/155% 9.23 × 1012 [18] 2018
BN−G hybrid 10 wt.% 0.69/475% 4 × 1011 This work

*: I is the TC increment of composites listed in Table 1 compared to the referential SR sample for each work.

4. Conclusions

A practical and environmentally friendly electrostatic self−assembly method was
used to successfully prepare BN−MG hybrid nanosheets. The obtained BN−MG was
then added as a novel thermally conductive and insulating filler into the silicone rubber
matrix and cured to prepare BN−MG/SR composites. In the case of filler loading below
10 wt.%, the BN−MG/SR composites exhibit a comparable thermal conductivity to that
of MG/SR with the same filler loading. The volume resistivity of BN−MG/SR is much
higher than that of MG/SR due to the electron transport between MG sheets being blocked
after BN lamellae partially coatedthe surface of MG sheets. The thermal conductivity of
the BN−MG/SR composite (10 wt.% BN−MG loading) is 0.69 W·m−1·K−1, which is only
9.2% lower than that of MG/SR with the same filler loading, while its volume resistivity is
fourorders of magnitude higher than that of the latter.
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