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Generating inhibitors for A Disintegrin And Metalloproteinase 10 (ADAM10), a

zinc-dependent protease, was heavily invested in by the pharmaceutical industry starting

over 20 years ago. There has been much enthusiasm in basic research for these

inhibitors, with a multitude of studies generating significant data, yet the clinical trials

have not replicated the same results. ADAM10 is ubiquitously expressed and cleaves

many important substrates such as Notch, PD-L1, EGFR/HER ligands, ICOS-L, TACI,

and the “stress related molecules” MIC-A, MIC-B and ULBPs. This review goes through

the most recent pre-clinical data with inhibitors as well as clinical data supporting the

use of ADAM10 inhibitor use in cancer and autoimmunity. It additionally addresses how

ADAM10 inhibitor therapy can be improved and if inhibitor therapy can be paired with

other drug treatments to maximize effectiveness in various disease states. Finally, it

examines the ADAM10 substrates that are important to each disease state and if any

of these substrates or ADAM10 itself is a potential biomarker for disease.

Keywords: metalloproteases, ADAM10 inhibitors, NKG2D, hodgkin lymphoma, glioblastoma, breast cancer,

systemic lupus erythematosus, rheumatoid arthritis

INTRODUCTION

A Disintegrin And Metalloproteinase (ADAMs) are type I transmembrane endopeptidases that
are a member of the metzincin superfamily which share a zinc-binding consensus motif that is
required for catalytic activity. The metzincin superfamily includes ADAMs along with matrix
metalloproteases (MMP), and ADAM-thrombospondins (ADAM-TS). ADAM10 is a modular
protein comprised of metalloprotease, cysteine-rich, disintegrin, and epidermal growth factor
(EGF)-like domains (1, 2). While all functionally active metzincin proteases contain a zinc binding
motif, ADAMs are unique in that they also contain a transmembrane domain and are active while
membrane bound. ADAM are membrane-anchored and cleave ligands expressed on the surface
through a process known as ectodomain shedding. ADAMs also mediate regulated intramembrane
proteolysis (RIP) of transmembrane proteins. Following translation of ADAM10 mRNA, the
prodomain is cleaved by Furin (3, 4). With the removal of the prodomain, the disintegrin
and cysteine rich domains engulf the active metalloproteinase domain. This is thought to be
autoinhibitory to add a layer of control to the mature protease (5). Once ADAM10 leaves the
endoplasmic reticulum, it can directly associate with all members of a subgroup of tetraspanins,
Tspan8, all of which contain eight cysteines in the large extracellular domain (6). These tetraspanins
can alter the substrate-specify of ADAM10 through conformational change (6). Synapse-associated
protein 97 (SAP97) trafficks ADAM10 to the golgi apparatus (7). ADAM10 either interacts with its
substrates at the cell surface or, as with L1, CD44, or CD23, ADAM10 meets these substrates in the
endosomal pathway, leading to possible packaging into exosomes (8).
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It is now recognized that there are 38 members of the
ADAM family that are conserved between invertebrate and
vertebrate evolution, with humans harboring 13 proteolytically
active ADAMS (9–13). Of all the ADAMs, ADAM17 is
the most similar to ADAM10 with regard to structure and
function. According to the National Center for Biotechnology
Information (NCBI) database, human ADAM10 RNA-seq data
from 95 individuals from 27 different tissues showed ubiquitous
expression amongst all 27 tissues (14). ADAM10 might be
best known historically for its role in Notch signaling, and
more recently for cleaving the amyloid precursor protein
(APP) associated with the pathophysiology of Alzheimer’s
disease. It is important to note, however, ADAM10 has
over 40 other substrates and counting that are involved in
a multitude of biological functions including inflammation,
apoptosis, cell adhesion, cell metabolism, cancer proliferation,
cancer metastasis, and autoimmunity in addition to other
functions [reviewed in (15, 16)]. ADAM10 is crucial for
development as mice that are deficient in ADAM10 die around
day 9.5 during the early embryonic stages (17). Some of the
characterized ligands for ADAM10 in addition to APP and
Notch are: E-cadherin, L-selectin, EGF, FASL, CD40L, ligand
for inducible T cell costimulatory (ICOS-L), MICA, MICB, and
ULBP2 (18–25).

ADAM10, NOTCH, AND THE IMMUNE
SYSTEM

ADAM10’s ability to regulate Notch signaling has been well-
characterized and extensively reviewed (16, 26–29), including a
recent review by Lambrecht et al. discussing the role of ADAMs
in the immune system (30). Briefly, Notch signaling regulates
many different important processes in cellular differentiation,
including the development and differentiation of both innate
and adaptive immune cells. Generally, the initial cleavage of
Notch by furin-like convertase at s1 generates the mature Notch
protein as it is transported to the cell membrane (29). Notch
engagement with a Notch ligand initiates ADAM10 mediated
proteolysis of the extracellular domain of the Notch receptor
at the s2 cleavage site. The extracellular domain is released
and endocytosed by the adjacent ligand-expressing cells. This
cleavage event, produces a substrate that can be cleaved by the
γ-secretase complex (S3 cleavage) (31, 32). S3 cleavage releases
the Notch intracellular domain (NICD), this translocates to the
nucleus where it complexes with transcription factor RBP-Jκ to
induce transcription of Notch target genes (31, 33). In addition
to ADAM10’s importance in Notch signaling, some of ADAM10’s
most well-characterized substrates are also Notch receptors, such
as Delta-like 1–4 and Jagged 1–2 (34).

The loss of ADAM10 in B cell development results in the
loss of the marginal zone B cell (MZB) compartment (35). This
has been shown to be mediated through Notch2 activation.
Overexpression of ADAM10 in hematopoiesis results in the
complete loss of the B cell compartment and an overall myeloid
expansion that is Notch dependent (32). For B cells, ADAM10
substrates that regulate cell activation and antibody production

include but are not limited to, Notch, ICOSL, and CD23 (23, 35,
36).

For T-cells, the strength of Notch signaling has been
implicated in both the lineage decision between CD4+ and CD8+

T-cell subsets as well as between αβ and γδ T cell subsets (37–39).
In addition, Notch 1 activation through binding of various Notch
ligands on antigen presenting cells, such as dendritic cells, skew
CD4 cells toward T-helper subsets, induce T-cell proliferation,
and control survival of CD4+ memory cells (40, 41). Additional
ADAM10 substrates control a wide variety of processes. These
include CD44, which alters T cell migration (42, 43), FAS ligand
(FASL), which in a soluble form acts as a decoy receptor to reduce
activation induced apoptosis (44), and persistent Lymphocyte
Activating 3 (LAG3) or T cell immunoglobulin and mucin
domain-containing protein 3 (TIM3), which are markers of T cell
exhaustion in tumor-infiltrating lymphocytes (45).

ADAM10 is ubiquitously expressed in human tissue with a
vast array of substrates. Dysregulation or inhibition of ADAM10
can affect or result in the pathophysiology of a wide range of
diseases. This review will focus on characterizing ADAM10 and
the potential use of ADAM10 inhibitors in the context of cancer
and autoimmunity.

ADAM10 IN CANCER

Glioblastoma
Glioblastoma (GBM) is the most aggressive form of glioma
resultant from malignant astrocytes in the brain. The link
betweenADAM10 andGBMdisease progression is demonstrated
in many studies (46–49). In a study of 50 GBM patients, Kanaya
et al. demonstrated that low ADAM10 expression levels in tumor
specimens positively correlated with increased survival especially
when paired with tumor resection, as opposed to high ADAM10
levels (50). Interestingly, no detectable ADAM10 expression was
reported in normal brain tissue (50).

There are several proposed mechanisms of ADAM10’s
promotion of GBM. Neuroligin-3 (NLGN3) is released from
neurons by ADAM10. In multiple recent reports, NLGN3 levels
have been linked with high grade GBM (46, 47). In GBM patients
NLGN3 levels are high in the deep brain, preparing a pro-GBM
tumor microenvironment. This expression in the deep brain is
not seen in normal brain tissue (46). NLGN3 acts on GBM,
promoting proliferation through the P13K-mTOR pathway, pro-
oncogenic gene expression through focal adhesion kinase (FAK),
and synapse-related gene expression (46). Reportedly, patient-
derived xenografts (PDX) would not grow in NLGN3 knockout
mice. Using the ADAM10 inhibitors GI254023X and INCB7839
in mice, the growth of adult and pediatric glioblastoma cell lines,
and PDX were inhibited (46, 47). These effects of ADAM10
inhibition were not directly on the tumor, but were shown to be
mediated through the blockage of ADAM10 cleavage of NLGN3
from neurons (46, 47).

Another proposed mechanism implicates ADAM10’s cleavage
of N-cadherin in cell migration and metastasis (49). In vitro
experiments where GBM cell lines were treated with an antibody
to inhibit ADAM10 (Millipore #AB19026) found decreased
tumor growth and migration. This was shown to be driven
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by cleavage of N-cadherin (49). Musumeci et al. examined 25
grade IV GBM specimens as compared to normal brain tissue
controls to identify molecular markers of aggressiveness (48).
ADAM10 protein and mRNA were positively correlated with
GBM and surface N-cadherin protein was negatively correlated
with GBM (48).

Natural killer cells (NKs) have been reported to have an
anticancer immune response against GBM and are associated
with improved prognosis (51). NK cells recognize GBM by
binding ligands for the NKG2D receptor that are expressed in
the malignant state. NKG2D binds to MICA, MICB, and ULBP1-
6.MICA andULBP2 are both cleaved by ADAM10 andADAM17
(52, 53). Loss of NK cell activation of the NKG2D receptor
allows GBM escape due to reduced activation of the NK cell
cytotoxic effector state (24, 54). Using the ADAM10 specific
inhibitor GI254023X, the dual ADAM10/ADAM17 inhibitor
GW280264X, or siRNA inhibition of ADAM10 or ADAM17,
Wolpert et al. demonstrated increased surface expression of
ULBP2 in GBM stem cell lines (55). This subsequently increased
the immunogenicity of these GBM stem cell lines (55).

In GBM,M2macrophages are correlated with poor prognosis.
Gjorgjevski et al. examined tissue from 20 GBM and using
qRT-PCR of M1/M2 related genes to various protease genes,
including ADAM10 (56). A positive correlation was established
between ADAM10 expression and M1-related genes (56). This
overall signature then positively correlated with better prognosis.
Although this disagrees with the majority of the work done on
GBM and ADAM10, the authors attributed the increased survival
to the M1-skewed profile (56).

Overall, in GBM, ADAM10 has strong value as a biomarker
for prognostic use. A large scale study is warranted to validate
ADAM10 as predictive biomarker. ADAM10 appears to be a
strong therapeutic candidate to target GBM due to the multiple
substrates it cleaves that are implicated in disease progression.
Even with very strong pre-clinical evidence, there has yet to
be a clinical trial in GBM with ADAM10 inhibitors. This is
most likely due to the failures that the ADAM10 inhibitors have
been in clinical trials (57). Despite this, the use of ADAM10
inhibitors as a clinical intervention should be carefully evaluated
due to ADAM10’s role in the cleavage of amyloid plaque
precursors (58, 59).

Hodgkin Lymphoma, Non-hodgkin
Lymphoma, and Multiple Myeloma
Hodgkin lymphoma (HL) is characterized by a clonal malignant
lymphoproliferation in the form of lacunar histiocytes and
Reed-Sternberg cells (60). Similar to GBM, ADAM10 promotes
an immunosuppressive microenvironment through cleavage of
the stress receptors MICB and the ULBP2, resulting in HL
that has foregone immune surveillance (61, 62). Zocchi et al.
generated two ADAM10 specific inhibitors (LT4 and MN8)
(63). They found that treatment with either inhibitor blocked
shedding of NKG2D-L in cultured HL samples and HL cell
lines developed increased sensitivity to NKG2D-L-mediated
killing after inhibitor treatment (63). Multiple studies have
described the presence of ADAM10 in extracellular vesicles (EVs)

released by the HL cells (64, 65). ADAM10 has additionally
been described in EVs released from other tumors, including
melanoma, GBM, lung, and colon cancer (66). In both HL
studies, CD30 was found to be co-released on these HL EVs. This
was proposed to further promotes an immunosuppressive tumor
microenvironment (64). Interestingly, following treatment with
the ADAM10 inhibitors (LT4 and CAM29), Tosetti et al. report
that the inhibitor is additionally secreted in EVs leading to uptake
by bystander cells (64). Overall, ADAM10 inhibitor treatment
results in the restoration of membrane CD30 levels, which
restored sensitivity to anti-CD30 monoclonal therapies used in
HL, such as Iratumumab (64).

Non-hodgkin lymphoma (nHL) describes a variety of
lymphomas, including Burkitt’s lymphoma, diffuse large B cell
lymphoma (DLBCL), and marginal zone lymphoma. All of these
have in common the lack of Hodgkin cells. The prognosis
for nHL can be worse due to the higher frequency of late-
stage diagnoses (67). A variant of nHL is DLBCL. Epstein
Barr-virus-positive (EBV+) DLBCL, not otherwise specified
(NOS) have been shown to have increased expression of the
immunosuppressive molecule PD-L1 (68). PD-L1+ DLBCLs can
be treated with anti-PD-L1 monoclonal therapy. However, some
tumors fail to respond despite being PD-L1+. A correlative study
using data from the cancer genome atlas found that DLBCLs with
a low PD-L1 protein-to-mRNA ratio while also having higher
relative expression levels of ADAM10 or ADAM17 had worse
overall survival than high PD-L1 protein-to-mRNA counterparts
(68). Two recent studies demonstrated that ADAM10 and
ADAM17 can cleave PD-L1 in culture (69). With these data, the
regulation of the PDL-1/PD-1 pathway can be better understood.
Soluble PD-L1 is not completely understood, thus more work is
needed to determine if inhibition of this part of the pathway will
be helpful. Then we will know if ADAM inhibition will be helpful
or harmful in nHL.

Multiple myeloma (MM) is characterized by a clonal
expansion of plasma cells filling the bone marrow volume >30%.
These cells often secrete large amounts of monoclonal Ig into
the blood. This leads to a loss of structural integrity of the bone
resulting in increased risk of bone fracture, as well as kidney
damage due to the accumulation of monoclonal Ig deposits (70).
In a study utilizing human MM cells, doxorubicin was used to
model genotoxic stress. This upregulated ADAM10 and resulted
in increased shedding of MICA and MICB. The increased
ADAM10 expression in MM was associated with a senescent
phenotype (71). This finding suggests that ADAM10 inhibitors
may enhance NK cell immunotherapy in multiple myeloma and
other cancers.

Breast Cancer
The human epidermal growth factor receptor (HER) family
consists of four receptors: EGF receptor (EGFR), HER2, HER3,
and HER4. HER2 overexpression occurs in ∼10–20% of all
invasive ductal mammary carcinomas of no special type (NST)
and these are treated with trastuzumab, which is a monoclonal
anti-HER2 antibody (72). While patients with HER2+ breast
cancers often initially respond well to trastuzumab, it is common
for cancer to relapse in a more resistant form (73). ADAM10
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is known to cleave HER2. Increased shedding of HER2 into a
soluble form, HER2-extra cellular domain (ECD) by ADAM10
has recently been shown to be predictive of reduced progression-
free survival (74). In 545HER2 positive invasive ductal mammary
carcinoma (NST) patients, it was found that a high serum HER2-
ECD relative to tumor HER2 level was predictive of reduced
progression-free survival (74). Feldinger et al. demonstrated that
after treatment with trastuzumab, ADAM10 levels increased both
in vitro and in vivo using PDX (75). Treatment with the ADAM10
inhibitor INCB8765 increased sensitivity to trastuzumab in vitro,
as well as restored responses in trastuzumab-resistant cells (75)
(Model Figure 1). A different study confirmed these results in
esophageal cancer PDX models and proposed that ADAM10
is conferring this resistance through the cleavage of the HER3
ligand (NRG-1β) (76). When HER2 is lost through trastuzumab
treatment, HER3 is upregulated in a compensatory manner
(76). The observed increase in ADAM10 then releases the

ligand for HER3 and confers trastuzmab resistance. This can
be reversed with ADAM10 inhibitor (GI254023X) treatment
(76). Further studies are needed to confirm this mechanism
in breast cancer as well as to examine the additive effects of
ADAM10 inhibitors in combination withmonoclonal anti-HER2
therapies, but the cleavage product HER2-ECD shows promise as
a prognostic biomarker.

Triple negative breast cancer (TNBC) is a variant of breast
cancer that exhibits little to no expression of the HER2,
progesterone receptor (PR), or estrogen receptor (ER) and is
often correlated with poor prognosis due to limited treatment
options (77). Both ADAM10 and ADAM17 have been found to
be expressed in the majority of TNBCs (78). In a study that
used RNAi knockdown of ADAM10, or the ADAM10 inhibitor
GI254023X in several different TNBC cell lines such as MDA-
MB-231 and BT20, it was found that ADAM10 knockdown
decreased in vitro cell migration (79). A different study that

FIGURE 1 | ADAM10 mediates cell surface cleavage of a large repertoire of substrates that can promote a pro-growth environment in malignant tumors. Some of

these ADAM10 substrates, such as HER2, are targeted by FDA approved drugs. Following HER2 subunit dimerization with HER- family subunits, and upon

ligand-binding or autoactivation, a pro-growth signal cascade is initiated which then drives malignancy. Trastuzumab and pertuzumab are both monoclonal antibodies

that bind to two distinct epitopes of HER2 to prevent homodimerizaton and heterodimerization, respectively. In addition to inhibiting dimerization, tumor cells with

bound antibody have an increased likelihood of succumbing to antibody dependent cellular cytotoxicity (ADCC) or opsonization. In the left and right panels above, a

HER2-positive cancer cell surface in the presence of trastuzumab and pertuzumab is depicted. In the left panel, ADAM10 cleaves the extracellular domain of HER2

from the cell surface into the tumor microenvironment (TME). These cleaved domains then act as decoy receptors, decreasing the amount of trastuzumab or

pertuzumab that binds to the tumor cell. The likelihood of ADCC or opsonization is now decreased. In the right panel, treatment with trastuzumab or pertuzumab is

combined with the inhibition of ADAM10. Inhibiting ADAM10 results in less HER2 cleavage which reduces the amount of decoy receptors in the TME. Decreasing the

decoy receptors in the TME and increasing the amount of HER2 on the tumor cell might enhance trastuzumab’s and/or pertuzumab’s antitumor effects. This general

concept can be applied to other ADAM10 substrates in other disease states. Made in ©BioRender - biorender.com.
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examined five TNBC cell lines reported finding that microRNA-
365, (miR-365) directly interacts with the 3’-UTR of ADAM10
mRNA. Moreover, they reported that re-expression of ADAM10
led to the restoration of the cells ability to proliferate, migrate,
and invade which was suppressed when overexpressing miR-365
(80). TNBCs have been reported to have the highest levels of PD-
L1 amongst breast cancer types. Much like with DLBCLs, it has
been proposed that ADAM10 may play a role in regulating the
PD-1/PD-L1 axis (69). Recently, a study done on non-luminal
breast cancers (Her2+ and TNBC), published in EBioMedicine,
identified soluble APPα that is generated by ADAM10 cleavage
of APP, as important in breast cancer tumor migration and
proliferation (81). The importance of APP was shown using APP
knockdown tumors in vitro and in vivo. This was also shown
by knockdown of ADAM10 using RNAi (81). ADAM10 cleavage
of APP in Alzheimer’s disease has been extensively studied [and
is reviewed in (82, 83)]. The expansion of importance in breast
cancer emphasizes the examination of ADAM10 cleavage of APP
in other cancers.

The xenoestrogens bisphenol-A (BPA) and nonylphenol (NP)
are used by the plastics industry in products for human use
(84). Urriola-Muñoz et al. demonstrated that both BPA and NP
increased ADAM10 and ADAM17 activity, increasing the release
of several EGFR ligands (84). Given the variety of important
substrates of ADAM10 and ADAM17 in breast cancer as well
as other cancers, this study sheds new light on the potential
complications associated with these common xenoestrogens.
Much more research will need to be done.

Oral Squamous Cell Carcinoma
Oral squamous cell carcinoma (OSCC) is an invasive carcinoma
derived from malignantly transformed squamous epithelium
lining the oral cavity (85). Based on 80 cases of OSCC samples
analyzed, it was determined that OSCC expressed high levels
of ADAM10 and that the samples with the highest ADAM10
expression were found in metastatic lesions (86). Tissue inhibitor
of metalloproteinase-3 (TIMP-3) has been shown to inhibit
OSCC cell growth, angiogenesis, migration, and invasion (87).
TIMP-3 is a secreted protein that binds to the ECM and
inhibits metalloproteinase activity, with a particular affinity for
suppression of ADAM10 activity (87). One study showed that
in OSCC, increased hypermethylation of the TIMP-3 promotor
led to reduced TIMP-3 mRNA expression. Treatment with a
DNA methytransferase inhibitor (DNMTi) or overexpression
of TIMP-3 reversed tumor cell migration, proliferation, and
reduced the epithelial to mesenchymal transition (87). These
effects may be due to loss of ADAM10 activity, but further work
would need to be done to show this. Another recent study using
HEK293 cells that overexpress TIMP-3 show evidence of reduced
ADAM10-specific substrates after secretome analysis by mass
spectrometry label free quantification. This study showed that
with TIMP-3 overexpression, several ligands for the low-density-
lipoprotein receptor-related protein-1 (LRP-1) are upregulated,
such as macrophage inhibitor factor (MIF) (88). As TIMP-3 also
binds to LRP-1, overexpression of TIMP-3 outcompetes other
ligands of LRP-1 and thus the cell compensates by increasing
expression (88). The authors of this study warn that the use of

TIMP-3 interventions as an ADAM10 regulator could yield these
alterations to the secretome and results might be unanticipated.

As inHL andGBM,OSCC are reported to have low expression
levels of stress receptor, MICA, which has been shown to
be under the regulation of ADAM10. In OSCC, the cleavage
of MICA reduces tumor immunogenicity (89). Upon over-
expressing MICA in the human squamous cell line SCC-25,
increased NK cell killing was observed. This suggests ADAM10
regulation of stress receptors may also be occurring OSCC (89).

ADAM10 and ADAM10 Substrates as
Biomarkers in Cancer
A multi-center cross-validation study (1558 enrollment) was
conducted to assess Heat shock protein 90α (Hsp90α) as a pan-
cancer biomarker (90). A siRNA screen identified ADAM10
as responsible for the release of Hsp90α. This was validated
through the use of the ADAM10 inhibitor (GI254023X) on tumor
cell lines, where reduced release of Hsp90α was observed (90).
The study identified ADAM10 as another potential biomarker
in conjunction with Hsp90α, and looked at the pair as an
exosomal biomarker (90). Overall, it emphasized the strength
of Hsp90α, as a potential pan-cancer biomarker. Another study
identified serum ADAM10 levels as a biomarker for disease in
colorectal cancer by ELISA. This study also found ADAM10 had
a minor, yet significant positive correlation with clinical stage
(91). In sacral chordoma, a rare malignant primary bone tumor
in the spine, a study spanning seven years positively correlated
ADAM10 levels with increased metastasis, disease-free survival,
overall survival, and histological type (92). Low ADAM10
expression by histochemical staining in patient tumors equated
to longer survival as compared to high ADAM10 expression (92).
Many different tumor types have identified ADAMs as potential
biomarkers for disease or disease progression, the evidence for
ADAM10 as biomarker is building and warrants larger-scale
multi-center validation studies in order to be implemented in
the clinic.

ADAM10 IN AUTOIMMUNITY

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic inflammatory disease
affecting synovial joints, resulting in synovitis, cartilage
destruction, and joint ankylosis. The pathophysiology of RA
is largely driven by autoreactive antibodies directed against
neoantigens generated by post-translational citrullination and
carbamylation of self-peptides (93). These autoantibodies, which
can be detected prior to the onset of clinically evident disease,
form immune complexes which deposit in synovial joints and
induce local inflammatory responses at articular surfaces (93).
Given the role of ADAM10 in regulating antibody production
and inflammatory responses, it is considered a promising
therapeutic target to control RA disease activity and progression.

Cleavage of ADAM10 substrates in synovial tissue is involved
in several pro-inflammatory processes. CXCL16, which requires
ADAM10 cleavage to exert its biological effects, functions
as a chemotactic signal for effector and memory T-helper 1
cells. ADAM10 and CXCL16 are upregulated in synovial joint

Frontiers in Immunology | www.frontiersin.org 5 March 2020 | Volume 11 | Article 499

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Smith et al. ADAM10: Not a Simple Proteinase

biopsies from RA patients compared to healthy controls (94).
These molecules are co-expressed on the surface of synovial
macrophages, where they function to drive the accumulation of
effector T-helper 1 cells, thereby promoting local inflammatory
processes and exacerbating joint injury (94). In vitro siRNA
knockdown of ADAM10 in RA-patient derived synovial
fibroblasts also suppressed the release of the proinflammatory
cytokines TNF-α, IL-6, and IL-8. These findings indicate that
inhibition of ADAM10may be effective in the treatment of RA by
suppressing pro-inflammatory signaling within synovial tissue.

An early histological hallmark of RA pathogenesis is
synovial angiogenesis, which permits leukocyte infiltration and
progression to synovitis (93). Recent studies demonstrate that
ADAM10 is upregulated in endothelial cells and synovial lining
fibroblasts in RA tissue biopsies compared to osteoarthritis
and healthy patients (95). Additionally, in vitro studies reveal
that siRNA knockdown of ADAM10 impairs angiogenesis and
suppresses VEGF release in endothelial cell lines (95, 96).
Administration of this siRNA in vivo in a murine model of
collagen-induced arthritis improved arthritis symptoms and
reduced serum levels of the angiogenic cytokine VEGF (97).
The involvement of ADAM10 in angiogenic processes in RA
progression indicate that early inhibition of ADAM10 may slow
or halt disease progression.

An additional, particularly debilitating outcome in RA is
bone erosion (98). Erosion of bone in RA is thought to
result from a local inflammatory milieu driving exaggerated
osteoclast activity and invasion into periosteal regions (93).
Endothelial cell ADAM10 has been shown to modulate osteoclast
function. Murine models of ADAM10 deletion in endothelial
cells led to reduced osteoclast numbers at the chondro-osseous
junction and impaired long bone growth, indicating abnormal
osteoclast function (99). Thus, inhibition of ADAM10 may
restrain osteoclast activity and reduce the incidence of bone
erosion in RA.

Though ADAM10 appears to be a promising therapeutic
target in the management of RA progression, it may also
provide a biomarker for predicting patient responsiveness to
biologic therapies. A recent study demonstrated that elevated
serum ADAM10 positively predicts treatment responsiveness to
tocilizumab, a monoclonal antibody targeting the IL-6 receptor
(100). Patients who were responsive to tocilizumab therapy had
a roughly 6-fold higher baseline ADAM10 level compared to
non-responders. Therefore, routine testing of RA patients for
ADAM10 serum levels may offer guidance for the use of targeted
therapies for specific patient groups in RA.

To date, the evidence regarding the role of ADAM10 in
RA indicates that it would likely be a useful therapeutic target.
Many of the existing small molecule inhibitors of ADAM10,
such as GI254023X, INCB3619, and INCB7839, have the added
benefit of inhibiting the ADAM10 homolog ADAM17. ADAM17
is a sheddase for a variety of pro-inflammatory molecules that
are involved in RA pathogenesis (101–103). Thus, these drugs
may provide a significant clinical benefit in the management of
RA symptoms.

At present, none of the ADAM10 inhibitors have been
evaluated for efficacy in clinical trials for RA. Clinical trials of

GI254023X were discontinued in phase I/II due to hepatotoxicity
following systemic administration (104). Preliminary studies of
INCB7839, however, suggest that it is safe and well-tolerated for
systemic use indicating that this class of drugs may have promise
in the management of RA (105).

Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a common, multisystem
autoimmune disorder that is characterized by aberrant antibody
production directed against nuclear antigens such as double-
strandedDNA and small nuclear ribonucleoproteins (106). These
autoantibodies form immune complexes which deposit within
tissues and promote organ dysfunction. Therefore, an effective
therapeutic approach to SLE would require suppression of
antibody production or the inflammatory reactions to immune
complex deposition.

Numerous studies have demonstrated hyperactivity of the
B cell activating factor (BAFF)—transmembrane activator and
CAML interactor (TACI) system in SLE patients as well as in
murine models of SLE (107, 108). Binding of BAFF by TACI
on B cells causes excessive proliferation and T-independent
activation of low-affinity self-reactive B cells. This activation leads
to increased antibody production against harmless self-antigens
which promotes disease progression in SLE (109). Recently,
TACI was identified as a substrate for cleavage by ADAM10
(110). ADAM10-induced cleavage of TACI induces ectodomain
shedding and the generation of soluble TACI (sTACI). This
allows sTACI to function as a decoy receptor by binding soluble
BAFF and APRIL to prevent T-independent B cell activation
(110). These findings indicate that activation of ADAM10 in SLE
may suppress aberrant B cell activity and reduce the synthesis of
autoreactive antibodies.

ICOSL is another ADAM10 substrate that has been linked to
abnormal antibody production (23). B cell ADAM10 is necessary
for proper ectodomain shedding of ICOSL. Impaired ICOSL
shedding leads to accumulation of B cell surface ICOSL which
stimulates internalization of ICOS on T cells. This excessive
internalization results in inadequate ICOS signaling, impairing
T follicular helper cell maturation, thereby reducing antibody
production (23). In a murine model of SLE, ADAM10 deletion
in B cells led to suppression of germinal center responses and
reduced levels of antibodies directed against ds-DNA (111). This
indicates, in contrast to the findings above, that inhibition of
ADAM10 may be beneficial in the treatment of SLE.

Activation of macrophages in peripheral tissues is another
significant component of SLE pathogenesis (106). Axl is a
receptor tyrosine kinase found predominantly on macrophages
which, upon binding of its ligand Gas6, inhibits production of
pro-inflammatory cytokines (112). ADAM10 promotes shedding
of Axl, leading to hyperactivity of tissue macrophages and
exacerbation of tissue damage in a murine model of lupus
(113). Significantly, the cleaved, soluble form of Axl was found
to be increased in serum from patients with active SLE flares
compared to SLE patients without active disease and healthy
controls (113). This, like the findings of Hoffman et al. indicate
that activation of ADAM10 may ameliorate SLE symptoms and
slow disease progression.
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These studies indicate that ADAM10 may be a relevant
therapeutic target in SLE. To date, however, the evidence for
modulating ADAM10 in SLE remains unclear. It seems that
inhibition of ADAM10 on B cells would reduce TACI cleavage,
leading to increased T-independent B cell activation, but may
also alter ICOS-ICOSL signaling leading to excessive antibody
production. Further study is needed to elucidate the implications
of targeting ADAM10 in SLE as a therapeutic strategy. It is likely
that the role of ADAM10 in SLE is highly spatio-temporally
dependent and the effects of modulating ADAM10 may vary
greatly depending upon when intervention occurs in the natural
history of the disease.

Psoriasis
Psoriasis is an inflammatory disease that is characterized
by hyperproliferative lesions of the skin that are associated
with immunological dysregulation and aberrant keratinocyte
differentiation (114). Keratinocyte differentiation is critically
regulated by Notch signaling which drives sequential maturation
from basal stem cells to spinous layer keratinocytes (115, 116). In
Notch signaling, Notch ligand binding induces a conformational
change in Notch, exposing the negative regulatory region for
cleavage by ADAM10. This cleavage event provides a substrate
for γ-secretase to perform an additional cleavage to generate
the transcriptionally active NICD (17). Epithelial deletion
of ADAM10 in adult mice results in hyperproliferation of
keratinocytes and dysregulated keratinocyte differentiation due
to impaired Notch signaling. Lesions from these mice resemble
the architecture of human psoriatic lesions, exemplified by a
thickened epidermis and proliferative basal-like cells present in
suprabasal epidermal layers (117).

It remains unclear whether psoriatic lesions display
derangements in ADAM10 expression or activity. One study
demonstrated upregulation of ADAM10 in keratinocytes in
psoriatic lesions, with increased levels in deeper layers of the
epidermis compared to healthy controls (118). These findings,
however, are based on only a single immunohistochemistry
study. Thus, further study of the role of ADAM10 in keratinocyte
differentiation and propagation of psoriatic inflammation
is needed.

Clinically, acitretin is an oral retinoid that is approved for
psoriasis treatment (119). Acitretin functions as a retinoic acid
receptor agonist that promotes keratinocyte differentiation.
Activation of retinoic acid receptors, however, also induces
expression of ADAM10 in vitro (120). The upregulation
of ADAM10 by acitretin may facilitate Notch signaling
in keratinocytes, thereby restoring normal keratinocyte
differentiation and epidermal architecture. Tamibarotene,
cilostazol, and resveratrol are additional agents that induce the
expression of ADAM10 via activation of retinoic acid receptors
(121, 122). The effects of these drugs may be comparable to
acitretin in the treatment of psoriasis and warrant further study
to investigate their efficacy and side effect profiles.

Currently, direct small molecule activators of ADAM10
are not available. The ADAM10 activators that have been
described are etazolate, bryostatin, and (–)-epigallocatechin-3-
gallate (EGCG) (123). These drugs, however, activate ADAM10

through a mediating receptor. Etazolate activates ADAM10
secondary to activation of the GABAA receptor and therefore
displays significant tropism to cells of the central nervous system
(124). Bryostatin activates ADAM10 via protein kinase C and
can therefore induce ADAM10 activity in a variety of cell
types (125, 126). EGCG, a natural occurring compound derived
from green tea, has also been described to induce ADAM10
activity (127). At present, the target receptor for EGCG remains
unidentified. ADAM10 activation by EGCG, however, is clearly
secondary to a tyrosine kinase, as tyrosine kinase inhibitors
prevent EGCG induced ADAM10 activation (127). Clinical trials
for EGCG are underway and have demonstrated safety and
tolerability in studies of prostate cancer and Fragile X syndrome
(128, 129). Considering the recent emergence of several biologics
for treatment refractory psoriasis, these ADAM10 inducers may
provide a valuable and cost-effective first line treatment option
for psoriasis.

Bullous Pemphigoid
Bullous pemphigoid (BP) is a severe autoimmune cutaneous
blistering condition that is caused by autoantibodies directed
against transmembrane collagen XVII (anti-BP180). These
antibodies interfere with epidermal basal cell adhesion, leading
to separation of the dermis from the epidermis which causes
blistering (130). The central role of pathological B cell activation
in BPwas illustrated in a study byHall et al. in which patients with
recalcitrant disease exhibited a significant reduction in disease
activity following B cell depletion by rituximab (131). Analysis
of serum and blister fluid revealed elevated levels of semaphorin
4D, which augments production of BP180 antibodies in vitro.
Semaphorin 4D release is derived from CD15+ granulocytes
and occurred through an ADAM10-dependent mechanism
(132). These findings indicate that inhibition of ADAM10
could suppress autoreactive antibody production in BP, thereby
reducing disease activity.

CONCLUSIONS

The overwhelming data in cancer and autoimmunity, even added
within the last 5 years implicates ADAM10 in the progression
of disease. The popularity of ADAM inhibition in the 90s is
returning, and the larger question is, will it be merely a passing
trend? Early, the need for compounds that were specific for
ADAM10 was made especially evident following the failure
of the first generation metalloproteinase inhibitors, Batimastat,
Marimastat, and Neovastat early in clinical trials due to reports
of adverse side effects (133, 134) Even with the addition of
specific ADAM10 targeting drugs, the other major obstacle was
treating ADAM10 at the point of therapeutic intervention. With
the ubiquitous nature of ADAM10 throughout human cell types
and tissues, this has been extremely difficult. Unless ADAM10
intervention is accompanied by a drug delivery system that allows
for a targeted approach, there is almost certainly going to be
off-target and on-target effects (through inhibition of Notch
cleavage) leading to adverse events.

Even in the absence of a cell- or tissue-specific approach
of targeting ADAM10, potential still exists in the right clinical
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setting. New inhibitor design may also improve off-target and
on-target effects, as well as be able to generate a more selective
inhibitor between ADAM10 and ADAM17. Recent structural
work from Seegar et al. may yield improved inhibitors of
ADAM10, as more is now known about the structure and auto-
modulation through the disintegrin cysteine-rich domain (5).
This, paired with improved knowledge of tetraspanin regulation
of ADAM10, may allow generation of better inhibitors that
are able to specifically target ADAM10’s cleavage of particular
substrates (6). Further, protease inhibitors may be surpassed
in specificity through the use of monoclonal antibodies that
mask the binding pocket for ADAM10, like mAb 8C7 (135).
Yet, without the implementation of a personalized medicine
approach, especially in cancer, ADAM10 inhibition therapy
will most likely continue to fail in clinical trials. Identifying
patients who will benefit the most from ADAM10 inhibition
therapy should be the priority, as well as applying ADAM10
inhibitors to prevent resistance of the tumor to standard
treatments such as anti-CD30 or anti-HER2. In autoimmunity
the story remains less clear, yet most autoimmune diseases have
relevant targets.

Multiple reviews have been published supporting the potential
of ADAM10 protein in platelets and cerebrospinal fluid to serve
as a biomarker for Alzheimer’s disease diagnoses (82, 136, 137).
A study that examined in the urinary vesicles of patients with
glomerular kidney diseases found higher levels of ADAM10
(138). ADAM10 is also overexpressed in the synovial tissue of
RA patients (95). It has been reported that ADAM10 is correlated
with disease activity and regulates monocyte migration and
adhesion in RA patient fluids (96, 97). ADAM10 elevation in
specific cells or tissues correlates strongly with various disease

states. However, ADAM10 is also elevated broadly in many
cancers on exosomes. Exosomal ADAM10 was found to be
elevated in plasma of cancer patients, and was thought to be
an additional pan-cancer marker (90). The use of ADAM10
expression in plasma or ADAM10 substrates as biomarkers in
cancer or for disease progression are extremely promising. But,
the studies in this review, aside from Hsp90α, need replication
in multi-center validation studies prior to use in a clinical
setting. The additional complication is the ubiquitous nature of
ADAM10 expression and the upregulation in multiple disease
states could cause issues with its use as a biomarker in situations
with comorbidities.

Overall, ADAM10 is still extremely targetable. Improvements
in drug delivery, reduction in off-target effects, and careful
identification of patient populations will be needed to
successfully move these drugs into the clinic.
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