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Abstract

Background: Enterococcus faecalis plays a dual role in human ecology, predominantly existing as a commensal in the
alimentary canal, but also as an opportunistic pathogen that frequently causes nosocomial infections like bacteremia. A
number of virulence factors that contribute to the pathogenic potential of E. faecalis have been established. However, the
process in which E. faecalis gains access to the bloodstream and establishes a persistent infection is not well understood.

Methodology/Principal Findings: To enhance our understanding of how this commensal bacterium adapts during a
bloodstream infection and to examine the interplay between genes we designed an in vitro experiment using genome-wide
microarrays to investigate what effects the presence of and growth in blood have on the transcriptome of E. faecalis strain
V583. We showed that growth in both 2xYT supplemented with 10% blood and in 100% blood had a great impact on the
transcription of many genes in the V583 genome. We identified several immediate changes signifying cellular processes that
might contribute to adaptation and growth in blood. These include modulation of membrane fatty acid composition,
oxidative and lytic stress protection, acquisition of new available substrates, transport functions including heme/iron
transporters and genes associated with virulence in E. faecalis.

Conclusions/Significance: The results presented here reveal that cultivation of E. faecalis in blood in vitro has a profound
impact on its transcriptome, which includes a number of virulence traits. Observed regulation of genes and pathways
revealed new insight into physiological features and metabolic capacities which enable E. faecalis to adapt and grow in
blood. A number of the regulated genes might potentially be useful candidates for development of new therapeutic
approaches for treatment of E. faecalis infections.
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Introduction

Enterococcus faecalis is a common resident of the gastrointestinal

tract of humans [1]. This bacterium displays a rough physiology

that enables it to withstand oxidative stress [2] and harsh

conditions such as high pH and salt concentrations [3]. E. faecalis

is also an opportunistic pathogen, ranked among the leading

causes of nosocomial infections worldwide [4]. Enterococci

constitute the third most prevalent pathogens isolated from

bloodstream infections, and represent the most frequent cause of

surgical-site infections in intensive care units [4]. In the United

States, E. faecalis accounts for approximately 80% of all

enterococcal nosocomial infections [5].

E. faecalis V583 (referred to as V583 hereafter) originates from a

patient suffering from a persistent bloodstream infection, and it

was the first vancomycin-resistant clinical isolate reported in the

United States [6]. V583 is part of the high risk clonal complex 2

[7,8], which comprises mostly of isolates derived from hospital

infections world wide. The genome of V583 contains several

virulence related genes [8], including several antigens such as E.

faecalis antigen A (EfaA) [9], and two well characterized antigenic

exopolysaccharides; the serotype 2 capsular polysaccharide (cps)

[10,11], and the enterococcal polysaccharide antigen biosynthesis

cluster (epa) [12,13]. It has been acknowledged that E. faecalis

acquires genetic traits by horizontal gene transfer, which includes

virulence and antibiotic resistance determinants, to survive and

persist in complex environments such as different infection sites

(reviewed in [14]). However, E. faecalis pathogenesis most likely

involves an orchestrated interplay between the regulation of

virulence factors and multiple genetic traits that govern adaptation

of the bacterial cell physiology during the process of infection.

Several functional studies have been performed to link genetic

traits to virulence [10,15–21], but few studies have examined such

genome wide transcriptional interplay in E. faecalis.

Even though E. faecalis is a clinically significant pathogen

implicated in different types of infections, little is known regarding
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the molecular mechanisms involved in the adaptive process this

bacterium undertakes to permit survival and growth in e.g. the

bloodstream of an infected patient. Several studies have demon-

strated that E. faecalis has evolved opportunistic strategies to sense

and respond to entrance into the bloodstream of a host [22–26].

To improve the current understanding of E. faecalis’ ability to cause

bloodstream infections, we performed a genome wide transcrip-

tional analysis of V583 during growth in 2xYT supplemented with

10% blood (YTB). We have employed a biphasic approach,

performing a time-course experiment to examine the immediate

responses of E. faecalis to blood as a biological cue, but also to

explore the adaptation of E. faecalis in the presence of blood.

Secondly, to increase our knowledge regarding the initial phase of

an E. faecalis bloodstream infection, growth capacity and

transcriptome responses in 100% blood were assessed. These

experiments revealed that both growth in the presence of a small

percentage (10%) of blood, and pure blood alters the transcription

of the bacterium extensively. The results presented here provide

new insights into processes essential for the survival and growth of

E. faecalis in the complex blood environment.

Results

Growth of V583 in Blood and YTB Compared to 2xYT-
Culture Medium

E. faecalis is able to establish a persistent infection in the

bloodstream and internal organs of an infected host [27,28], and it

is of utmost importance to understand the mechanisms that enable

E. faecalis to survive in this complex growth environment. A rich

laboratory medium (2xYT) was selected as the reference culture

medium since it is considered to contain minuscule amounts of

infection relevant biological cues [24]. Initial experiments were

performed to assess growth and behavior of V583 in 2xYT, in

2xYT supplemented with different concentrations of blood, and in

pure blood. Based on these experiments it was decided to use 10%

blood in 2xYT (YTB) and 100% blood in the subsequent

transcriptome profiling experiments. Since E. faecalis is known to

sense and respond to target cells such as erythrocytes, e.g. by

expressing virulence factors like the toxin cytolysin [23], we

decided to use whole blood rather than serum or plasma to mimic

the in vivo environment and to examine other responses possibly

modulated by erythrocytes.

The morphology of V583 was examined by light microscopy,

revealing that it grew in chains consisting of up to 8 cells in 2xYT.

It was also evident that in the presence of blood, bacterial cells

aggregated, probably due to agglutination. In order to obtain

reliable colony forming units (CFU) counts, gentle sonication was

applied to break up aggregates and long chains of V583 cells.

Several tests were performed to ensure that the aggregates and

chains were properly dissolved without affecting the viability of the

cells. V583 was cultivated in 2xYT until mid-exponential growth

phase (cell density ,16108 CFU/ml), prior to exposing the cells

to the test conditions; pre-warmed 2xYT, YTB or blood, as

described in the Materials and Methods section. The average

growth curves of V583 grown in 2xYT, YTB and blood measured

by CFU counts are presented in Fig. 1.

The doubling time (Td) of V583 was similar for growth in 2xYT

and YTB, with a Td of 39.7 and 36.8 minutes respectively.

However, growth of V583 in blood was constrained compared to

in 2xYT with a Td of 80.5 minutes. When grown in 2xYT or

YTB, V583 reached a maximum cell density of 16109 CFU/ml,

whereas in blood V583 reached approximately 26108 CFU/ml.

Figure 1. Characterization of E. faecalis V583 growth in 2xYT, YTB and blood. Growth of E. faecalis V583 was determined from cultures pre-
cultivated in 2xYT, and transferred to a fresh medium (either 2xYT, YTB or blood). The growth curves are represented by colony forming units per
millilitre (CFU/ml) on the Y-axis, and minutes as indicated on the X-axis. The growth curves correspond to the mean 6 STD of three individual
experiments. Arrows indicate the time points when samples were harvested prior to RNA extraction. Samples from 2xYT were harvested either only
after 30 minutes (when compared to blood), or after 5, 15, 30 and 60 minutes (when compared to YTB).
doi:10.1371/journal.pone.0007660.g001

Response E. faecalis Blood
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Based on these results, it was decided to investigate transcriptional

responses after 5, 15, 30 and 60 minutes growth in YTB, and after

30 minutes growth in blood as indicated in Fig. 1.

Global Adaptation of the V583 Transcriptome Reveals
Changes Comprising Most Functional Gene Categories

To examine E. faecalis’ immediate response to blood as a

biological cue and adaptation to a prolonged existence in blood, a

time-course experiment was carried out. The time points for cell

harvesting followed by RNA isolation (within 60 minutes after

addition of blood), were carefully chosen to reflect the actively

growing V583 cells in both 2xYT and in YTB (Fig. 1), as well as to

portray the different stages of adaptation that V583 undergo upon

the first encounter of blood. To further examine the E. faecalis

adaptation towards persistence in blood, the transcriptional

response of V583 grown for 30 minutes in blood was assessed.

The obtained log2-ratios and p-values for all the V583 genes found

during exposure to YTB and blood compared to 2xYT are listed

in Table S1. Statistical analysis using a mixed model [29]

combined with a stringent Bonferroni corrected confidence level

of p,0.05, identified 148 significantly regulated genes during

growth of E. faecalis in YTB. Of these, 72 genes were up-regulated,

73 where down-regulated and 3 genes where both up- and down-

regulated at one or more time points. The most pronounced

transcriptional responses to YTB occurred after 15 and 30

minutes. When V583 was grown in blood for 30 minutes, a total

of 549 genes were differentially expressed (225 genes were up-

regulated and 324 were down-regulated). The heat map in Fig. 2

presents an overview of the regulated genes within each functional

category in the YTB and blood experiments. This revealed

similarities in the expression patterns of a number of genes

between the YTB and the blood experiments, e.g. genes involved

in fatty acid and phospholipid metabolism, energy metabolism,

transcription, genes with a regulatory function and genes encoding

proteins with binding and/or transport functions (Fig. 2). Growth

in pure blood caused additional transcriptional responses within

several gene categories such as the cell envelope, protein synthesis

and amino acid biosynthesis, which can be seen as a distinct

pattern in the heat map (Fig. 2). The down-regulation of several

genes within the latter two functional groups most likely reflects

the reduced growth rate in blood compared to in 2xYT (Fig. 1).

Stress Response of V583 Caused by Blood Exposure
Several of the V583 genes associated with stress protection

mechanisms in enterococci were found to respond to blood, while

only a few stress-related genes were regulated in response to

Figure 2. Heat map visualizing regulated genes in V583 grown in blood and YTB compared to growth in 2xYT. Genes found to be
significantly regulated are indicated by either red (up-regulated), or green (down-regulated). Genes regulated after growth for 30 minutes in blood,
compared to in 2xYT are listed in column 1. Genes regulated during growth in YTB compared to 2xYT are listed in columns 2–4, time-points in
minutes indicated on the top of each column. The genes are sorted alphabetically by functional categories (column 5).
doi:10.1371/journal.pone.0007660.g002

Response E. faecalis Blood
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growth in YTB as expected. For growth in blood an operon

(EF0076-81) which includes the gls24 and glsB genes [30,31], was

up-regulated (Table 1 and S1). The Gls24 protein appears to be

implicated in both stress protection and virulence of E. faecalis

[30,32]. Exposure to blood also mounted universal stress

protection genes, including EF1084 and the general stress operon

gspA1-2 (EF1810-11). A gene encoding a cold shock protein cspC

(EF1991) was found to be up-regulated in both blood and in YTB

after 15, 30 and 60 minutes, which indicates that this gene might

be important for V583 to overcome the stress triggered by growth

in blood. Interestingly, in response to growth in blood we also

observed an up-regulation of EF1560, a hypothetical gene that has

been reported to show an enhanced transcription under six

different stress conditions in previous studies [33,34].

During the course of infection, bacteria are exposed to massive

oxidative stress [35,36]. The microarray results revealed that the

expression of several genes associated with oxidative stress

response in E. faecalis was affected by blood exposure. Interestingly,

previous studies have established a relationship between the

oxidative stress response and virulence in E. faecalis [37–40]. A

total number of nine oxidative stress protection genes [41] were

regulated during growth in YTB or blood (Table 1 and S1). Five of

these genes were up-regulated in response to growth in blood,

including an organic hydroperoxide resistance gene ohr (EF0453)

[42], the dps gene (EF0606) predicted to protect DNA from

oxidative damage [8], the NADH peroxidase npr (EF1211), the

peptide methionine reductase msrB (EF3164), and the superoxide

dismutase gene sodA (EF0463). The sodA gene is important for E.

faecalis to survive ingestion by macrophages [38] and was also up-

regulated in Streptococcus agalactiae during growth in blood [43].

Four genes related to oxidative stress were found to be down-

regulated in response to growth in blood (Table 1 and S1). Two of

these genes, an oxidoreductase (EF3257) and a thioredoxin

reductase ahpF (EF2738), were down-regulated both during

growth in blood and YTB. An NADH oxidase nox (EF1586) was

also found to be down-regulated during growth in blood, and an

alkyl hydroperoxide reductase ahpC (EF2739) showed a reduced

expression after 15 minutes growth in YTB.

Exposure to Blood Induces Modifications to the Cell
Envelope

The integrity and composition of the cell envelope of an

invading bacterium is important to evade the challenges evoked by

the host defense systems [44,45]. A number of changes in the

transcriptome of E. faecalis imply extensive adaptations in the cell

membrane composition and surface related structures (Table S1).

A particularly pronounced change was detected in two gene

clusters (EF0282-84 and EF2886-75), responsible for type II fatty

acid biosynthesis (FASII) and isomerization of membrane

phospholipids. These loci were up-regulated throughout the

time-course of the YTB experiment and also in response to

growth in blood. Interestingly, these gene clusters have previously

been shown to be regulated in response to exposure to the cell

membrane detergents SDS and bovine bile [46], indicating that

remodeling of the fatty acid composition in the cell membrane

might be an important response to a broad range of external

stressors. Furthermore, the up-regulation of the cardiolipin

synthase gene EF1608 (Table 1 and S1), which modulates the

phosphatidylglycerol content in the cell membrane, also suggests

that exposure to blood affects the membrane composition of E.

faecalis. Evidence of lipolytic activity in response to growth in blood

was substantiated by the up-regulation of two lipases (EF0169 and

EF3191) (Table 1 and S1). The latter gene did also show an

enhanced expression after 60 minutes growth in YTB and it has

been proposed by Paulsen et al [8] as a potential virulence factor.

The lrgAB operon (EF3194-93) that encodes a putative lysis

inhibitory system was highly up-regulated in response to blood

(Table S1) with a log2-value of 7.9 for lrgB and 5.6 for lrgA. The

two genes were also found to be highly up-regulated throughout

the time-course experiment in YTB. The rapid induction and

consistently high level of transcription of the lrgAB operon, in

addition to its putative function suggests a role in modification of

the cell wall structure, which might be propitious for growth in

blood. Noticeably, the synonymous genes (gbs0182-83) in S.

agalactiae showed an increased expression during growth in blood

[43]. The expression of lrgAB in Staphylococcus aureus is regulated by

the closely located LytSR two-component system [47]. In V583, a

two-component system (EF3197-96) homologous to the LytSR

system in S. aureus, resides directly upstream from lrgAB. It is

possible that this system is involved in the regulation of lrgAB, but

only a modest enhanced expression (not statistically significant) of

this two-component system was observed.

E. faecalis contains two gene clusters responsible for the

production of two serotype-determining exopolysaccharides: the

serotype 2 capsular polysaccharide (cps) [10], and the enterococcal

polysaccharide antigen biosynthesis cluster (epa) [13]. It has

previously been shown that the cps and epa clusters affect virulence

in mice [48–50] and also contribute to resistance against

phagocytic killing [10,20,51]. In our experiments most of the

genes within the epa cluster (EF2200-2189 and EF2184-77) and the

cps cluster (EF2492-84) were down-regulated during growth in

blood (Table 1 and S1). In addition, some of the cps genes were

also down-regulated after 15 and 30 minutes growth in YTB.

These results are consistent with previous work on E. faecalis FA2-

2, which showed that genes in the cps locus were down-regulated

during growth in serum [11].

The V583 genome contains an operon, dltABCD (EF2749-46),

responsible for incorporating d-alanine into cell-wall associated

teichoic acids and lipoteichoic acids [52]. The first two genes of

this operon, dltA and dltB, were found to be down-regulated in

response to growth in blood (Table 1 and S1). Reduced content of

D-alanine esters in the teichoic acid results in an increased net

negative charge on the bacterial cell surface, which in turn can

affect several bacterial properties such as susceptibility to cationic

antimicrobial peptides and biofilm formation [52]. In addition, the

expression of a genetic locus known to be involved in biofilm

formation and maltose metabolism [53,54] showed an enhanced

expression in response to growth in blood (Table 1 and S1). This

locus includes one operon, the bopABCD/malPBMR operon

(EF0957-54), and a phosphoenolpyruvate phosphotransferase

system (PTS) malT (EF0958) of which the genes malT and

bopAB/malPB were up-regulated in blood. The genes bopCD/

malMR showed the same trend, although not statistically

significant. Furthermore, the secreted antigen salB (EF0394)

showed reduced expression during growth in blood, and after 5

minutes growth in YTB (Table 1 and S1). This gene has also been

demonstrated to be important for biofilm formation [55].

It has been proposed that lipoproteins are implicated in

virulence in E. faecalis [56]. Interestingly, we found that the

transcription of nine genes encoding lipoproteins were regulated

(five up-regulated and four down-regulated). Among these, the

cAD1 conjugation pheromone precursor (EF3256) showed

decreased expression in blood and after 15 minutes in YTB

(Table 1 and S1), while transcription of an operon encoding an

ABC-transporter and an YaeC family lipoprotein (EF3200-

EF3198) was elevated in blood and after 15 and 30 minutes in

YTB (Table 1 and S1). The cAD1 conjugation pheromone

Response E. faecalis Blood
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Table 1. Genes proven or predicted to be important for virulence in V583 found to be regulated during growth in blood.

ORF # Function (Gene name) Characteristic log2 Reference

EF0079 gls24 Stress response 3.9 [30,32]

EF0169 lipase/acylhydrolase Fatty acid and phospholipid degradation 2.9 [97]

EF0361 chitinase, family 2 Cell envelope 4.2 [8]

EF0362 chitin binding protein, putative Cell envelope 4.4 [8]

EF0373 sensor histidine kinase Signal transduction 3.0 [12]

EF0394 secreted antigen, putative (salB) Protein fate 21.6 [8]

EF0453 OsmC/Ohr family protein (ohr) Oxidative stress response 3.2 [41,42]

EF0463 superoxide dismutase, Mn (sodA) Oxidative stress response 1.7 [38]

EF0606 Dps family protein (dps) Oxidative stress response 2.2 [41]

EF0956 beta-phosphoglucomutase (malB/bopB) Energy metabolism 2.5 [54]

EF0957 glycosyl hydrolase, family 65 (malA/bopA) Energy metabolism 2.5 [54]

EF0958 PTS system, IIABC components (malT) Signal transduction 2.2 [54]

EF1051 sensor histidine kinase (etaS) Signal transduction 22.6 [70]

EF1211 NADH peroxidase (npr) Oxidative stress response 2.8 [41]

EF1586 NADH oxidase (nox) Oxidative stress response 22.4 [41]

EF1608 cardiolipin synthetase, putative Fatty acid and phospholipid biosynthesis 2.5 [98]

EF2074 ABC transporter, ATP-binding protein (efaC) Transport and binding proteins 3.6 [9,12]

EF2075 ABC transporter, permease protein (efaB) Transport and binding proteins 2.4 [9,12]

EF2076 endocarditis specific antigen (efaA) Cellular processes 1.4* [9,12]

EF2167 glycosyl transferase, group 2 family protein Cell envelope 22.1 [8]

EF2170 glycosyl transferase, group 2 family protein Cell envelope 22.2 [8]

EF2174 conserved domain protein Hypothetical proteins 21.7 [8]

EF2177 bacterial sugar transferase (epaR) Cell envelope 22.7 [8,20]

EF2178 membrane protein, putative (epaQ) Cell envelope 22.8 [8,20]

EF2179 conserved hypothetical protein (epaP) Hypothetical proteins 23.1 [8,20]

EF2180 glycosyl transferase, group 2 family protein (epaO) Cell envelope 23.0 [8,20]

EF2181 glycosyl transferase, group 2 family protein (epaN) Cell envelope 22.9 [8,20]

EF2182 ABC transporter, ATP-binding protein (epaM) Transport and binding proteins 22.5 [8,20]

EF2183 ABC transporter, permease protein (epaL) Transport and binding proteins 21.9 [8,20]

EF2189 conserved hypothetical protein (epaJ) Hypothetical proteins 22.0 [8,20]

EF2190 glycosyl transferase, group 2 family protein (epaI) Cell envelope 21.9 [8,20]

EF2192 dTDP-glucose 4,6-dehydratase (epaG) Cell envelope 21.7 [8,20]

EF2194 glucose-1-phosphate thymidylyltransferase (epaE) Cell envelope 22.2 [8,20]

EF2195 glycosyl transferase, group 2 family protein (epaD) Cell envelope 21.9 [8,20]

EF2197 glycosyl transferase, group 2 family protein (epaB) Cell envelope 21.8 [8,20]

EF2198 glycosyl transferase, group 4 family protein (epaA) Cell envelope 22.1 [8,20]

EF2439 undecaprenol kinase, putative Toxin production and resistance 23.2 [8]

EF2485 ABC transporter, permease protein (cpsK) Transport and binding proteins 22.9 [10]

EF2486 ABC transporter, ATP-binding protein (cpsJ) Transport and binding proteins 23.5 [10]

EF2487 UDP-galactopyranose mutase (cpsI) Cell envelope 22.4 [10]

EF2488 lipoprotein, putative (cpsH) Cell envelope 22.5 [10]

EF2489 MurB family protein (cpsG) Cell envelope 22.9 [10]

EF2490 conserved hypothetical protein (cpsF) Hypothetical proteins 23.2 [10]

EF2491 glycosyl transferase, group 2 family protein (cpsE) Cell envelope 21.9 [8,10]

EF2492 glycosyl transferase, group 2 family protein (cpsD) Cell envelope 22.1 [8,10]

EF2658 FemAB family protein Toxin production and resistance 21.7 [8]

EF2713 cell wall surface anchor family protein Cell envelope 2.8 [8]

EF2738 thioredoxin reductase (ahpF) Oxidative stress response 21.8 [41]

EF2748 basic membrane protein DtlB (dltB) Cell envelope 22.2 [52]

EF2749 D-alanine-activating enzyme, putative (dltA) Cell envelope 22.9 [52]

Response E. faecalis Blood
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precursor and the YaeC family lipoprotein have both been

predicted by Paulsen et al to contribute to virulence in V583 [8].

Furthermore, twelve putative membrane-protein encoding genes

were affected by growth in blood (six up-regulated and six down-

regulated), and three glycosyl transferase genes were down-

regulated. We also found a down-regulation of eight genes

involved in peptidoglycan biosynthesis. Noticeably, we observed

an up-regulation of two genes encoding chitin binding proteins

(EF0361and EF0362) and a gene encoding a cell wall surface

anchor family protein, EF2713 (Table 1 and S1), all three

proposed as potential virulence factors by Paulsen et al [8].

Adaptive Metabolic Shift during Whole Blood Exposure
A massive transcriptional response was observed for genes

involved in metabolism when V583 was grown in blood or YTB

compared to 2xYT, which could be expected from the results of

the growth experiments (Fig. 1). Accordingly, the transcriptome

analysis portrayed rapid adjustments of gene expression to

accommodate the changed nutritional conditions. The results

revealed changed expression of genes involved in pathways in the

central metabolism of V583 indicating that a wide range of

alternative energy sources were utilized (Table S1).

After 30 minutes of growth in YTB or blood we found a reduced

transcription of the main uptake system of glucose in E. faecalis, the

mannose PTS mptBACD (EF0019-22) [57], signifying exhaustion of

the glucose reservoir at this stage of the experiment. This notion was

supported by the down-regulation of the ptsHI operon (EF0709-10),

which constitutes the signal transduction components that mediate

carbon catabolite repression (CCR) [58]. Furthermore, the

observed down-regulation of pfk-pyk (EF1045-46) and fba (EF1167)

involved in the first steps of the glycolysis is also consistent with

depletion of intracellular glucose catabolic intermediates. Simulta-

neously, glycolysis genes gap-1 (EF1526), glycerate kinase (EF2646)

and pgm (EF2982) were up-regulated, indicating increased carbon

flux from sources other than hexose sugars. Interestingly, the

glycerol catabolic pathway (EF1929-27), was highly up-regulated in

response to growth in blood, and was also found to be up-regulated

after 5, 15 and 30 minutes growth in YTB, suggesting that glycerol

and other C3-glycerides from blood serves as a source of energy.

Several metabolic systems subject to catabolite control protein A

(CcpA) mediated CCR [58] were also regulated during growth in

blood, indicating the use of certain amino acids and available sugars as

alternative energy sources. Of these, the gene cluster responsible for

citrate catabolism (EF3327-15) and three genes involved in arginine

catabolism, argF-1 (EF0105), arcC-1 (EF0106) and EF0108 were up-

regulated, while the gene-cluster involved in serine degradation

(EF0097-100) showed a reduced expression. After 30 minutes growth

in YTB we also found an enhanced expression of catabolism of

branched chain amino acids (ptb, buk, bdkDAB, EF1663-59), and the

same trend was found during growth in blood. Furthermore,

derepression of four PTS systems regulated by CCR mediated

binding of CcpA to cis-acting catabolite-responsive elements (cre) [58]

was observed. These include the predicted cellobiose (EF0292-91), N-

acetyl galactoseamine (EF0456), lactose/galactose (EF1801) and

gluconate (EF3139-36) PTS systems. The latter is part of a predicted

metabolic pathway consisting of two operons (EF3142-37 and

EF3136-34) that facilitates gluconate uptake and catabolism via the

mannonate route [58]. The expression of both operons was enhanced

during growth in blood, whereas only some of these genes showed a

significantly enhanced expression during growth in YTB.

Significantly altered expression was observed for six PTS

systems that probably are regulated by a sigma 54 dependent

PTS regulation domain (PRD) and/or Bgl antiterminator

mechanisms. Induced transcription of such PTS systems requires

both release of CCR and availability of the specific sugars [58].

Two sigma 54 dependent PRD controlled PTS systems, mphAD

(EF1953-50) [57], and a putative N-acetylglucosamine PTS

(EF1516), were down-regulated in YTB and blood respectively.

Also, the mpoAD PTS system (EF2980-76) [57] was found to be up-

regulated and appeared to be co-regulated with EF2982-81.

Similarly, the inferred sorbitol metabolism operon (EF3310-04)

was up-regulated during growth in blood. Moreover, an indication

of co-metabolism of glucose and other sugars in blood was seen by

several up-regulated PTS systems for which no CCR mechanism

has been identified. This includes the ascorbate PTS sgaB

(EF1128), during growth in blood and mannitol (EF0411-12)

during growth in YTB. The fructose PTS system (EF0717), was

up-regulated in blood, but down-regulated in YTB. The PTS

mannose/fructose/sorbose (EF3029) showed a reduced expression

during growth in both blood and YTB.

The observed changes in substrate utilization and metabolism

influenced the pyruvate metabolic pathways. An increased expression

of L-lactate dehydrogenase (ldh-1; EF0255) was observed in YTB,

whereas the pflAB genes (EF1612 and EF1613) involved in formate

formation were reduced during growth in blood, and after 15 minutes

growth in YTB. Furthermore, a reduced expression of adhE (EF0900)

signifies low contribution of ethanol fermentation in blood. The

pyruvate dehydrogenase complex gene-cluster pdhAB, aceF and lpdA

ORF # Function (Gene name) Characteristic log2 Reference

EF2795 LysM domain lipoprotein Cell envelope 22.0 [8]

EF3082 iron compound ABC transporter (fatB) Transport and binding proteins 3.5 [8]

EF3106 peptide ABC transporter, peptide-binding protein Transport and binding proteins 6.1 [8]

EF3164 PilB family protein (msrB) Oxidative stress response 2.1 [41]

EF3191 lipase, putative Fatty acid and phospholipid degradation 2.3 [8]

EF3198 lipoprotein, YaeC family Cell envelope 3.2 [8]

EF3245 cell-envelope associated acid phosphatase Enzymes of unknown specificity 21.8 [8]

EF3256 pheromone cAD1 precursor lipoprotein Cell envelope 22.9 [8]

EF3257 oxidoreductase Oxidative stress response 24.4 [41]

EFC0001 pheromone binding protein (prgZ) Transport and binding proteins 1.6 [8]

*The corresponding p-value was above the chosen level of statistical significance. However the up-regulation of this gene was confirmed by real-time QPCR (Fig. 3).
doi:10.1371/journal.pone.0007660.t001

Table 1. Cont.
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(EF1353-56) involved in acetyl-CoA biosynthesis was up-regulated

during growth in blood and also after 15 minutes growth in YTB. The

cell can harvest an additional ATP from acetyl-CoA by oxidation to

acetate, but no change was detected in transcription of the involved

genes eutD (EF0949) or ackA (EF1983). We previously mentioned up-

regulation of the fatty acid biosynthesis pathway FASII, and since

acetyl-CoA also serves as the precursor of the FASII pathway, it is

possible that acetyl-CoA is funneled to fatty acid biosynthesis.

Blood Specific Components Influence Transport and
Biosynthesis Pathways

Iron uptake is a crucial factor in bacterial virulence and in gut

colonization of commensal bacteria [59,60]. The mechanisms that

enable bacteria to acquire iron from the surroundings have thus

received a lot of attention [61]. Our data reveal a potentially

important role of iron acquisition and homeostasis during growth

in blood. Six genes involved in iron transport, including feuA

(EF0188), feoB (EF0476), ceuBCD and fatB (EF3085-82) were up-

regulated in YTB. The latter four genes comprise an operon that

also was up-regulated during growth in blood (Table 1 and S1).

The hrtB (EF0793) ABC-transporter gene, which homologue in S.

aureus facilitates expulsion of toxic surplus of heme [60] was up-

regulated after 15 minutes growth in YTB. Another scarcely

available co-factor is manganese, which also is essential for growth

of E. faecalis in vitro [62,63]. Notably, a gene cluster, efaCBA

(EF2074-76) originally identified to encode the endocarditis

associated antigen is responsible for Mn2+ acquisition in

manganese depleted environments [64]. The notion that the

ability to acquire manganese is important for growth of E. faecalis

was sustained by the observed up-regulation of efaCB in blood

(Table 1 and S1).

The presence of blood also changed the transcription of a

number of genes encoding other transport systems in the cell. For

example the up-regulation of genes encoding two sugar ABC-

transporters (EF1345 and EF1344-43), further supports that V583

utilizes alternative sugars from the blood. Certain transport system

encoding genes were down-regulated during growth in blood

including a major facilitator ABC transporter (EF0082), amino

acid ABC-transporters (EF0761-60, EF2642 & EF2649), a cell

division ABC-transporter (EF1760) and a phosphate ABC-

transporter (EF1756). Thirteen additional genes encoding ABC-

transporters with unknown substrates showed altered transcription

in response to growth in blood (3 up-regulated and 10 down-

regulated), indicating the requirement for balancing numerous

solutes to maintain the cell homeostasis.

Previous studies on the biosynthetic capacities and nutritional

requirements of E. faecalis have shown that all strains investigated,

including the sequenced OG1RF [65], require histidine, isoleu-

cine, methionine, and tryptophan for growth, and that arginine,

glutamate, glycine, leucine, or valine was essential for growth of

some strains [66]. By comparing the genome sequences of V583

and OG1RF they appear to have similar requirements for amino

acids. Since our data show that the transcription of several genes

encoding oligo-peptide ABC-transporters (EF0907 and EF3110-

06) was up-regulated, and the transcription of two amino acid

importer genes (EF0440 and EF0635) was down-regulated (Table

S1), it is possible that V583 meets its demand for amino acids by

acquiring oligo-peptides when growing in the host bloodstream.

This is analogous to what was observed in Streptococcus pyogenes in a

similar study [67]. Furthermore, the increased expression of cysK

(EF1584) implies that cysteine is not abundant in blood.

Glutamine and glutamate on the other hand seems to be readily

available in blood, since we observed a reduced expression of the

glutamine synthase operon glnRA (EF2160-59), glutamate synthase

gltA (EF2560) and transamination of aspartate to glutamate by

aspB (EF2372) during growth in blood and/or in YTB.

During growth in blood we noticed up-regulation of an

isochorismatase gene (EF3192). This coincided with a down-

regulation of the EF1561-68 operon, responsible for biosynthesis

of chorismate, which is a precursor of aromatic amino acids, folate

and quinones. In agreement with this observation we also noticed

a reduced transcription of several genes responsible for biosyn-

thesis of cofactors, prosthetic groups, and carriers including

menaquinone and ubiquinone (EF0446-50, EF3255-54 and

EF3260). Noticeably, modulation of chorismate acquisition was

also observed in similar experiments in S. pyogenes and S. agalactiae

[43,67], suggesting that chorismate might be involved in virulence

development of these bacteria.

E. faecalis is prototrophic for purines and pyrimidines [66]. The

down-regulation of several genes involved in biosynthesis of these

compounds (e.g. EF0014, EF0058, EF1547, EF2362-61 and

EF3293) might imply that the requirement for nucleotides was

covered by scavenging (Table S1). However, no evidence of

modulation of ribose/deoxyribose metabolism was observed,

which suggests a lowered demand for nucleotides, most likely as

a result of the reduced growth rate (Fig. 1).

Virulence Traits and Regulatory Genes
Several virulence traits have been identified in E. faecalis

[10,15–21]. The origin of V583 as a nosocomial isolate, causing

a persistent bloodstream infection made this strain suitable for

investigating responses of virulence traits by growth in blood. As

previously described, the expression of several of the loci that

contribute to E. faecalis virulence, such as oxidative and nutritional

stress management genes, capsule formation genes and genes

involved in acquisition of biometals, were affected by blood. In

addition, some genes predicted to be involved in virulence in E.

faecalis were found to be regulated, and a summary of these genes

can be found in Table 1.

A number of regulatory genes showed altered expression in

blood-containing growth environment, in particular regulators of

carbohydrate metabolism. In addition, several genes encoding

TetR-repressors and other unassigned regulators were found to be

differentially expressed (Table S1). V583 inherits 4 sigma factors,

of which the sigA (EF1522) and sigV (EF3180) showed a changed

expression in blood. The sigma factor sigV was up-regulated, but

only one (EF0315) of its five potential target genes [68] showed an

altered transcription. The fact that sigA, the primary sigma factor

of the cell was down-regulated after 30 minutes in blood, is

consistent with the observed down-regulation of the entire

transcription and protein synthesis apparatus, which in turn can

be ascribed the lowered growth rate in blood compared to 2xYT

(Fig. 1).

Of the 18 two-component systems present in V583 [8,69], only

two of the sensor histidine kinase genes were found to be

significantly regulated in blood. Transcription of etaS (EF1051) a

sensor histidine kinase involved in stress and virulence [70] was

reduced, and the expression of a sensor histidine kinase gene

(EF0373) previously identified as antigenic (antigen yx84) during

infection in humans [12], was highly elevated (Table 1 and S1).

However, the exact functions of these two-component systems are

not well characterized. The fsr locus is an important virulence

determinant in E. faecalis shown to contribute to virulence in

mouse peritonitits models [17]. Due to microarray spot abnor-

malities, regulation of selected genes including the fsr locus was

assessed by real-time quantitative RT-PCR (described in further

detail below). The RT-PCR revealed that both fsrB and gelE were

down-regulated both in blood and YTB.
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Gene Regulation Examined by Real-time Quantitative RT-
PCR

In order to confirm the results from the microarray experiments

and to investigate the transcription of a few genes of special

interest (excluded from the microarray results due to spot

abnormalities), real-time quantitative RT-PCR (QPCR) was

performed on 13 genes listed in Table 2. We only examined the

30 minutes time point from the YTB experiment, which is most

comparable to the blood experiment. The QPCR results were

consistent with the results obtained by the microarray experiments

(Fig. 3). For most of the genes the QPCR produced similar or

greater log2 ratios than the corresponding microarray results. One

gene, efaA, showed a log2-ratio of 1.4 during growth in blood, but

with a p-value indicating non-significance. However, the QPCR

showed a log2-ratio identical to the microarray results supporting

that this gene is in fact up-regulated. Most of the genes tested by

QPCR were not found to be significantly regulated in YTB using

microarrays. However, the QPCR-analysis showed equal to larger

Figure 3. Gene regulation (log2) after 30 minutes growth in either blood or YTB compared to 2xYT analyzed by microarray or real-
time quantitative RT-PCR. The asterisks indicate values from the microarray experiments that were found to be outside the rejection level. The
corresponding orf-numbers for the genes tested are: lrgB; EF3193, fabI; EF0285, fabK; EF2883, fabT; EF2886, bopA; EF0957, efaA; EF2076, dltA; EF2749,
cpsC; EF2493 ace; EF1099, gelE; EF1818, fsrB; EF1821.
doi:10.1371/journal.pone.0007660.g003

Table 2. List of genes and primers (59R 39) used for real-time quantitative RT-PCR.

ORF Gene Forward primer Reverse primer Reference

EF0282 fabI TGATGGTTTCCTATTAGCACAAG GTTAGGAATCGCACGTTCGG This work

EF0957 bopA CAGCGACATGGACAGCCTAC TTGCAGGACCGTCGAGTAAA This work

EF1099 ace CGGCGACTCAACGTTTGAC TCCAGCCAAATCGCCTACTT [24]

EF1818 gelE CGGAACATACTGCCGGTTTAGA TGGATTAGATGCACCCGAAAT [24]

EF1821 fsrB TGCTCAAAAAGCAAAGCCTTATAA GATGACGAGACCGTAGAGTATTACTGAA [24]

EF2076 efaA TGGGACAGACCCTCACGAATA CGCCTGTTTCTAAGTTCAAGCC [24]

EF2493 cpsC GGTTGATGCCAAGAGCTCAG GTCCCATGCCACGTCTGTAT This work

EF2749 dltA ACGCGTTTGCCACAATTAAC GCGCAGTGCTGGTAGATGTT This work

EF2883 fabK GCTGGATTGCCTGCACCTGTCG GGTAGCCGATGCTTCATTAGCAAGTGC This work

EF2886 fabT ACTACACGTCGATCATCTTCACTACGC CATTACGGAGATGCACACAATCGAAGC This work

EF3192 - GAACTGACGGGCGTAATCTG GTCCAAATCCGTGCCACTAA This work

EF3193 lrgB CGACAGTAGCGTTTGCGATT ACAGCCACTAGCGAACCAAA This work

EF3198 - GCTGATTTAGTGGCTGTGCAA AGCACGACCTTCATTGGTTG This work

23S CCTATCGGCCTCGGCTTAG AGCGAAAGACAGGTGAGAATCC [24]

doi:10.1371/journal.pone.0007660.t002
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responses in terms of fold change of these genes. An exception was

the gene cpsC which showed a slightly reduced expression when

examined by microarrays, while a slightly enhanced expression

was seen using QPCR. Thus, the QPCR analysis confirmed the

reliability of the transcriptional data obtained from the microarray

experiments, indicating that the rejection level applied on the

microarray data was adequate. Furthermore, the four genes which

were excluded from the microarray results due to spot abnormal-

ities (cpsC, ace, gelE and fsrB) were all found to be down-regulated in

blood when examined by QPCR.

Discussion

In the present study we describe the first microarray analysis of

the global transcriptional response of E. faecalis to blood. Although

certain aspects of E. faecalis virulence development in blood have

been studied [23–25], the global gene regulation and interplay

during adaptation to the blood environment remained largely

unaddressed. However, in vivo mouse infection models in which E.

faecalis was intravenously injected, showed that the bacterial cell

number initially dropped before stabilizing at about 103 CFU/ml

blood for at least 7 days [27]. This indicates that E. faecalis has to

adapt to overcome serious challenges upon entering the blood-

stream of a host. With the present study we provide novel

information about the gene regulation relevant to such an

adaptation process.

Transcriptomics has been successfully employed for studying

adaptation to blood ex vivo of the closely related pathogens S.

pyogenes [67] and S. agalactiae [43]. As emphasized in these studies

[43,67], it is important to note that in vitro experiments like the one

we present here, can not entirely reproduce the environment

encountered by the bacterium during in vivo infections with respect

to oxygen tension, interaction with the host immune system, the

potential depletion of nutrients etc. Consequently, our results have

been cautiously interpreted with respect to inherent constraints.

Hence, we have used this in vitro model to investigate the initial

adaptation phase needed for dissemination of an infection, and to

explore molecular mechanisms that might be involved in the

complex host-bacterium interaction in blood.

The most significant transcriptional changes found in this study

include genes relevant for cell envelope structures. In the cell

membrane both the fatty acid (FASII) and phosphatidylglycerol

biosynthesis genes were up-regulated. This suggests that E. faecalis

adjusts its fatty acid composition and membrane fluidity to

accommodate stress imposed by blood constituents, and possibly

also by involving phospholipids from the blood. A recent study

demonstrated the ability of S. agalactiae, S. pyogenes, S. pneumoniae and

E. faecalis to utilize free phospholipids in serum and thus overcome

the FASII pathway inhibiting antibiotics [71]. Brinster et al [71]

also showed by QPCR that growth of S. agalactiae in serum results

in a down-regulation of the eight FASII genes tested. Moreover,

other studies have shown by microarray that the gene clusters

involved in FASII were down-regulated in S. pyogenes, but not

significantly regulated in S. agalactiae or S. pneumniae during growth

in blood [43,67,72]. Although E. faecalis and the three streptococ-

cal species mentioned above show a similar phenotype when

grown in serum containing FASII inhibiting drugs, it appears that

the regulation of the FASII pathway is different during growth in

blood. This might be due to the differences in the genetic

organization of the FASII pathway between enterococci and

streptococci. Another possible explanation is that E. faecalis

processes the unsaturated fatty acids from blood in order to

accommodate a lipid composition compatible with its membrane.

The observed increased transcription of two lipase genes during

growth in blood might imply a connection between the

modulation of fatty acid and phospholipid metabolism and

lipolysis/tissue tropism. A recent study showed that 71% of the

invasive E. faecalis isolates examined produced lipase, whereas only

35% of the noninvasive isolates produced lipase indicating that

lipase activity might be important for the pathogenicity of E.

faecalis [73].

It has been shown that orally administered or intravenously

injected E. faecalis in mice can colonize internal organs of the host

[27,28]. Moreover, Guzman and co-workers [74] showed that

growth of E. faecalis in serum enhanced its ability to bind Girardi

Heart cells, an interaction which in a later study was shown to be

inhibited by incubation of the target cells with specific sugar

residues. This indicated that carbohydrate antigens were respon-

sible for the enhanced binding [75]. We observed that transcrip-

tion of two capsular polysaccharides encoded by epa and cps were

down-regulated during growth in blood. Inactivation of these

carbohydrate antigen loci cause reduced biofilm formation

[20,76], increased susceptibility to phagocytosis [20,51], and

attenuated virulence in mice [48]. More interestingly, these

exopolysaccharides appear to play a role in adherence/coloniza-

tion of tissues and organs, and in immune system evasion

[10,11,20,50,51]. The involvement of carbohydrate antigens in

binding has been further investigated by Singh et al, who showed

that the epa locus is important for adherence/colonization of

tissues and organs [50]. Capsule formation is crucial for virulence

in S. pneumonia, which undergoes phase variation in order to

establish infection [77]. However, an in vivo transcriptome analysis

of S. pneumonia infection in mice has revealed that the cps

transcription was not enhanced in blood. Furthermore, this study

also demonstrated that the expression of a number of virulence

traits in S. pneumonia was body site dependent [72]. Hence, it is

possible that the transcription of the E. faecalis epa and cps loci

might be more pronounced in colonized organs.

The effect of serum on E. faecalis adherence has been studied

further by Nallapareddy and Murray [78], who found that 46

different E. faecalis strains all showed enhanced binding to

fibronectin and fibrinogen after exposure to 40% horse serum.

This property was eliminated by protease treatment, which

indicated that adherence was mediated by surface exposed

proteins [78]. In our study most genes encoding identified or

putative adhesive proteins (such as microbial surface components

recognizing adhesive matrix molecules (MSCRAMMs), the

collagen adhesin ace and aggregation substances) were either not

regulated or down-regulated during growth in blood. However, we

observed enhanced transcription of several genes encoding

membrane proteins or lipoproteins. It is tempting to speculate

that these cell envelope bound proteins also might play a role in

promoting the adherence of E. faecalis during infection.

Analysis of the V583 transcriptome revealed signs of lytic stress

in response to blood. Particularly interesting was the immense up-

regulation of the lrgAB operon. In S. aureus it has been shown that

the transcription of lrgAB is affected by carbohydrate metabolism,

acid production or cell wall active antibiotics. LrgAB inhibit

murein hydrolase activity, and thus counteract lysis of the cell

[79,80]. The exact function of lrgAB in E. faecalis remains elusive.

Even so, the immediate and continuously high level transcription

of this operon observed in the present study, and the fact that the

homologous genes in S. agalactiae also showed an enhanced

transcription during growth in blood [43], suggests an important

role for lrgAB upon blood exposure.

Biometal limitation constitutes a significant obstacle for

bacterial pathogens to establish infection in vertebrate hosts

[59,60,64]. Lactic acid bacteria (LAB) comprise one of the very
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few groups of bacteria for which iron is not an essential growth

factor [63,81]. In contrast, manganese is essential to the

fermentative metabolism of LAB [62,63]. The enhanced

transcription of the main manganese scavenging mechanism

encoded by efaCBA is a clear indication that E. faecalis experiences

manganese constraints that might restrict its growth in blood.

The strong increase in the superoxide dismutase (sodA) expression

further emphasizes the importance of an effective manganese

uptake during growth in blood. These observations are

particularly interesting as both efaCBA and sodA have been shown

to be implicated in virulence [38,82]. In addition, our microarray

data show that genes related to iron metabolism constituted one

of the major changes of E. faecalis adaptation to blood, although

iron is not an essential requirement for growth. This suggests a

potential role of iron acquisition in virulence development of E.

faecalis. Examination of the V583 genome has revealed

approximately 53 genes with an apparent function in iron

homeostasis and metabolism. It was recently demonstrated that

many LAB can utilize heme to perform respiratory metabolism

[83,84], and that the pathogen S. agalactiae requires heme for full

virulence [85]. Thus, the significance of the biometals manganese

and iron/heme in virulence of E. facealis warrants further

investigation.

Previous studies have demonstrated the ability of E. faecalis to

sense its environment and modulate cytolysin production upon

blood encounter [23]. The V583 strain is deficient of cytolysin

production, but is classified as a pathogen since it was isolated

from a patient with a persistent bloodstream infection [6] and

belongs to a high risk clonal complex consisting of nosocomial

isolates [7]. Consequently, it was relevant to look at the response of

virulence related genes. The V583 strain harbors an incomplete

(partially deleted) E. faecalis pathogenicity island (PAI) [86]. From

the PAI of V583 only one gene, dps (EF0606) involved in oxidative

stress management, was up-regulated. A few genes involved in

pantothenate biosynthesis, amino acid metabolism and a trans-

posase were down-regulated, while transcription of the remaining

genes within the PAI were unaffected. It is important to note that

most genes in the PAI were indeed expressed, and hence might

contribute to the fitness of V583, but in the experimental growth

conditions examined here, no major responses in transcription of

PAI-genes were revealed.

A number of pathogens employ master regulatory systems to

coordinate expression of virulence factors during infection e.g. prfA

in Listeria monocytogenes [87], agr in S. aureus [88] and covRS in S.

pyogenes [89]. The equivalent system in E. faecalis is the fsr quorum

sensing system, which controls the expression of several genes

including gelE (encoding a gelatinase) and sprE (encoding a serine

proteinase) [17,90,91]. It has previously been shown that

expression of this system is sensitive to environmental conditions

[24], and that its level of expression varies between different

bacterial strains [92]. In our study we readily detected the fsrB and

gelE transcripts by QPCR, but growth in blood caused a moderate

down-regulation of these genes in V583. This appears to be the

opposite effect from growth in serum by the MMH594 strain [24].

Our results demonstrate that blood did not act as a cue to enhance

fsr expression, but rather interfered with its expression. It has been

shown that the cytolysin quorum sensing pheromones interact with

blood cells in a positive manner [23]. It is possible that the down-

regulation was caused by the presence of blood cells in our

experiments, which might have adsorbed the quorum sensing

signaling pheromone. It has been proposed that the GelE and

SprE proteases contribute to virulence by degrading infected tissue

[93], and it is possible that fsr expression is more pronounced in

colonized organs.

In conclusion, this study provides new insights into the

adaptive process of E. faecalis to growth and persistence in

blood. Bacteremia caused by E. faecalis represents a major

clinical problem, thus the results presented here could be

valuable for future studies devoted to the development of new

therapeutic approaches for preventing or treating enterococcal

infections.

Materials and Methods

Cultivation and Growth Measurement
The strain used in this study was the sequenced E. faecalis

clinical isolate, V583 ([6,8]). For all experiments V583 was

streaked on a 2xYT (1% (w/v) yeast extract, 1.6% (w/v) tryptone

and 1% (w/v) NaCl) agar plate and incubated at 37uC o/n. Four

individual colonies from the 2xYT plate were inoculated into the

same tube of 5 ml 2xYT medium and grown for 17 hours without

shaking at 37uC. The culture was then diluted 1000x in 2xYT

medium (pre-warmed to 37uC) and incubated until the culture

reached an optical density at 600 nm (OD600) of 0.1.

Growth of the bacterium was monitored by counting colony

forming units (CFU). A 150 ml culture grown to an OD600 of 0.1

as described above was split in three and centrifuged at 8000 x g

for 3 minutes at 37uC. The cells were resuspended in either (i)

50 ml defibrinated horse blood (TCS Biosciences Ltd.), (ii) 45 ml

2xYT medium and 5 ml blood (10% (v/v) blood) or (iii) 50 ml

2xYT medium (all pre-warmed to 37uC). After thorough mixing

5 ml from each culture was immediately transferred to a fresh tube

and placed on ice and the remaining culture was incubated further

at 37uC without shaking. The 5 ml cultures were sonicated at an

amplitude of 25% 25 seconds (5 seconds on and 5 seconds off)

using a Vibra-Cell VCX-500 ultrasonic processor (Sonics) with a

microtip. Immediately after sonication 500 ml of each culture was

serially diluted in 0.9% (w/v) NaCl (pre-chilled) and plated on

2xYT agar plates. The whole process was repeated after 30, 60,

90, 120, 240 and 360 minutes and the experiment was performed

on three consecutive days.

Cultivation and Sampling Prior to Microarray Analysis
A pre-culture of V583 was prepared as described above. After

17 hours the culture was diluted 1000x in 450 ml 2xYT medium

and incubated at 37uC until the culture reached an OD600 of 0.1,

when the culture was split in two. A volume of 25 ml pre-warmed

2xYT medium (37uC) was added to the control culture whereas

25 ml pre-warmed blood was added to the test culture, resulting in

a final concentration of 10% (v/v) blood. Samples (25 ml) from

each culture were collected by centrifugation (8000 x g for 2

minutes at 37uC) after 5, 15, 30 and 60 minutes, and the cell-

pellets were immediately frozen in liquid Nitrogen and stored at

280uC prior to RNA extraction.

A parallel experiment was designed to investigate the transcrip-

tional response in pure blood. A pre-culture of V583 was diluted

1000x in 200 ml 2xYT medium and incubated at 37uC until the

culture reached an OD600 of 0.1, when the culture was split in two

and centrifuged (8000 x g for 3 minutes at 37uC). For the control

culture the cells were resuspended in 100 ml pre-warmed 2xYT

(37uC) whereas for the test culture the cells were resuspended in

100 ml pre-warmed blood (37uC), resulting in a final concentra-

tion of 100% (v/v) blood in the test culture. Samples (35 ml) of

each culture were collected by centrifugation (8000 x g for 2

minutes at 37uC) 30 minutes after addition of blood, and the cell-

pellets were immediately frozen in liquid Nitrogen and stored at

280uC prior to RNA extraction.
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RNA Isolation
The bacterial cells were washed with 50 ml cold 0.1xTE (for

10% blood) and 3650 ml cold 0.1xTE (for 100% blood) to

remove blood constituents prior to RNA extraction. Then samples

suspended in 700 ml RLT buffer (Qiagen) were transferred to a

2 ml screw cap FastPrep tube (Qbiogene) containing 0.6 g of glass

beads (#106 mm) (Sigma) and 300 ml chloroform (Merck). Cells

were lysed by vigorous shaking for 20 seconds at 6.0 m/s in a

FP120 FastPrep cell disruptor (Qbiogene). After lysis the samples

were placed on ice for 5 minutes before glass beads and

chloroform were removed by a brief centrifugation. The aqueous

phase was transferred to a new tube and centrifuged at ,8000 x g

for 2 minutes to remove cell debris and unlysed cells. The

supernatants were removed and kept on ice in separate tubes,

while the pellets were suspended in 350 ml RLT buffer, transferred

to new FastPrep tubes and subjected to another round of

homogenization. The two supernatants from each sample were

merged and added 750 ml 96% EtOH. Total RNA was then

isolated using the RNeasy Mini kit (Qiagen) according to the

manufacturer’s protocol. The integrity of the RNA samples was

analyzed using the RNA 600 Nano LabChip kit and a Bioanalyzer

2100 (Agilent Technologies). The concentration and purity of the

total RNA was measured using a NanoDrop ND-1000 spectro-

photometer (NanoDrop Technologies, Inc.).

cDNA Synthesis and Fluorescent Labeling
Total RNA was reversed transcribed using a modified version of

protocol #M007 from the Pathogen Functional Genomic

Resource center at The Institute for Genomic Research (TIGR:

http://pfgrc.tigr.org/protocols/M007.pdf). Accordingly, 5 mg of

total RNA and 20 mg of random hexamers (Invitrogen) in a

reaction volume of 17.3 ml were denatured at 70uC for 10 minutes

and cooled on ice for 5 minutes. Then, 6 ml of 5x First Strand

buffer (Invitrogen), 3 ml of 0.1 M dithiothreitol, 20 U rRNasin

(Promega), 1.2 ml of a 12.5 mM dNTP (Invitrogen) and aminoal-

lyl-dUTP (Ambion) labeling mixture (aa-dUTP-dTTP 2:3), and

400 U of SuperScript III reverse transcriptase (Invitrogen) were

added in a total volume of 30 ml. The labeling reaction mixture

was incubated at 25uC for 5 minutes and then at 42uC for

16 hours. The RNA was hydrolyzed by adding 10 ml of 0.5 M

EDTA and 10 ml of 1 M NaOH. The reaction mixture was

incubated at 65uC for 15 minutes, and then neutralized by adding

25 ml of 1 M Tris-HCl (pH 7.0). Purification of the cDNA was

performed using Microcon YM-30 filters (Millipore) according to

the manufacturer’s protocol. The cDNA was dried in a vacuum

centrifuge and stored at 220uC. Coupling of aminoallyl-labeled

cDNA to Cy3 and Cy5 (Amersham Biosciences) was done by

resuspending the cDNA in 9 ml 0.1 M sodium carbonate buffer

pH 9.3. The cDNA samples were transferred to dried Cy-dye

aliquots (dissolved in DMSO and dried in a vacuum centrifuge

prior to labeling), mixed and incubated for 1 hour. A volume of

35 ml 100 mM sodium acetate pH 5.2 was added and unincor-

porated dye was removed using QIAquick PCR purification kit

(Qiagen) according to the manufacturer’s protocol. Finally the

Cy3- and Cy5-labeled samples were mixed and dried in a vacuum

centrifuge.

Hybridization and Microarray Data Analysis
Microarray experiments were performed using whole genome

E. faecalis V583 PCR-based microarrays described by Aakra et al

[94]. Prior to hybridization, the Ultra Gaps slides (Corning) were

prehybridized according to the manufacturer’s recommendations.

Briefly, the arrays were incubated in a prehybridization solution

(3x SSC, 0.1% (wt/vol) sodium dodecyl sulphate (SDS), 0.1 mg/

ml Bovine Serum Albumin (BSA), Sigma) at 50uC for 30 minutes.

After prehybridization, the arrays were washed twice in distilled

water (RT) for 1 minute, then at 95uC in distilled water for 2

minutes, followed by a 1 minute wash in isopropanol and the slides

were dried by centrifugation (70 x g for 5 minutes) in an Eppendorf

5810R tabletop centrifuge. The Cy3- and Cy5-labeled cDNA

samples were resuspended in 40 ml hybridization solution (3x SSC,

0.1% (wt/vol) SDS, 1 mg/ml BSA, 0.1 mg/ml Salmon Sperm

DNA (Invitrogen), 50% (vol/vol) Formamide), denatured by

boiling for 2 minutes and cooled at room temperature for 5

minutes. The samples were centrifuged briefly and applied to the

prehybridized microarray under a 25660 mm LifterSlip (Erie

Scientific Company). The microarrays were hybridized at 42uC
for 16 hours. After hybridization, the slides were washed in 2x

SSC buffer with 0.1% (wt/vol) SDS for 2 minutes, followed by a

wash in 1x SSC for 2 minutes, then in 0.2x SSC for 2 minutes and

finally in 0.05x SSC for 1 minute, each at room temperature. The

slides were dried by centrifugation (70 x g for 5 minutes). Three

biological replicates with one dyeswap were performed for all

experiments. Microarray slides were scanned at 10 mm resolution

using a Model G2505B (Agilent) microarrayscanner. Fluorescent

intensities and morphologies were analyzed using GenePix Pro

ver. 6.0 (Axon).

Normalization and Data Analysis
Raw data from each array was preprocessed independently. A

lowess-smoothed background was subtracted from all foreground

intensities, and a cross-validated lowess-method was used in an

intensity-dependent normalization of every array. The log2 ratios

for each spot were further analyzed using a mixed model [29] to

detect differentially expressed genes. For YTB a mixed model was

fitted to the data for each of the four sample times (5, 15, 30 and

60 minutes) separately and for blood a mixed model was fitted to

the data from the 30 minutes time point. Data for the three arrays

at every sample time were described by

yijk ~ miz uij z eijk ð1Þ

Where yijk is the observed log2 ratio of gene i (1,…,3502) on

array j (1,2,3) and in spot k (1,…,5) on that array, mi is the expected

log2 ratio for gene i, uij is a random effect of gene i on array j and

eijk is the remaining noise. The variance components were

estimated under the assumption of gaussian errors using a

restricted maximum likelihood approach coping with the unbal-

anced data due to missing spots. Differentially expressed genes

were identified by testing the hypothesis H0: mi = 0 against H1:

mi?0. A chi-square test for every gene resolves this for the model in

[1,95], and a Bonferroni-corrected rejection level of p,0.05 was

used throughout. If H0: mI = 0 was rejected, and mi.0, genes were

considered to be up-regulated in the cells grown in YTB and

blood. If H0: mi = 0 was rejected, and mi,0, genes were considered

to be down-regulated. All data analysis algorithms were pro-

grammed in MATLAB (MathWorks inc). A gene was discarded

from the final results (designated NA in Table S1) if it was

replicated in less than 8 spots after filtering of the data.

Microarray Data Accession Number
The microarray data obtained in this study has been deposited in

the ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/)

according to the MIAME standard. The accession number is E-

TABM-541.
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Real-time Quantitative RT-PCR
Real time quantitative RT-PCR (QPCR) was used to validate

the expression levels for selected genes. QPCR was performed on

a Rotor-Gene 6000 centrifugal amplification system (Corbett

Research). The genes of interest and the corresponding primers

are listed in Table 2. Total RNA used for cDNA synthesis was the

same as described above (RNA samples harvested after 30 minutes

growth in YTB or blood and their corresponding control samples).

Synthesis of cDNA was performed using 1 mg total RNA, 6 mg

random primers (Invitrogen) and 40 U RNase OUT (Invitrogen)

in a reaction volume of 12.5 ml. The reaction mixture was

denatured at 65uC for 10 minutes and cooled at 4uC for 5 minutes.

The reaction mixture was then added 4 ml of 5x First Strand buffer

(Invitrogen), 1 ml of 0.1 M dithiothreitol (Invitrogen), 1 ml of

10 mM dNTP (Invitrogen) and 140 U of SuperScript III reverse

transcriptase (Invitrogen) to a total volume of 20 ml. The reaction

mixture was incubated at 25uC for 5 minutes, 2 hours at 50uC,

and then for 15 minutes at 70uC. Finally, 20 ng RNaseA (Sigma-

Aldrich) was added to the reaction followed by an incubation at

37uC for 20 minutes. PCR amplification was performed using the

recommendation by the manufacturer (with an annealing

temperature of 60uC) with 2.5 ml 100x diluted cDNA in a 25-ml

reaction mixture containing 12.5 ml FastStart SYBR green Master

(Roche) and 7.5 mM of each primer. Standard curves with four

dilutions were made in duplicates for each primer pair to calculate

the amplification efficiency, and all genes were quantified in

triplicates. Since the standard curves indicated a slight difference

in amplification efficiencies of the different target genes and

reference, differential expression was calculated by the Pfaffl

method. This is an optimal method to use for calculating relative

gene expression when the amplification efficiencies of the target

gene and the reference gene are different since the amplification

efficiency is included in the calculation [96]. The obtained CT

value for 23S from each sample was used as a reference for each

gene in the corresponding samples.

Supporting Information

Table S1 Microarray expression data from E. faecalis strain

V583 during incubation in blood or 2xYT supplemented with

10% blood (YTB). Gene expression after 30 minutes (blood) or 5,

15, 30 and 60 minutes (YTB) of incubation is relative to the

expression during growth in 2xYT for the corresponding time

length. a) Genes comprising putative operon structures predicted

by http://biocyc.org [1,2] are marked with one color (red or light

red for genes on the leading strand, blue or light blue for genes in

on the lagging strand). b) Log2-values greater than 1 or less than -1

are highlighted in red or green respectively. Genes for which less

than 8 spots were present were discarded from the analysis and are

denoted ‘‘NA’’. c) A significantly regulated gene (bonferroni

corrected level of p,0.05) has the corresponding p-value written

in bold. 1.Paley SM, Karp PD (2002) Evaluation of computational

metabolic-pathway predictions for Helicobacter pylori. Bioinformatics

18: 715–724. 2. Romero PR, Karp PD (2004) Using functional

and organizational information to improve genome-wide compu-

tational prediction of transcription units on pathway-genome

databases. Bioinformatics 20: 709–717.

Found at: doi:10.1371/journal.pone.0007660.s001 (0.34 MB

PDF)
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