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Abstract
The Mango Sudden Decline (MSD), also referred to as MangoWilt, is an important disease

of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango

bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the

infested soils where it is able to survive for long periods. The best way to avoid losses due

to MSD is to prevent its establishment in mango production areas. Our objectives in this

study were to: (1) predict the global potential distribution of MSD, (2) identify the mango

growing areas that are under potential risk of MSD establishment, and (3) identify climatic

factors associated with MSD distribution. Occurrence records were collected from Brazil,

Oman and Pakistan where the disease is currently known to occur in mango. We used the

correlative maximum entropy based model (MaxEnt) algorithm to assess the global poten-

tial distribution of MSD. The MaxEnt model predicted suitable areas in countries where the

disease does not already occur in mango, but where mango is grown. Among these areas

are the largest mango producers in the world including India, China, Thailand, Indonesia,

and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation

seasonality, and precipitation of driest month variables contributed most to the potential dis-

tribution of MSD disease. The mango bark beetle vector is known to occur beyond the loca-

tions where MSD currently exists and where the model predicted suitable areas, thus

showing a high likelihood for disease establishment in areas predicted by our model. Our

study is the first to map the potential risk of MSD establishment on a global scale. This infor-

mation can be used in designing strategies to prevent introduction and establishment of

MSD disease, and in preparation of efficient pest risk assessments and monitoring

programs.
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Introduction
Several species of fungi, including beneficial and harmful groups, can be found colonizing a
single plant. Among these, approximately 8,000 fungal species are known to cause disease in
plants, leading up to 100% loss of production [1]. Ceratocystis fimbriata sensu lato is described
as complex of species considered the most important pathogens of woody plants, particularly
in several plants of agronomic and forestry importance [2, 3]. Ceratocystis spp. can infect many
different hosts such as mango, eucalyptus, sweet potato, coffee, cocoa and pomegranate [2–7].
The fungus C. fimbriata (Ellis and Halsted) sensu stricto is considered one of the most impor-
tant species causing disease on mango (Mangifera indica L.) [3, 4, 6, 7]. The fungus C. fimbriata
is the causal agent of the Mango Sudden Decline (MSD) disease, also referred to as Mango
Wilt, an important disease that can lead to plant death in periods as short as two months after
the initial infection (Fig 1) [2–7]. This species of Ceratocystis that causes the disease on mango
was first reported in Brazil [6, 8]. The disease was later observed in Pakistan [9] and the Sultan-
ate of Oman [6]. In these countries MSD has become one of the leading causes of mango crop

Fig 1. Mango Sudden Decline disease. (A) Eggs, larvae and adult female of the vector mango bark beetle,Hypocryphalus
mangiferae, in an opened gallery. Inset shows an enlarged picture of the adult beetle, (B) Hyphae and perithecium with
sticky ascospore masses of Ceratocystis fimbriata, (C) Section of a mango trunk showing the typical xylem discoloration
caused by the fungal infection; entry and exit holes made by beetles on the surface of the bark (enlarged image in bottom left
corner), and (D) A mango tree killed by Mango Sudden Decline disease.

doi:10.1371/journal.pone.0159450.g001
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losses [10–13]. In Oman, an estimated 60% of the production was lost in the fifth year after the
introduction of MSD [14], killing over 200,000 mango trees, which resulted in the removal of
13% of the trees in order to prevent the spread of the disease [6]. In spite of the phytosanitary
measures implemented by the Ministry of Agriculture and Fisheries in Oman, the spread of
MSD disease continued [15]. In Pakistan, the losses varied between 20 and 60% of the produc-
tion depending on which part of the country reported MSD losses [6, 12].

Different Ceratocystis species were identified as causing MSD in Brazil, Pakistan, and
Oman. These include C.manginecansM. van Wyk, A. Adawi & M.J. Wingf., C.mangivoraM.
vanWyk &M.J. Wingf., and C.mangicolaM. van Wyk &M.J. Wingf. The problem with the
identification of these new Ceratocystis species was that they were based on unique internal
transcribed spacer (ITS sequences) region of rDNA leading to wrong assignations of new spe-
cies. A recent study with a detailed investigation showed that these species are all C. fimbriata
(including those from Brazil, Oman and Pakistan), and indicated that these names are only
synonyms of C. fimbriata [3]. To be consistent, these authors did not use only a single gene as
the previous studies. They used three different sequencing genes (including ITS), morphologi-
cal and sexual compatibility (interfertility) tests. They found that in mango only one species of
Ceratocystis (C. fimbriata) is the causal agent of MSD.

The most important infection pathways of MSD are through infested soils and by vectors,
the mango bark beetle Hypocryphalus mangiferae (Curculionidae: Scolytinae) (Fig 1A) [13, 15–
17]. In the soil, the fungus produces aleurioconidias that work as structures of resistance that
enable it to survive for long periods without the presence of a host [13, 18, 19]. The mango
bark beetles have mycangia in elytra and mouthparts and are capable of carrying fungal struc-
tures over long distances [16]. Infestations in new areas usually begin in the branches of the
trees where the beetles normally initiate attack [16]. Over time, the fungus may infect other
parts of the plant, such as the trunk and roots, and afterwards, may remain in the soil [13, 15,
19]. Once the soil is infested with the fungus, it can result in the loss of an entire orchard, ren-
dering the area unsuitable for mango cultivation. The best method to avoid losses due to MSD
is to prevent its establishment in mango production areas. Prevention can be achieved by prun-
ing and burning the branches or removing the whole tree immediately after the appearance of
the first symptoms of the disease or attack by the beetles. This stops the progression of MSD
establishment in the tree and prevents the fungus from infesting the soil [13, 20].

Understanding of the factors associated with the risk of establishment of MSD is urgently
required by pest managers for management and prevention of this disease in mango produc-
tion areas. Multiple factors can affect the establishment of pathogens in different locations in
the world, including competition from other species, lack of host or dispersal vector, hostile cli-
mate, and natural barriers [21, 22]. Climate is one of the important abiotic factors that influ-
ences the global distribution of a species [22, 23]. Ecological niche models (ENMs) based on
the quantitative relationship between environmental variables and species occurrences are
used to predict areas of possible introduction, establishment, and spread of an invasive species
[22, 24–27]. ENMs are based on classical concept of ‘‘niche” in ecology, and model potential or
realized distribution of a species [28–29].

One type of ENMs are correlative models which are built by integrating species occurrences
with spatial environmental variables of the study area [27, 30]. Correlative ENMs characterize
the relationship between occurrence locations of a species with environmental characteristics
of those locations, and use this to estimate the environmental suitability for a species in a spe-
cific location. Recent studies have demonstrated the predictive performance of these models
[26, 27, 31–37]. Correlative models are widely used tools for assessing the risk of establishment
of a variety of species including insects [25–27, 32, 33], aquatic organisms [23, 34], plants [37,
38], human diseases [39], vertebrates [30, 36, 40], and pathogens [41, 42]. The information on
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a species’ potential risk of establishment is helpful in developing a Pest Risk Assessment (PRA)
(not developed for MSD yet), since the countries normally impose quarantine measures simply
based on host species’ presence [43].

Despite the importance of maintaining an area free of MSD for mango cultivation, many
countries apparently do not consider the risk of introduction of the disease because informa-
tion on the potential risk of establishment of MSD in countries other than Brazil, Oman and
Pakistan is lacking. With the availability of an ENM for MSD, existing phytosanitary restric-
tions may be re-evaluated and more attention given to the possibility of the introduction of
the disease in other countries. Our objectives were to: (1) predict the global potential distribu-
tion of Mango Sudden Decline (MSD), (2) identify the mango growing areas that are under
potential risk of MSD establishment, and (3) identify climatic factors associated with MSD
distribution.

Material and Methods

Occurrence Data
We collected MSD occurrence data from all countries where the disease currently occurs: Bra-
zil, Oman, and Pakistan [3]. MSD occurrence data points that cover all the regions inside these
countries were collected (S1 Table). The data points for Brazil and Oman were collected in the
field while conducting a study on phylogenetic analyses of C. fimbriata [3]. These data points
correspond to locations with the presence of mango trees with symptoms of branch death, wilt-
ing foliage, bark discoloration, small holes in the bark, or sap exudation which indicates the
presence of MSD disease [2, 3, 6, 7, 9]. At these locations, samples of the xylem showing discol-
oration (a characteristic of an infected tree; Fig 1) were collected from symptomatic mango
trees in plantations, small farms, gardens, and along streets and roads for further confirmation
of C. fimbriata presence. Samples were only taken at locations where the land owner had previ-
ously approved of sampling. No specific permissions were required for these countries since
the species involved here are of agronomic interest and are not endangered or protected spe-
cies. A total of 219 sites in Brazil, Oman, and Pakistan were confirmed for presence of the path-
ogen [3]. Since some of these sites were sampled more than once over the sampling period, we
removed repeated occurrences corresponding to 80 unique points from Brazil and Oman. For
Pakistan, the MSD disease presence data were collected from published papers that provided
the coordinates of the locations of the diseased trees [44–46]. All taxonomic issues for the spe-
cies were considered and only those that we were sure to be MSD caused by C. fimbriata or a
synonym were considered [3]. Thus, a total of 94 unique occurrence records were collected
from three countries where the disease is currently known to occur in mango trees (S1 Table,
Fig 2) [6, 8, 9]. These records were reduced to 54 after applying spatial filtering using spThin,
an R package (version 3.1.0) [47] to reduce spatial autocorrelation [48]. This method was cho-
sen since it keeps the most locations possible and tends to perform better than other methods
to reduce spatial autocorrelation [40]. The spThin checks for all possible combinations of fil-
tered points using a minimum distance between them. From these new datasets, the one that
keeps the largest number of records is selected to be used in the ENM [48]. Filtered occurrence
data points were>10 km apart [40, 49]. This distance was used to ensure that each cell could
have only one occurrence point since we used ~5-km spatial resolution climatic data in the
model.

Environmental Data
For this study a total of 20 environmental variables were considered including 11 variables
derived from the monthly temperature, eight derived from the monthly precipitation, and the
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elevation above the sea level (Table 1). These variables were obtained from the WorldClim
dataset (http://www.worldclim.org/) [50] at ~5-km spatial resolution. Data at ~5-km spatial
resolution was used to account for potential spatial inaccuracies in species occurrence data,
and climatic model accuracy due mainly to the low number of weather stations in some parts
of the globe [22, 51]. These variables were derived using monthly temperature and precipita-
tion data covering a period from 1950 to 2000, and represent average temperature, precipita-
tion, seasonal variables, and climatic extreme indices [50]. These variables are considered
biologically more meaningful than annual means of temperature and precipitation [50]. Only
one variable from a group of highly correlated variables was included in the models (Pearson
correlation coefficient, |r|� 0.70) (S2 Table). The decision to include a variable was made
based on its potential biological relevance to MSD distribution and ease of interpretation. For
example, mean annual temperature was kept from a group of highly correlated variables since
it is known to be very important for modeling different species distributions [26, 37, 39] and
temperature is very important for MSD severity [2]. Thus, the final number of variables used
for modelling MSD distribution was reduced to seven (Table 1 and S1 Table).

Model Development and Validation
The correlative maximum entropy based model or MaxEnt algorithm (version 3.3.3k) [52] was
used to assess the global potential distribution of MSD. MaxEnt is a machine learning method
and estimates the probability distribution of the maximum entropy for a species constrained
by the sample data and it is based on multiple environmental variables using a high-dimen-
sional dataset [21, 22, 24–27, 52]. MaxEnt was chosen because it uses species presence and
background data (absence data are not needed) and also works well with small sample sizes
[35, 53]. MaxEnt estimates the environmental suitability for a species based on presence rec-
ords and randomly generated background points by finding the maximum entropy distribu-
tion and its geographical projection [52]. It produces an index of suitability that varies from 0
(unsuitable) to 1 (most suitable) [25, 26, 52]. A total of 50,000 background points were

Fig 2. Global known occurrences of Mango Sudden Decline disease caused byC. fimbriata in mango trees.

doi:10.1371/journal.pone.0159450.g002
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randomly selected from areas where C. fimbriata currently occurs. This number was chosen
since it is more appropriate when working at a global scale [54, 55]. A sampling bias was sus-
pected because the data were collected near roads and more accessible areas and from sources
where we could not control the sampling process. Thus, a bias surface using a kernel density
estimate was generated using the SDMToolbox [54]. The bias surface will result in a raster
where cells with lower values will represent places with lower bias [52]. The bias surface was
used to account for sampling intensity and potential sampling bias [55].

Different settings in MaxEnt were adjusted to find an optimal model for MSD disease
potential distribution since default settings are not always the best [27, 55, 56]. These adjust-
ments consisted of different combinations of regularization multiplier (RM) and feature types
generating many different models. The RM controls the number of parameters and conse-
quently the model complexity [56, 57]. The RM values used were 1.0, 1.5, and 2.0. An RM
value<1 generates models that are very restricted (not desired for world predictions) and val-
ues>1 would result in simpler models with a broader potential distribution [52]. These values
were used in combination with different sets of MaxEnt features (i.e. linear [L], quadratic [Q],
product [P], threshold [T], and hinge [H]). The ‘fade-by-clamping’ option was used to prevent
extrapolations outside the environmental range of the training data [58]. The percent contribu-
tion, permutation importance, and ‘Jackknife’ (leave-one-out) technique in MaxEnt [52] were
used to estimate the predictive power of different environmental predictors. The percent con-
tribution estimates the contribution of a variable to the model and the permutation importance
indicates how much the model depends on that variable. 'Jackknife' procedure was used in

Table 1. Environmental variables considered inC. fimbriata niche models, and average percent contribution of environmental variables in the
Mango Sudden Decline disease best MaxEnt model.

Variable Percent contribution Permutation importance Min. Max. Mean SD

Mean annual temperature (bio1; °C) 54.3 57.4 20.4 28.5 24.2 2.1

Precipitation of coldest quarter (bio19; mm) 13.7 4.1 9 821 116 154

Precipitation seasonality (CV) (bio15) 12.9 15.9 36 156 79 28

Precipitation of driest month (bio14; mm) 7.2 11.7 0 51 15 12

Elevation (m) 5.8 4.9 6 620 217 207

Precipitation of wettest month (bio13; mm) 4.2 5 20 319 164 90

Mean diurnal range in temperature (bio2; °C) 1.9 0.9 6.0 15.8 11.6 1.9

Isothermality (bio3) - - 39 74 57 11

Temperature seasonality (SD x 100) (bio4) - - 980 7917 3263 2028

Maximum temperature of warmest month (bio5; °C) - - 28.3 43.4 34.1 4.6

Minimum temperature of coldest month (bio6; °C) - - 4.5 20.9 12.8 3.6

Temperature annual range (bio7; °C) - - 8.9 38.5 21.3 6.9

Mean temperature of wettest quarter (bio8; °C) - - 20.2 34.4 25.6 3.4

Mean temperature of driest quarter (bio9; °C) - - 17 33.5 22.5 4.5

Mean temperature of warmest quarter (bio10; °C) - - 22.9 34.8 27.9 3.9

Mean temperature of coldest quarter (bio11; °C) - - 13.5 26.2 19.6 2.3

Mean annual precipitation (bio12; mm) - - 73 2093 893 565

Precipitation of wettest quarter (bio16; mm) - - 49 914 429 254

Precipitation of driest quarter (bio17; mm) - - 0 178 61 46

Precipitation of warmest quarter (bio18; mm) - - 0 685 342 232

Values were averaged across 10 replicate runs. General statistics were calculated using all occurrences (n = 94). Min. is minimum, Max. is maximum, and

SD is standard deviation.

Note: Bold font indicates variables selected for model building. Source of data: WorldClim (http://www.worldclim.org/bioclim) [50].

doi:10.1371/journal.pone.0159450.t001
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MaxEnt to account for the importance of a variable over 10-fold-cross-validation. This is done
by evaluating different models in two situations: using only the variable by itself and using all
other variables excluding that one in question. The results are the training gain and the area
under the curve (AUC) for each environmental variable for each situation. The MaxEnt gener-
ated response curves that were used to show the relationships between predicted probabilities
of presence of the disease with respect to the variation within each environmental variable.
These curves were analyzed and models showing complex curves (highly irregular shape) were
not considered for further evaluations; models that included predictors with these erratic
curves are not used because they are considered biologically unrealistic. We considered com-
plex curves as those with the highly jagged or multimodal behavior which normally does not
happen with species’ responses to environmental variables. Only thirteen models were consid-
ered for further evaluations.

The evaluation metrics for ranking the models’ performance were the AUCcv (area under
the receiver operating characteristic [ROC] curve) [59] and the test sensitivity (i.e., percentage
of correctly predicted presences) at 0% and 10% training Omission Rates (OR) [33, 60]. OR
was used in addition to AUCcv because AUCcv alone is not the best approach to choose
between different models when working with the prediction of invasive potential of a species.
The problem with AUCcv is that it gives the same weight for sensitivity and specificity, while in
case of prediction of invasive potential of a species, sensitivity should receive more attention
[61–62]. Test sensitivity thresholds at 0% and 10% means that zero and ten percent, respec-
tively, of training presence locations for MSD fall outside the predicted suitable area. For that
we ran a 10-fold cross-validation in MaxEnt to calculate AUCcv and OR. The AUCcv measures
the ability of the model to discriminate presence from background. AUCcv value of 0.5 shows
that model predictions are not better than random; values below 0.5 are worse than random;
between 0.5–0.7 indicate poor performance; between 0.7–0.9, reasonable or moderate perfor-
mance; and values higher than 0.9 indicates high performance [63]. For the OR, the expected
value of test omission rate at 0% training OR is 0, whereas at 10% training OR threshold it is
0.10; higher than expected ORs show poor performance of the models [40]. The best models
were ranked based on 10% training OR, 0% training OR, and AUCcv, respectively [26, 56, 60].

To identify the mango growing areas that are under potential risk of MSD establishment
mango yield data were obtained from the Earth Stat (http://www.earthstat.org/) [64] with
10x10 km resolution. These data represent the average yield of mango in tons per hectare for
the period from 1997–2003. These data were reclassified to a binary map using Reclassify tool
in ArcGIS, version 10.2 (ESRI, Redlands, CA). Cells with zero values and no data values were
converted to zero, and cells with all other values were converted to one, thus generating a map
with zero representing cells with no mango production and one for those areas where mango is
produced. This binary layer of mango production reports using the Expand tool in ArcGIS was
used to reduce problems due to the fact that in some areas the reports were just single cells,
they were difficult to visualize, and the data for some regions were of low accuracy [64]. Finally,
to estimate the suitability for the disease only in mango production areas, the MaxEnt pre-
dicted output (the output of the model) was extracted to mango production areas. The
extended binary map of mango production was multiplied by the MaxEnt predicted output, to
keep the suitability for MSD disease (in relation to the model) in cells with mango production
reports and converted areas with no mango production to zero.

Results
As per observed occurrences, MSD disease occurs in areas with mean annual temperature
between 20.4–28.5°C, mean annual precipitation between 73–2093mm, and below 620m of
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elevation (Table 1). The mean annual temperature (54.3%), precipitation of coldest quarter
(13.7%), precipitation seasonality (12.9%), and precipitation of driest month (7.2%) contrib-
uted most to MSD disease potential distribution (Table 1). The mean annual temperature also
showed the highest permutation importance (57.4%), followed by precipitation seasonality
(15.9%), precipitation of the driest month (11.7), and precipitation of the wettest month (5%).

All 13 MaxEnt models evaluated to determine MSD disease potential distribution per-
formed better than random with test AUCcv values higher than 0.5 (Table 2). Average AUCcv

values based on 10-fold cross validation varied from 0.939–0.974 (Table 2). These models also
had low test omission rates with values at 0% training OR varying from 0.017–0.093 (expected
value is 0), and at 10% training OR from 0.110–0.223 (expected value is 0.10); values higher
than the expected ORs show poor performance of the models (Table 2). The best model
included seven environmental variables, Linear, Quadratic, and Hinge (LQH) features, regular-
ization multiplier = 1.5, and had the lowest test OR, at 10% and 0% respectively (Table 2).

Predictions of the best MaxEnt model for MSD disease covered all of its current known
occurrences (Figs 2 and 3A). The model predicted highly suitable areas in South America,
southern North America, Central America, parts of Africa, northern Australia, Middle Eastern
countries (e.g. Oman, Saudi Arabia, and United Arab Emirates) and parts of Asia (Fig 3, and
S1–S4 Figs). This also includes countries such as Brazil, Oman, and Pakistan, where the disease
already occurs in mango (Fig 3A, S1 and S4 Figs). Mango is grown in many countries in the
world, primarily those in tropical areas and some subtropical areas (Fig 3B). Almost all of these
mango growing areas are suitable for MSD disease establishment except for few areas in South
Africa, Colombia, Ecuador, northeastern parts of China, northern Pakistan, and northern and
northeastern parts, and Western Ghats of India (Fig 3C and S4 Fig).

The ‘Jackknife’ test of variable importance showed that the mean annual temperature had
the most information that was not present in other variables contributing most to the model,
with the highest regularized training gain and AUC (Fig 4A and 4B). The relationships between

Table 2. Summary of performance statistics ofC. fimbriataMaxEnt models.

Model No. Variables MaxEnt settings Test AUCcv (±SD) Test OR Model Ranka

Features RM 0% 10%

1 bio1, bio2, bio13, bio14, bio15, bio19, Elevation LQH 1.5 0.970 ± 0.012 0.017 0.110 1

2 Same as above LQH 2.0 0.969 ± 0.011 0.037 0.133 6

3 Same as above LQPTH 1.5 0.971 ± 0.012 0.093 0.150 10

4 Same as above LQPTH 2.0 0.965 ± 0.014 0.090 0.200 11

5 Same as above LQP 1.0 0.951 ± 0.017 0.057 0.130 4

6 Same as above LQP 1.5 0.946 ± 0.017 0.033 0.143 8

7 Same as above LQP 2.0 0.939 ± 0.021 0.020 0.110 2

8 Same as above LH 1.5 0.971 ± 0.012 0.020 0.133 5

9 Same as above LH 2.0 0.967 ± 0.013 0.033 0.150 9

10 Same as above LQPT 1.5 0.956 ± 0.021 0.057 0.223 13

11 Same as above LQPT 2.0 0.948 ± 0.020 0.040 0.220 12

12 Same as above LQPH 1.5 0.974 ± 0.010 0.070 0.137 7

13 Same as above LQPH 2.0 0.967 ± 0.012 0.053 0.110 3

See Table 1 for variables’ full names. L, Q, P, T and H are linear, quadratic, product, threshold and hinge features, respectively. RM is regularization

multiplier, and SD is standard deviation. OR is test omission rate. Test AUCcv is MaxEnt 10-fold cross-validation Area Under the ROC curve.
aThe model with the highest performance is highlighted in bold.

doi:10.1371/journal.pone.0159450.t002
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Fig 3. Global Potential Risk of Mango Sudden Decline Disease.Maps of (A) global potential distribution of C.
fimbriata using MaxEnt model, (B) global mango growing areas (source of data: Earth Stat, http://www.earthstat.
org/; used with permission of Peder Engstrom from EarthStat.org/U Minnesota under a CC BY license, original
copyright [2008] [64]), and (C) potential distribution ofC. fimbriata in mango growing areas.

doi:10.1371/journal.pone.0159450.g003
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predicted probabilities of presence of the disease with respect to the variation within each envi-
ronmental variable are presented in Fig 5. The highest suitability for MSD disease presence is
in areas with mean annual temperatures around 23°C, with the suitability decreasing sharply
with the increasing or decreasing mean annual temperature, with no predictions of occurrence
in temperatures below 10°C or above 30°C (Fig 5A). The suitability was higher in areas with
low precipitation of coldest quarter (<1000 mm), decreasing with the increase in precipitation
of coldest quarter (Fig 5B). The suitability for MSD disease presence was low in areas with low
precipitation seasonality (<50), with the suitability increasing exponentially in areas where the
precipitation seasonality is higher than 25, until reaching a plateau at 50 (Fig 5C). The suitabil-
ity for MSD presence was also higher in areas of low precipitation and zero in areas with pre-
cipitation over 150mm during the driest month (Fig 5D).

Fig 4. Relative importance of the environmental variables based on the Jackknife test. The figures show each variable’s contribution to (A)
regularized training gain, and (B) test AUC inC. fimbriatamodel.

doi:10.1371/journal.pone.0159450.g004
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Discussion
This is the first study to map Mango Sudden Decline disease potential distribution on a global
scale. The cross-validation procedure indicated that all of the models performed much better
than would be expected at random and had a high validation statistic (test AUC>0.9; Table 2;
Fig 4). The potential distribution of the disease was closely related to its current known occur-
rences in mango plants in Brazil, Oman, and Pakistan (Figs 2 and 3A, S1 and S4 Figs). The
MaxEnt model predicted suitable areas in countries where the disease does not already occur
in mango, but where mango is grown (Fig 3C, S1–S4 Figs). Among these areas are the largest
mango producers in the world including India, China, Thailand, Indonesia, Mexico, Pakistan,
and Brazil, which together correspond to more than 85% of the world’s mango production

Fig 5. Response curves of the best predictors ofC. fimbriata in the best model. (A) mean annual temperature (bio1; °C), (B) precipitation of
coldest quarter (bio19; mm), (C) precipitation seasonality (Coefficient of variation; bio15), and (D) precipitation of driest month (bio14; mm). Red lines
are the mean response curves and blue margins are ± Standard Deviation calculated over 10 replicates.

doi:10.1371/journal.pone.0159450.g005
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[65]. In addition, the model also predicted areas of high susceptibility beyond the current
occurrence within the countries where the disease currently occurs; for example, Brazil, Oman,
and Pakistan (S1 and S4 Figs).

The occurrence of hosts and vectors is important for the establishment of a pathogen and
may in some cases be one of the causes of failure in the colonization of new areas [22, 66]. The
MSD disease vector, the mango bark beetle H.mangiferae, was present at all locations used in
the MaxEnt model. Therefore, places predicted as susceptible to the occurrence of the disease
may potentially have the occurrence of its vector, the mango bark beetle. This beetle is also
known to occur beyond the location data we collected, including Florida, Mexico, Venezuela,
Australia, and India [15, 67]. All of these sites were observed in our study as being susceptible
to the establishment of MSD. However, these occurrences are of very low spatial accuracy and
it was not possible to model the beetles. As host and vector are very important to the establish-
ment of the disease, this fate increases the likelihood that the disease may establish in areas pre-
dicted by our model; specifically, areas where the vector and the host already occur or may
occur (Figs 2 and 3).

Mean annual temperature was one of the most important variables associated with the dis-
tribution of the MSD disease (Table 1). Several studies have shown that mean annual tempera-
ture is among the factors that contributes most to species distribution mainly when working at
a global scale [33, 37, 39]. The model predicted higher suitability for MSD in locations where
temperatures average 23°C, with a significant decrease in suitability with a decrease or increase
in the mean annual temperature. Studies on C. fimbriata demonstrated that the optimum tem-
perature for sporulation of the fungus under laboratory conditions is between 24 and 26°C,
very close to the values estimated by our model (Fig 5A) [2, 68]. The difference between the
values estimated by our model and under laboratory conditions are probably due to the fact
that the model uses a series of 50 years of climatic data, and in laboratory the temperature is
always the same to evaluate the sporulation. The suitability was higher at lower elevations. Eco-
logical niche modeling studies with other species demonstrate that the elevation has great influ-
ence on species distributions [33, 69]. This may be explained by the relationship of elevation
with humidity and temperature variations [31], which influences C. fimbriata sporulation [12].
However, MSD disease was observed in a wider range of precipitation levels (73–2093mm).
The occurrence of the disease in low rainfall sites is only possible due to irrigation in these
areas (e.g., Oman and Pakistan), which makes development of the host and vector possible and
in turn, the disease. Furthermore, it was observed that the disease is more likely to occur in
areas with well-defined dry and rainy seasons, since it is more likely to occur in areas with a
high coefficient of variation in precipitation (i.e., precipitation seasonality; Fig 4C). It is possi-
ble due to the fact that dry season makes the host more susceptible to the fungus and rainy sea-
son offers better conditions to the sporulation of C. fimbriata [2, 12, 68].

The climatic conditions found in this study for the disease are very close to ideal conditions
for the mango tree development. The mango tree has optimum range of temperature ranging
from 24 to 30°C, better development at elevations<600m, poor development in regions with
high rainfall (>2000mm), and small differences in precipitation between dry and rainy seasons
[10]. These factors indicate that the fungus has climatic requirements very similar to the host.
This resulted in the model predictions for the occurrence of the MSD disease in almost all loca-
tions where mango is cultivated, which reinforces the robustness of the model (Fig 3, S1–S4
Figs).

Ceratocystis fimbriata is a soil-borne pathogen which can live in the soil for long periods of
time, thus making it almost impossible to eradicate in infected areas [13, 18, 19]. We identified
many areas across the globe that have suitable climatic conditions for the establishment of
MSD disease. These results can be used in Pest Risk Assessments (PRA) program by National
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Plant Protection Organizations (NPPOs). It can be done by including MSD in the list of risk
diseases and monitoring unintentional introductions of C. fimbriata. Some pathways analyses
show that introductions in new areas may occur through contaminated soil, infected tissue or
even by the vector H.mangiferae which may carry some structures of the fungus in its mouth-
parts and digestive tract [13, 15–17]. Other studies have demonstrated that other bark beetle
species, such as Xyleborus affinis, may also be involved in the spread of the fungus, but does
not seem to be as much important asH.mangiferae [16, 70]. Thus, the training of farmers to
identify symptoms of the disease in trees and the mango bark beetle vector are advisable before
the disease enters the country. This can reduce the initial propagule pressure and thus make it
easier to prevent its establishment in the country. It would be much worse if it reaches higher
levels of infections or infests the soil [13, 18, 19, 71, 72].

The results of this study should be interpreted with caution. Correlative niche models like
MaxEnt may have prediction uncertainties [55]. These uncertainties are primarily due to the
quality of occurrence data, sampling bias, resolution of spatial data layers, species characteris-
tics, and spatial autocorrelation [21, 55, 73–75]. The MaxEnt model has a very user friendly
interface which makes the generation of results somewhat easier. However, several adjustments
can be made, which can have a great influence on the model and consequently on its accuracy
[26, 32, 33, 55]. These adjustments include selection of background points and extent, value of
regularization multiplier, and selection of feature types [52]. Considering these potential pit-
falls in the modeling process, we took utmost care in model calibration and thus generating
predictive models that are consistent with the current known distribution of the species (Figs 2
and 3). This can be observed in the quality of response curves (no highly jagged or multimodal
response observed) and good validation results (Table 2; Figs 4 and 5). A number of modeling
algorithms are available to model the habitat suitability for a species. All these methods will
generate different predictions which can also lead to uncertainties. Some authors advised to use
different techniques and thus preventing this type of uncertainty [55]. Here we only used Max-
Ent algorithm because it seems to be more appropriate to our situation (i.e., it uses species pres-
ence and background data and also works well with small sample sizes) [35, 53]. However,
other modelling methods can have different predictions from our model.

This study provides important information on the potential risk of establishment of MSD
disease using a MaxEnt model. These results can be used in designing strategies to prevent
introduction and establishment of MSD disease, and in preparation of efficient Pest Risk
Assessment and monitoring programs by countries where MSD disease currently occurs and
in other countries that are at risk. Efforts can be made by these countries for effective monitor-
ing and surveillance of potential introduction of this disease via trade from currently infested
countries (Brazil, Oman, and Pakistan). Countries like India and Venezuela, that produce man-
goes and are near countries where the disease is already established, should devote more time
and efforts in preventing MSD introduction. This is worse for these countries because the vec-
tor H.mangiferae already occurs there (showing that they offer suitable conditions for the bee-
tles), and the possibility of migration from infested countries is higher compared to the ones
located distant from infested countries (natural dispersion). Also, since the beetle is small it
may enter in vehicles and other transported materials without being noted (human mediated
dispersion). So efforts on monitoring the disease in suitable places areas are required.

Supporting Information
S1 Fig. Enlarged maps. (A) potential distribution using MaxEnt model, and (B) potential dis-
tribution in mango growing areas of C. fimbriata in South America.
(TIF)
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S2 Fig. Enlarged maps. (A) potential distribution using MaxEnt model, and (B) potential dis-
tribution in mango growing areas of C. fimbriata in the biggest mango producers in North
America.
(TIF)

S3 Fig. Enlarged maps. (A) potential distribution using MaxEnt model, and (B) potential dis-
tribution in mango growing areas of C. fimbriata in China, Indonesia, Philippines Thailand,
and Taiwan.
(TIF)

S4 Fig. Enlarged maps. (A) potential distribution using MaxEnt model, and (B) potential dis-
tribution in mango growing areas of C. fimbriata in Pakistan, Oman, India, Bangladesh, and
Sri Lanka.
(TIF)

S1 Table. Country, location, species, and coordinate points (latitude and longitude) of the
94 occurrence records used in the model.
(DOCX)

S2 Table. Cross-correlation (Pearson correlation coefficient, r) among environmental vari-
ables.
(DOCX)

Acknowledgments
We are grateful for the financial support and fellowships provided by VALE, the National
Council of Scientific and Technological Development (CNPq), the Minas Gerais State Founda-
tion for Research Aid (FAPEMIG), CAPES Foundation (Brazilian Ministry of Education),
VALE Oman and SQU. SK was partially supported by U.S. Geological Survey and a grant
through the Washington Tree Fruit Research Commission (WTFRC) from the Foreign Agri-
cultural Service of the U.S. Department of Agriculture (USDA). We also thank the Universi-
dade Federal de Viçosa, Brazil, and Natural Resource Ecology Laboratory at Colorado State
University for providing the logistical support. We thank Senait Senay and Kylie Swisher for
their careful review of our paper, and for the comments. Finally, we are grateful to three anony-
mous reviewers whose comments also improved the manuscript.

Author Contributions
Conceived and designed the experiments: TVSG SK LSSO ACA LGN AMAMCP. Performed
the experiments: TVSG SK LSSO ACA LGN AMAMCP. Analyzed the data: TVSG SK LGN.
Contributed reagents/materials/analysis tools: TVSG SK LSSO ACA AMAMCP. Wrote the
paper: TVSG SK LSSO ACA LGN AMAMCP.

References
1. Ellis SD, BoehmMJ, Mitchell TK. Fungal and fungal-like diseases of plants. Fact Sheet, Agriculture and

Natural Resources, The Ohio State University. 2008; PP401.07:1–4.

2. Oliveira LSS, Guimarães LMS, Ferreira MA, Nunes AS, Pimenta LVA, Alfenas AC. Aggressiveness,
cultural characteristics and genetic variation ofCeratocystis fimbriata on Eucalyptus spp. Forest Pathol-
ogy. 2015: doi: 10.1111/efp.12200 10.1111/efp.12200.

3. Oliveira LSS, Harrington TC, Ferreira MA, Damacena MB, Al-Sadi AM, Al-Mahmooli IHS, et al. Species
or Genotypes? Reassessment of Four Recently Described Species of the Ceratocystis Wilt Pathogen,
Ceratocystis fimbriata, onMangifera indica. Phytopathology. 2015; 105(9):1229–44. doi: 10.1094/
phyto-03-15-0065-r PMID: 25822187

Potential Risk of Mango Sudden Decline Establishment at Global Scale

PLOS ONE | DOI:10.1371/journal.pone.0159450 July 14, 2016 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159450.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159450.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159450.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159450.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159450.s006
http://dx.doi.org/10.1111/efp.12200
http://dx.doi.org/10.1094/phyto-03-15-0065-r
http://dx.doi.org/10.1094/phyto-03-15-0065-r
http://www.ncbi.nlm.nih.gov/pubmed/25822187


4. Harrington TC, Huang Q, Ferreira MA, Alfenas AC. Genetic Analyses Trace the Yunnan, China Popula-
tion of Ceratocystis fimbriata on Pomegranate and Taro to Populations on Eucalyptus in Brazil. Plant
Disease. 2014; 99(1):106–11. doi: 10.1094/pdis-01-14-0056-re

5. Montoya MM, Wingfield MJ. A Review of Ceratocystis sensu stricto with special reference to the spe-
cies complexesC. coerulescens andC. fimbriata. Revista Facultad Nacional de Agronomía, Medellín.
2006; 59(1):3045–375.

6. Al Adawi AO, DeadmanML, Al Rawahi AK, Al Maqbali YM, Al Jahwari AA, Al Saadi BA, et al. Aetiology
and causal agents of mango sudden decline disease in the Sultanate of Oman. Eur J Plant Pathol.
2006; 116(4):247–54. doi: 10.1007/s10658-006-9056-x

7. Masood A, Saeed S, Erbilgin N, Jung Kwon Y. Role of stressed mango host conditions in attraction of
and colonization by the mango bark beetle Hypocryphalus mangiferae Stebbing (Coleoptera: Curculio-
nidae: Scolytinae) and in the symptom development of quick decline of mango trees in Pakistan. Ento-
mological Research. 2010; 40(6):316–27. doi: 10.1111/j.1748-5967.2010.00304.x

8. Silveira SF, Harrington TC, Mussi-Dias V, Engelbrecht CJB, Alfenas AC, Silva CR. Annona squamosa,
a new host of Ceratocystis fimbriata. Fitopatologia Brasileira. 2006; 31(4):394–7. http://dx.doi.org/10.
1590/S0100-41582006000400010

9. Fateh FS, Kazmi MR, Ahmad I, Ashraf M. Ceratocystis fimbriata isolated from vascular bundles of
declining mango trees in Sindh, Pakistan. Pakistan Journal of Botany. 2006; 38(4):1257–9.

10. Litz RE. The mango: botany, production and uses. 2nd ed. Cambridge, Mass, USA: CAB Interna-
tional; 2009.

11. Mohsin M, Jamal F, Ajmal F. Impact of Mango Orchard Diseases on Growers Economic Life in Ahmed-
pur East, Bahawalpur, Pakistan. Academic Research International. 2014; 5(2):196–204.

12. Masood A, Shafqat S, Asif M, Malik SA, Nazim H. Role of nutrients in management of mango sudden
death disease in Punjab, Pakistan. Pakistan Journal of Zoology. 2012; 44(3):675–83.

13. Rossetto CJ, Ribeiro IJA. Mango wilt. XII. Recommendations for control. Revista de Agricultura (Piraci-
caba). 1990; 65(2):173–80.

14. Al Adawi AO, DeadmanML, Al Rawahi AK, Khan AJ, Al Maqbali YM. Diplodia theobromae associated
with sudden decline of mango in the Sultanate of Oman. Plant Pathology. 2003; 52(3):419-. doi: 10.
1046/j.1365-3059.2003.00841.x

15. Al Adawi AO, Al Jabri R, Deadman M, Barnes I, Wingfield B, Wingfield MJ. The mango sudden decline
pathogen,Ceratocystis manginecans, is vectored by Hypocryphalus mangiferae (Coleoptera: Scolyti-
nae) in Oman. Eur J Plant Pathol. 2013; 135(2):243–51.

16. Pereira RM. Identificação e distribuição de coleobrocas emmangueiras com seca causada porCerato-
cystis fimbriata. Viçosa: Federal University of Viçosa; 2013.

17. VanWyk M, Al Adawi AO, Khan IA, Deadman ML, Al Jahwari AA, Wingfield BD, et al. Ceratocystis
manginecans sp. nov., causal agent of a destructive mango wilt disease in Oman and Pakistan. Fungal
Diversity. 2007; 27:213–30.

18. Accordi S. The survival of Ceratocystis fimbriata f. sp. platani in the soil. Informatore Fitopatologico.
1989; 39(5):57–62.

19. VanWyk M, Al-Adawi AO, Wingfield BD, Al-Subhi AM, Deadman ML, Wingfield MJ. DNA based char-
acterization of Ceratocystis fimbriata isolates associated with mango decline in Oman. Australasian
Plant Pathology. 2005; 34(4):587–90. doi: 10.1071/ap05080

20. Masood A, Salman M, Saeed S. Fungicide injection, an efficient management technique of mango sud-
den death disease in Punjab, Pakistan. Pakistan Journal of Phytopathology. 2014; 26(2):259–63. Epub
2014-12-31.

21. Elith J, Franklin J. Species Distribution Modeling. In: Levin SA, editor. Encyclopedia of Biodiversity (Sec-
ond Edition). Waltham: Academic Press; 2013. p. 692–705.

22. Elith J, Leathwick JR. Species Distribution Models: Ecological Explanation and Prediction Across
Space and Time. Annual Review of Ecology, Evolution, and Systematics. 2009; 40(1):677–97. doi: 10.
1146/annurev.ecolsys.110308.120159

23. McDowell WG, Benson AJ, Byers JE. Climate controls the distribution of a widespread invasive spe-
cies: implications for future range expansion. Freshwater Biology. 2014; 59(4):847–57. doi: 10.1111/
fwb.12308

24. Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, et al. Predicting
species distributions for conservation decisions. Ecology Letters. 2013; 16(12):1424–35. doi: 10.1111/
ele.12189 PMID: 24134332

25. Kumar S, Graham J, West AM, Evangelista PH. Using district-level occurrences in MaxEnt for predict-
ing the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture.
2014; 103:55–62. http://dx.doi.org/10.1016/j.compag.2014.02.007.

Potential Risk of Mango Sudden Decline Establishment at Global Scale

PLOS ONE | DOI:10.1371/journal.pone.0159450 July 14, 2016 15 / 18

http://dx.doi.org/10.1094/pdis-01-14-0056-re
http://dx.doi.org/10.1007/s10658-006-9056-x
http://dx.doi.org/10.1111/j.1748-5967.2010.00304.x
http://dx.doi.org/10.1590/S0100-41582006000400010
http://dx.doi.org/10.1590/S0100-41582006000400010
http://dx.doi.org/10.1046/j.1365-3059.2003.00841.x
http://dx.doi.org/10.1046/j.1365-3059.2003.00841.x
http://dx.doi.org/10.1071/ap05080
http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159
http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159
http://dx.doi.org/10.1111/fwb.12308
http://dx.doi.org/10.1111/fwb.12308
http://dx.doi.org/10.1111/ele.12189
http://dx.doi.org/10.1111/ele.12189
http://www.ncbi.nlm.nih.gov/pubmed/24134332
http://dx.doi.org/10.1016/j.compag.2014.02.007


26. Kumar S, Neven LG, YeeWL. Assessing the Potential for Establishment of Western Cherry Fruit Fly
Using Ecological Niche Modeling. Journal of Economic Entomology. 2014; 107(3):1032–44. doi: 10.
1603/ec14052 PMID: 25026662

27. Kumar S, Neven LG, YeeWL. Evaluating correlative and mechanistic niche models for assessing the
risk of pest establishment. Ecosphere. 2014; 5(7):art86. doi: 10.1890/es14-00050.1

28. Jiménez-Valverde A, Lobo JM, Hortal J. Not as good as they seem: the importance of concepts in spe-
cies distribution modelling. Diversity and Distributions. 2008; 14(6):885–90. doi: 10.1111/j.1472-4642.
2008.00496.x

29. Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM. Use of niche models in
invasive species risk assessments. Biol Invasions. 2011; 13(12):2785–97. doi: 10.1007/s10530-011-
9963-4

30. Bogosian V, Hellgren EC, Sears MW, Moody RW. High-resolution niche models via a correlative
approach: Comparing and combining correlative and process-based information. Ecological Modelling.
2012; 237–238:63–73. http://dx.doi.org/10.1016/j.ecolmodel.2012.04.017.

31. Austin MP. Spatial prediction of species distribution: an interface between ecological theory and statisti-
cal modelling. Ecological Modelling. 2002; 157(2–3):101–18. http://dx.doi.org/10.1016/S0304-3800
(02)00205-3.

32. Kumar S, LeBrun EG, Stohlgren TJ, Stabach JA, McDonald DL, Oi DH, et al. Evidence of niche shift
and global invasion potential of the Tawny Crazy ant, Nylanderia fulva. Ecology and Evolution. 2015; 5
(20):4628–41. doi: 10.1002/ece3.1737 PMID: 26668728

33. Kumar S, Neven LG, Zhu H, Zhang R. Assessing the Global Risk of Establishment ofCydia pomonella
(Lepidoptera: Tortricidae) using CLIMEX and MaxEnt Niche Models. Journal of Economic Entomology.
2015;tov166:1708–19. doi: 10.1093/jee/tov166 PMID: 26470312

34. Kumar S, Spaulding SA, Stohlgren TJ, Hermann KA, Schmidt TS, Bahls LL. Potential habitat distribu-
tion for the freshwater diatom Didymosphenia geminata in the continental US. Frontiers in Ecology and
the Environment. 2009; 7(8):415–20. doi: 10.1890/080054

35. Kumar S, Stohlgren TJ. Maxent modeling for predicting suitable habitat for threatened and endangered
tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment. 2009;
14:94–8.

36. Peterson AT, PapeşM, Eaton M. Transferability and model evaluation in ecological niche modeling: a
comparison of GARP and Maxent. Ecography. 2007; 30(4):550–60. doi: 10.1111/j.0906-7590.2007.
05102.x

37. West AM, Kumar S, Wakie T, Brown CS, Stohlgren TJ, Laituri M, et al. Using High-Resolution Future
Climate Scenarios to Forecast Bromus tectorum Invasion in Rocky Mountain National Park. PLoS
ONE. 2015; 10(2):e0117893. doi: 10.1371/journal.pone.0117893 PMID: 25695255

38. Stohlgren TJ, Ma P, Kumar S, Rocca M, Morisette JT, Jarnevich CS, et al. Ensemble Habitat Mapping
of Invasive Plant Species. Risk Analysis. 2010; 30(2):224–35. doi: 10.1111/j.1539-6924.2009.01343.x
PMID: 20136746

39. Du Z, Wang Z, Liu Y, Wang H, Xue F, Liu Y. Ecological niche modeling for predicting the potential risk
areas of severe fever with thrombocytopenia syndrome. International Journal of Infectious Diseases.
2014; 26:1–8. doi: 10.1016/j.ijid.2014.04.006 PMID: 24981427

40. Boria RA, Olson LE, Goodman SM, Anderson RP. Spatial filtering to reduce sampling bias can improve
the performance of ecological niche models. Ecological Modelling. 2014; 275:73–7. http://dx.doi.org/
10.1016/j.ecolmodel.2013.12.012.

41. Flory AR, Kumar S, Stohlgren TJ, Cryan PM. Environmental conditions associated with bat white-nose
syndromemortality in the north-eastern United States. Journal of Applied Ecology. 2012; 49(3):680–9.
doi: 10.1111/j.1365-2664.2012.02129.x

42. Murray KA, Retallick RWR, Puschendorf R, Skerratt LF, Rosauer D, McCallum HI, et al. Assessing spa-
tial patterns of disease risk to biodiversity: implications for the management of the amphibian pathogen,
Batrachochytrium dendrobatidis. Journal of Applied Ecology. 2011; 48(1):163–73. doi: 10.1111/j.1365-
2664.2010.01890.x

43. Willett MJ, Neven L, Miller CE. The occurrence of codling moth in low latitude countries: validation of
pest distribution reports. HortTechnology. 2009; 19(3):633–7.

44. Masood A, Iqbal SSN, Ullah MA. Spatial and temporal infestation of mango bark beetle, Hypocryphalus
mangiferae stebbing (Coleoptera: Curculionidae) found on mango sudden death trees in orchards.
Pakistan Journal of Zoology. 2012; 44(6):1545–53.

45. Masood A, Saeed S, Sajjad A. Characterization and damage patterns of different bark beetle species
associated with mango sudden death syndrome in Punjab, Pakistan. Pakistan Entomologist. 2008; 30
(2):163–8.

Potential Risk of Mango Sudden Decline Establishment at Global Scale

PLOS ONE | DOI:10.1371/journal.pone.0159450 July 14, 2016 16 / 18

http://dx.doi.org/10.1603/ec14052
http://dx.doi.org/10.1603/ec14052
http://www.ncbi.nlm.nih.gov/pubmed/25026662
http://dx.doi.org/10.1890/es14-00050.1
http://dx.doi.org/10.1111/j.1472-4642.2008.00496.x
http://dx.doi.org/10.1111/j.1472-4642.2008.00496.x
http://dx.doi.org/10.1007/s10530-011-9963-4
http://dx.doi.org/10.1007/s10530-011-9963-4
http://dx.doi.org/10.1016/j.ecolmodel.2012.04.017
http://dx.doi.org/10.1016/S0304-3800(02)00205-3
http://dx.doi.org/10.1016/S0304-3800(02)00205-3
http://dx.doi.org/10.1002/ece3.1737
http://www.ncbi.nlm.nih.gov/pubmed/26668728
http://dx.doi.org/10.1093/jee/tov166
http://www.ncbi.nlm.nih.gov/pubmed/26470312
http://dx.doi.org/10.1890/080054
http://dx.doi.org/10.1111/j.0906-7590.2007.05102.x
http://dx.doi.org/10.1111/j.0906-7590.2007.05102.x
http://dx.doi.org/10.1371/journal.pone.0117893
http://www.ncbi.nlm.nih.gov/pubmed/25695255
http://dx.doi.org/10.1111/j.1539-6924.2009.01343.x
http://www.ncbi.nlm.nih.gov/pubmed/20136746
http://dx.doi.org/10.1016/j.ijid.2014.04.006
http://www.ncbi.nlm.nih.gov/pubmed/24981427
http://dx.doi.org/10.1016/j.ecolmodel.2013.12.012
http://dx.doi.org/10.1016/j.ecolmodel.2013.12.012
http://dx.doi.org/10.1111/j.1365-2664.2012.02129.x
http://dx.doi.org/10.1111/j.1365-2664.2010.01890.x
http://dx.doi.org/10.1111/j.1365-2664.2010.01890.x


46. Masood A, Stoeckle BC, Kuehn R, Shafqat S. Cross species transfer of microsatellite loci in Scolytidae
species mostly associated with mango (Mangifera indica L., Anacardiaceae) quick decline disease.
Pakistan Journal of Zoology. 2011; 43(2):411–4.

47. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical
Computing Vienna, Austria. 2015. Available: http://www.R-project.org/.

48. Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. spThin: an R package for spa-
tial thinning of species occurrence records for use in ecological niche models. Ecography. 2015; 38
(5):541–5. doi: 10.1111/ecog.01132

49. Veloz SD. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only
niche models. Journal of Biogeography. 2009; 36(12):2290–9. doi: 10.1111/j.1365-2699.2009.02174.x

50. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate sur-
faces for global land areas. International Journal of Climatology. 2005; 25(15):1965–78. doi: 10.1002/
joc.1276

51. Daly C. Guidelines for assessing the suitability of spatial climate data sets. International Journal of Cli-
matology. 2006; 26(6):707–21. doi: 10.1002/joc.1322

52. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distribu-
tions. Ecological Modelling. 2006; 190(3–4):231–59. http://dx.doi.org/10.1016/j.ecolmodel.2005.03.
026.

53. Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A. Predicting species distributions from
small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Bio-
geography. 2007; 34(1):102–17. doi: 10.1111/j.1365-2699.2006.01594.x

54. Brown JL. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species
distribution model analyses. Methods in Ecology and Evolution. 2014; 5(7):694–700. doi: 10.1111/
2041-210x.12200

55. Jarnevich CS, Stohlgren TJ, Kumar S, Morisette JT, Holcombe TR. Caveats for correlative species dis-
tribution modeling. Ecological Informatics. 2015; 29(1):6–15. http://dx.doi.org/10.1016/j.ecoinf.2015.06.
007.

56. Merow C, Smith MJ, Silander JA. A practical guide to MaxEnt for modeling species’ distributions: what
it does, and why inputs and settings matter. Ecography. 2013; 36(10):1058–69. doi: 10.1111/j.1600-
0587.2013.07872.x

57. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecolo-
gists. Diversity and Distributions. 2011; 17(1):43–57. doi: 10.1111/j.1472-4642.2010.00725.x

58. Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, et al. Constraints on interpreta-
tion of ecological niche models by limited environmental ranges on calibration areas. Ecological Model-
ling. 2013; 263:10–8. http://dx.doi.org/10.1016/j.ecolmodel.2013.04.011.

59. Peterson AT, PapeşM, Soberón J. Rethinking receiver operating characteristic analysis applications in
ecological niche modeling. Ecological Modelling. 2008; 213(1):63–72. http://dx.doi.org/10.1016/j.
ecolmodel.2007.11.008.

60. Liu C, White M, Newell G. Selecting thresholds for the prediction of species occurrence with presence-
only data. Journal of Biogeography. 2013; 40(4):778–89. doi: 10.1111/jbi.12058

61. Fielding AH, Bell JF. A review of methods for the assessment of prediction errors in conservation pres-
ence/absence models. Environmental Conservation. 1997; 24(01):38–49. http://dx.doi.org/10.1017/
S0376892997000088.

62. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool
in clinical medicine. Clinical Chemistry. 1993; 39(4):561–77. PMID: 8472349

63. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, et al. Ecological
Niches and Geographic Distributions (MPB-49): Princeton University Press; 2011. 328 p.

64. Monfreda C, Ramankutty N, Foley JA. Farming the planet: 2. Geographic distribution of crop areas,
yields, physiological types, and net primary production in the year 2000. Global Biogeochemical
Cycles. 2008; 22(1):GB1022. doi: 10.1029/2007gb002947

65. FAOSTAT. Food and Agriculture Organization of the United Nation 2013 [cited 2015 September 26th].
Available from: http://faostat3.fao.org/home/E.

66. Fodor E. Ecological niche of plant pathogens. Annals of Forest Research. 2011; 54(1):3–21.

67. Wood SL. The Bark and Ambrosia Beetles of North and Central America (Coleoptera: Scolytidae), a
Taxonomic Monograph. Provo, Utah: Great Basin Naturalist Memoirs; 1982.

68. Webster RK, Butler EE. A Morphological and Biological Concept af ahe Species Ceratocystis fimbriata.
Canadian Journal of Botany. 1967; 45(9):1457–68. doi: 10.1139/b67-149

Potential Risk of Mango Sudden Decline Establishment at Global Scale

PLOS ONE | DOI:10.1371/journal.pone.0159450 July 14, 2016 17 / 18

http://www.R-project.org/
http://dx.doi.org/10.1111/ecog.01132
http://dx.doi.org/10.1111/j.1365-2699.2009.02174.x
http://dx.doi.org/10.1002/joc.1276
http://dx.doi.org/10.1002/joc.1276
http://dx.doi.org/10.1002/joc.1322
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1111/j.1365-2699.2006.01594.x
http://dx.doi.org/10.1111/2041-210x.12200
http://dx.doi.org/10.1111/2041-210x.12200
http://dx.doi.org/10.1016/j.ecoinf.2015.06.007
http://dx.doi.org/10.1016/j.ecoinf.2015.06.007
http://dx.doi.org/10.1111/j.1600-0587.2013.07872.x
http://dx.doi.org/10.1111/j.1600-0587.2013.07872.x
http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x
http://dx.doi.org/10.1016/j.ecolmodel.2013.04.011
http://dx.doi.org/10.1016/j.ecolmodel.2007.11.008
http://dx.doi.org/10.1016/j.ecolmodel.2007.11.008
http://dx.doi.org/10.1111/jbi.12058
http://dx.doi.org/10.1017/S0376892997000088
http://dx.doi.org/10.1017/S0376892997000088
http://www.ncbi.nlm.nih.gov/pubmed/8472349
http://dx.doi.org/10.1029/2007gb002947
http://faostat3.fao.org/home/E
http://dx.doi.org/10.1139/b67-149


69. Jones VP, Hilton R, Brunner JF, Bentley WJ, Alston DG, Barrett B, et al. Predicting the emergence of
the codling moth, Cydia pomonella (Lepidoptera: Tortricidae), on a degree-day scale in North America.
Pest Management Science. 2013; 69(12):1393–8. doi: 10.1002/ps.3519 PMID: 23424021

70. Souza AGC, Maffia LA, Murta HM, Alves YH, Pereira RM, Picanço MC. First Report on the Association
BetweenCeratocystis fimbriata, an Agent of MangoWilt, Xyleborus affinis, and the Sawdust Produced
During Beetle Colonization in Brazil. Plant Disease. 2013; 97(8):1116-. doi: 10.1094/pdis-12-12-1204-
pdn

71. Colautti R, Grigorovich I, MacIsaac H. Propagule Pressure: A Null Model for Biological Invasions. Biol
Invasions. 2006; 8(5):1023–37. doi: 10.1007/s10530-005-3735-y

72. Thorpe DJ, Harrington TC, Uchida JY. Pathogenicity, Internal Transcribed Spacer-rDNA Variation, and
Human Dispersal of Ceratocystis fimbriata on the Family Araceae. Phytopathology. 2005; 95(3):316–
23. doi: 10.1094/phyto-95-0316 PMID: 18943126

73. Anderson RP. A framework for using niche models to estimate impacts of climate change on species
distributions. Annals of the New York Academy of Sciences. 2013; 1297(1):8–28. doi: 10.1111/nyas.
12264

74. Dormann CF, Purschke O, Márquez JRG, Lautenbach S, Schröder B. Components of Uncertainty in
Species Distribution Analysis: A Case Study of the Great Grey Shrike. Ecology. 2008; 89(12):3371–86.
doi: 10.1890/07-1772.1 PMID: 19137944

75. Taylor S, Kumar L. Sensitivity Analysis of CLIMEX Parameters in Modelling Potential Distribution of
Lantana camara. PLoS ONE. 2012; 7(7):e40969. doi: 10.1371/journal.pone.0040969 PMID: 22815881

Potential Risk of Mango Sudden Decline Establishment at Global Scale

PLOS ONE | DOI:10.1371/journal.pone.0159450 July 14, 2016 18 / 18

http://dx.doi.org/10.1002/ps.3519
http://www.ncbi.nlm.nih.gov/pubmed/23424021
http://dx.doi.org/10.1094/pdis-12-12-1204-pdn
http://dx.doi.org/10.1094/pdis-12-12-1204-pdn
http://dx.doi.org/10.1007/s10530-005-3735-y
http://dx.doi.org/10.1094/phyto-95-0316
http://www.ncbi.nlm.nih.gov/pubmed/18943126
http://dx.doi.org/10.1111/nyas.12264
http://dx.doi.org/10.1111/nyas.12264
http://dx.doi.org/10.1890/07-1772.1
http://www.ncbi.nlm.nih.gov/pubmed/19137944
http://dx.doi.org/10.1371/journal.pone.0040969
http://www.ncbi.nlm.nih.gov/pubmed/22815881

