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A B S T R A C T

Lay Summary: Different species of vertebrates have conditions similar to human obesity, insulin resist-

ance and type 2 diabetes. Increasing number of studies are now revealing that the causes and inter-

relationships between these states are substantially different in different species. Comparative

physiology may turn out to be an eye opener for evolutionary theories of diabetes.

Obesity induced insulin resistance is believed to be central to type 2 diabetes. Recent work on Mexican

cavefish, Astyanax mexicanus, has revealed a hyperglycemic phenotype similar to human type 2 diabetes

but here insulin resistance is the cause of obesity rather than an effect. Instead of developing diabetic

complications, the hyperglycemic fish lead a healthy and long life. In addition to fish, insulin resistance

in hibernating bears, dolphins, horses, bonnet macaques and chimpanzees demonstrate that the

relationship between diet, obesity, insulin sensitivity and diabetes is widely different in different species.

Evolutionary hypotheses about type 2 diabetes should explain these differences.
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Mexican cavefish, Astyanax mexicanus, a classic ex-

ample of evolution in response to local conditions,

has recently attracted attention because it exhibits a

condition such as diabetes. The teleost fish has two

distinct morphs: surface fish, which have fully de-

veloped eyes and dwell in open streams and cave

dwelling fish, which arose from surface fish ances-

tors that got locked in a cave environment and in due

course of time lost their vision as well as pigmenta-

tion [1, 2]. The blind fish are also larger compared

with surface dwellers [1, 3]. Although these two

morphs look so different, they are interfertile and

can produce viable offspring [2]. The cavefish have

multiple populations residing in different caves and

have achieved the blind phenotype independent of

each other. A loss of vision is accompanied by a

series of behavioral changes related to feeding [4],

mating [5], schooling [6] and loss of circadian rhythm

[7].

The cavefish were found to be resistant to starva-

tion and lost only half as much weight compared

with surface fish after 2 months of starvation. This

phenomenon was attributed to much higher body fat

and low metabolic rate in cavefish [4, 7]. With normal

feeding, some of the cavefish showed hyperphagia

and accumulated more fat and had fatty liver

compared with surface fish. Mutations in

melanocortin 4 receptor (MC4R) were at least partly

responsible for increased feeding, growth rate and

starvation resistance in the cavefish [4]. Mutation in

the same region of MC4R gene is associated with

severe obesity in humans as well although the
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condition is uncommon [8]. Compatible with these observations

is the finding that the cavefish are perpetually hyperglycemic, a

condition that we generally recognize as diabetes and associate

with obesity [3]. The story so far is compatible with the classical

thrift-obesity-diabetes theory [9].

However, there are important twists and surprises in the story.

We believe that in humans obesity causes insulin resistance, but

in cavefishes, a P211L mutation in insulin receptor leads to insulin

resistance and is at least partially responsible for the obese pheno-

type. When the mutant insulin receptor found in cavefish popula-

tion was inserted in zebrafish, they also acquired the obese

phenotype [3]. So here insulin resistance is primary, and obesity

is the consequence. This observation is also similar to the result in

mice that muscle-specific insulin receptor knockouts become

obese [10]. This result is compatible with James Neel’s original

idea that a gene responsible for diabetic tendency leads to obesity

[9], but not compatible with the notion that obesity induces insulin

resistance. However, insulin receptor mutations known in

humans including the Donohue syndrome or the Rabson

Mendenhall syndrome are non-obese and have post-prandial

hyperglycemia but fasting hypoglycemia [11]. In the pathophysi-

ology of type 2 diabetes, the cause-effect relationships are often

unclear. Different schools of thought appear to propagate differ-

ent and often contradictory causal relationships. The thought that

obesity leads to insulin resistance dominated over a few decades

and multiple mechanisms for obesity induced insulin resistance

were proposed [8, 12–17]. Part of the evidence is based on correl-

ations [18–23] and even the correlations are weak [24]. The old

view that higher insulin response leads to obesity [9] is gaining

grounds once again [25]. Furthermore, insulin resistance in the

cavefish is not accompanied by increased levels of insulin mean-

ing thereby that compensatory hyperinsulinemia does not inevit-

ably follow insulin resistance [3]. Knocking out insulin receptors

from muscle or fat tissue in mice also did not result in

hyperinsulinemia [10]. In contrast, insulin receptor mutants in

humans (Donohue syndrome or the Rabson Mendenhall syn-

drome) are hyperinsulinemic and have fasting hypoglycemia

[11]. Thus there is no agreement on the causal relations between

obesity, insulin resistance and hyperinsulinemia and causalities

can be different in different species.

Chronic hyperglycemia in humans is believed to lead to a variety

of complications which often take a lethal turn. However, the

cavefish remain healthy and long-lived with their hyperglycemia.

One of the main mechanisms of hyperglycemia induced compli-

cations is believed to be increased glycation of proteins [26, 27].

Among the independently evolved lines of fish, some appear to be

relatively resistant to glycation, but others are not, and still, all of

them are long-lived without any signs of diabetic complications

[3]. It is likely therefore that either hyperglycemia is not the real

cause of diabetic complications or it is possible to evolve multiple

ways to avoid pathological consequences of hyperglycemia, if any.

Compatible with this is the failure of clinical trials targeting strict

glycemic control to arrest diabetic complications [28–31].

Therefore whether hyperglycemia is the predominant causal fac-

tor behind the pathological consequences of diabetes needs to be

examined.

Cross species comparison is an important tool in evolutionary

medicine, but so far data on insulin resistance in non-human

species is uncommon. Although fragmentary, it is possible to

put together data on insulin resistance in cave fish, black and

grizzly bears (Ursus thibetanus, Ursus americanus, Ursus arctos)

[32, 33], horses (Equus ferus) [34], chimpanzees (Pan troglodytes

schweinfurthii) [35], bonnet macaques (Macaca radiata) [36] and

dolphins (Tursiops truncatus) [37] to see the commonalities and

differences. Hibernating animals exhibit a physiology that allows

them to survive extreme temperatures by manipulating their me-

tabolism. American and Japanese black bear revealed a seasonal

variation in insulin sensitivity during summer/spring active

period and fall/winter hibernating period [32, 33]. Grizzly bears

undergo a similar annual metabolic cycle: in active period they

gain weight up to 4 kg per day and lose as much as 50% of their

body weight during for the 5–7 months of hibernation [38–41].

Females with higher fat content have higher fecundity and may

produce more viable offspring [42, 43]. This seasonal fat depos-

ition was seen to be a result of a changed insulin sensitivity in

black bear as well as brown bear [32, 33, 41]. In summer, accom-

panying fat accumulation, the bears were more insulin sensitive.

In contrast, insulin concentration was 2.5 times higher in

hibernating grizzly bear, although they were euglycemic [41].

Interestingly when the adipocytes from hibernating grizzly bear

were treated with serum from summer active grizzly bear, insulin

sensitivity was partially gained by their adipocytes [41]. Contrary to

humans, fat deposition appears to be associated with insulin sen-

sitivity and fat loss with insulin resistance in bears.

Dolphins have also been shown to exhibit insulin resistance,

but this is a response to high-protein diet [37]. Free ranging dol-

phins have lower plasma glucose and insulin levels compared

with captive population, but both show increased insulin resist-

ance with high-protein diet [37]. This observation contrasts the

rodent models of high fat feeding to induce insulin resistance [44].

Insulin sensitivity in horses varies in different breeds [45] and

decreases with age in mares, but there was no difference in mares

fed with high sugar or high fiber diet [34]. In Chimpanzees and

Bonnet macaques, insulin resistance is observed in a fraction of

the population normally in the absence of any obesogenic inter-

vention [35, 36]. Further in chimpanzees, the low social rank indi-

viduals were more insulin resistant than the high-ranking

individuals [35] although the high-ranking individuals have

greater access to food. The association of insulin resistance with

food intake appears to be negative here.

Studies on different species of vertebrates seem to suggest that

the relationships between food intake control, fat accumulation,
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insulin resistance, insulin production, hyperglycemia and its

pathological effects can evolve differently in different species. It

is not necessary that insulin resistance in all species follow obes-

ity. Most evolutionary hypotheses for human type 2 diabetes stop

at explaining obesity and assume that all other effects follow in-

evitably from obesity. This is not sufficient for an evolutionary

hypothesis. If obesity induces insulin resistance in humans but

not in all species, it is necessary to explain why this relationship

evolved specifically in some species including humans. So far, the

obesity centered evolutionary hypotheses about type 2 diabetes

are far from satisfying this condition. The blind cavefish can prove

to be eye-opener for evolutionary medicine.
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