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Abstract: 3CLpro of SARS-CoV-2 is a promising target for developing anti-COVID19 agents. In order
to evaluate the catalytic activity of 3CLpros according to the presence or absence of the dimerization
domain, two forms had been purified and tested. Enzyme kinetic studies with a FRET method
revealed that the catalytic domain alone presents enzymatic activity, despite it being approximately
8.6 times less than that in the full domain. The catalytic domain was crystallized and its X-ray crystal
structure has been determined to 2.3 Å resolution. There are four protomers in the asymmetric
unit. Intriguingly, they were packed as a dimer though the dimerization domain was absent. The
RMSD of superimposed two catalytic domains was 0.190 for 182 Cα atoms. A part of the long hinge
loop (LH-loop) from Gln189 to Asp197 was not built in the model due to its flexibility. The crystal
structure indicates that the decreased proteolytic activity of the catalytic domain was due to the
incomplete construction of the substrate binding part built by the LH-loop. A structural survey with
other 3CLpros showed that SARS-CoV families do not have interactions between DM-loop due to
the conformational difference at the last turn of helix α7 compared with others. Therefore, we can
conclude that the monomeric form contains nascent enzyme activity and that its efficiency increases
by dimerization. This new insight may contribute to understanding the behavior of SARS-CoV-2
3CLpro and thus be useful in developing anti-COVID-19 agents.
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1. Introduction

Severe acute respiratory syndrome (SARS-CoV-2), which emerged in Wuhan, China in
December 2019, has now spread worldwide [1,2], with more than 480 million people having
been infected and about 6 million having died as of 5 April 2022 (https://covid19.who.int/
accessed on 5 April 2022). The virus is the seventh coronavirus that has infected humans and
the third β-coronavirus to cause an outbreak in the 21st century, following the Severe Acute
Respiratory Syndrome (SARS-CoV) of 2003 and the Middle East Respiratory Syndrome
(MERS) of 2012 [3–5]. A wide range of diseases have been reported, from mild to severe
diseases, including death [6–8]. The incubation period of 5 to 6 days and the SARS-CoV-2
reproduction rate of 2.2 to 3.6 days have accelerated the spread of COVID-19 [9,10]. To
date, there are several FDA-approved vaccines for SARS-CoV-2, but there is still no strong
and effective treatment for COVID-19. Although Remdesivir has been scientifically found
to be helpful in treating COVID-19, it is not a particularly effective drug. Currently, among
the chemicals, paxlovid, molnupiravir, and remdesivir have been granted emergency use
permission for the treatment of patients hospitalized with COVID-19 from the U.S. Food
and Drug Administration (FDA) [11–13].

Several X-ray crystal structures of SARS-CoV-2 main protein enzymes (3CLpro
or Mpro) combined with lead compounds serving as inhibitors have recently been
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announced [14–16]. The 3CLpro is a cysteine protease that plays an essential role in
the replication of coronaviruses by digesting viral polyprotein at more than 11 sites. There-
fore, it is considered and selected as a good COVID-19 target. In addition, the 3CLpro is
almost preserved among all released SARS coronavirus genome sequences and is very ho-
mogeneous with other coronavirus 3CLpros. Specifically, the sequence identity of 3CLpros
between SARS-CoV-2 and SARS-CoV is 96%, and only one different residue is present at
the active site. Structurally, 3CLpros of SARS-CoVs include the following three domains.
Domains I and II (residues 1 to 184) have an antiparallel β-barrel structure that forms
chymotrypsin folds, and the substrate binding site is located in the gap between these two
domains. Additionally, domain III (residues 201 to 303) is a compact α-helical domain con-
nected to domain II by a long hinge loop (LH-loop, residues from Gln189 to Asp197) [16,17].
The protease is known to be activated by dimerization of two monomers, each containing a
catalyst dyad defined by Cys145 and His41 residues (active site) [18]. An important role
of domain III in the dimerization and catalytic activity of 3CLpro has been suggested by
several studies [19,20].

Though X-ray crystal structures of the entire enzyme have been published, some of
structural and catalytic roles of domain III are still unclear. For example, since the dimeric
interfaces of domain III in the crystal structure is quite narrow, its role in dimerization
seems limited. In addition, its contribution in the catalytic mechanism is also not well
explained. In this study, we determined the X-ray crystal structure of the catalytic domain
of SARS-CoV-2 3CLpro and performed fluorescence resonance energy transfer (FRET)-
based enzymatic assays against entire and catalytic domains. A new insight for the catalytic
domain is discussed in this study.

2. Results and Discussion
2.1. Structural Properties of the Catalytic Domain of SARS-CoV-2 3CLpro

The crystal structure of the catalytic domain of SARS-CoV-2 CLpro was determined at
2.27 Å resolution. In the final model, 182 residues were included. The first six residues (Ser1
and Met6) and the last eight residues (Gln189 to Thr196) in the LH-loop were not visible in
the final model though they were predicted to form a short β-strand in PSIPRED [21]. The
overall structure of the other region was well determined (Table 1) except residues from
Ser139 to Ser144 and displayed almost the same architecture (Figure 1) as that of the entire
SARS-CoV-2 CLpro [22,23]. The five residues not well defined were due to the absence
of domain III influencing a local conformation around Ser139. As a result, the electron
density around Ser139 to Ser144 was not well defined. There were four protomers in the
asymmetric unit. Interestingly, they existed as a dimer with dimensions of ~83 × 48 × 36
Å despite the absence of the dimerization domain (domain III) known to be crucial in
dimerization [19]. The root-mean-square deviations (RMSDs) of 182 Cα atoms among
them were within the range of 0.190–0.479 Å. The RMSD between the monomeric forms
of the catalytic domains of the search model and the final refined model was 0.678. When
the dimeric forms of the catalytic domains were compared, the RMSDs were 0.682 for
341 Cα atoms (pruned) and 0.905 for all 364 Cα atoms. Therefore, there was almost no
conformational deviation among them. In the crystal structure of the catalytic domain,
dimeric interfaces were made by backbone hydrogen pairs of Ala7 N and O atoms with
O (3.39 Å) and N (2.88 Å) atoms of Val125’ (the other subunit), respectively (Figure 2A).
There were more hydrogen bonds mediated by Ser10 and between Ser11 and Glu14’. A
hydrophobic pocket composed of Pro9, Val13, Leu115’, and Val125’ also participated in
the formation of a dimer. Therefore, the N-terminal loop contributed to the formation of
a domain-swapped dimer by interacting with β10 of the other subunit. In the case of the
entire SARS-CoV 3CLpro [24], Arg4 also took part in the interaction with Lys137’ from the
catalytic domain of the other subunit (Figure 2B).
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Table 1. Data collection statistics and refinement parameters for the catalytic domain of SARS-CoV-2
3CLpro.

PDB Code 7WHC

Data collection statistics
Wavelength 1.0000 Å
Resolution 50.0–2.27 (2.31–2.27) Å

Redundancy 3.4 (3.1) *
Unique reflections 32201 (1203)

Completeness 89.0 (63.2) %
I/σ 17.03 (1.67)

Rmergy † 5.7 (63.2) %

Crystal parameters and refinement statistics
Resolution 31.99–2.27 (2.31–2.27) Å

Space group P21
Cell dimensions 52.47 Å × 121.09 Å × 62.70 Å

Volume fraction of solvent 48.13%
Vm (Å3/Dalton) 2.37

Total number of residues 5628
Total non-H atoms 5778

Number of water molecules 150
Average temperature factors

Protein 48.90 Å2

Solvent 45.70 Å2

R-factor 20.16%
Free R-factor 26.41%

Stereochemical ideality:
Bond 0.009 Å
Angle 1.297◦

Chirality 0.049◦

Planarity 0.006◦

Dihedral 13.954◦

Ramachandran plot
Residues in favored regions 92.78%
Residues in allowed regions 6.94%

Residues in disallowed regions 0.0%
† Rmergy = ∑hkl ∑i|Ihkl, i − <I>hkl|/∑hkl ∑i Ihkl, i, where Ihkl, i is the intensity of the ith observation of the unique
reflection hkl and <I>hkl is the mean of the intensities of all observations of reflection hkl. * The data were obtained
from a single crystal. Values in parentheses are for the highest-resolution shell.

In order to find the oligomeric state of the catalytic domain in solution, a gel chromato-
graphic experiment was performed. Unexpectedly, only a monomeric form was detected
(Figure 3). This implies two facts. First, the dimeric form of the catalytic domain only
detected in the X-ray crystallographic study may be a crystallographic artifact. Second,
the dimeric interaction mainly caused by the N-terminal swapping is not enough to sus-
tain a stable dimeric architecture in solution. Intriguingly, the entire SARS-CoV-2 3CLpro
had an additional dimeric interaction between Ser139 and Gln299’ (2.53 Å) on domain III
(Figure 2B) [23]. Mutational experiments of the two residues to alanine clearly demon-
strated the transition from the dimeric to monomeric forms with severely reduced catalytic
activity [25–27]. The importance of the additional bond in the formation of the dimeric
state is certified by the sequence conservation in the corresponding positions of 3CLpros
(Figure 2) [28]. Briefly, though the N-terminal domain swap is crucial for dimerization,
more interactions with domain III may be required to form a stable dimer. A structural
comparison of MERS-CoV 3CLpro with SARS-CoV-2 3CLpro indicates that the dimeriza-
tion of MERS-CoV 3CLpro may be easier due to the interaction between Thr285 and Thr285’
(2.44 Å) on domain III (Figure 2C), as discussed below. This region is far apart due to the
absence of the interaction in the case of SARS-CoV-2 3CLpro. It is also worth noting that
the presence of monomeric forms of the entire 3CLpro were frequently reported during
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size-exclusion chromatography (SEC) [29–31]. We also performed SEC of the entire domain
and detected a monomeric form in Tris and sodium phosphate buffers (Figure 3). This
implies that the dimeric state of SARS-CoV-2 3CLpro is not very strong and requires some
condition such as the presence of substrates [27,32].
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Figure 1. The X-ray crystal structure of the catalytic domain of SARS-CoV-2 3CLpro compared
with the model structure. Each subunit is colored differently. Active site residues are drawn with a
ball-and-stick model. N- and C-terminals are labeled. (A) The X-ray crystal structure of the catalytic
domain of SARS-CoV-2. (B) The crystal structure of the entire SARS-CoV-2 3CLpro (7K0F). Ala285
residue on the DM-loop was depicted. The dotted boxes represent the last turn of helix α7. (C) The
superposition of both monomeric forms. The LH-loop is displayed with a dotted line.
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Figure 2. Key interactions involved in dimerization. The two subunits were drawn with different
colors, and key residues were represented by a stick model. The distances of hydrogen bonds between
residues on domain III are found in the text. The dotted blue circles indicate where hydrophobic
pockets exit. (A) the catalytic domain of SARS-CoV-2 3CLpro; (B) SARS-CoV-2 3CLpro; (C) MERS-
CoV-2 3CLpro; (D) HCoV-NL63 3CLpro; (E) HCoV-HKU1 3CLpro.
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Figure 3. The size-exclusion chromatography of SARS-CoV-2 3CLpro. The thin line represents the
makers (human albumin and TCTP), the thick line represents the catalytic domain, and the dotted
line represents the full 3CLpro.

In the X-ray crystal structure of the catalytic domain, the eight residues included in the
LH-loop are not visible in this construct. In contrast, the LH-loop of the entire SARS-CoV-2
3CLpro is well defined due to the following interactions. First, Gln192 interacts with the
backbone oxygen and nitrogen atoms of Val186 (Figure 4). Second, the flexible nature of
the LH-loop due to the presence of the 191AQAAGT196 sequence was compensated by the
salt-bridge between Arg131 and Asp197. As a result, the entire SARS-CoV-2 3CLpro may
exert a full enzyme activity. In addition, Gln189 on the LH-loop takes part in binding with
chemicals, as shown in several X-ray crystal structures [33,34]. Therefore, the LH-loop is
critical in the structural and functional constancy of SARS-CoV-2 3CLpro by stabilizing an
outer wall of the active site cavity together with the substrate binding site (Figure 2).
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Figure 4. The sequence alignment of 3CLpros. Secondary structure elements of 3CLpro are dis-
played and colored in red for α-helix, in green for β-strand, and in yellow for 310-helix. The sequences
of 3CLpros were extracted from PDBs: 7K0F for SARS-CoV-2, 6W2A for SARS-CoV, 4YLU for MERS-
CoV, 3D23 for HCoV-HKU1, and 5GWY for HCoV-NL63. The red stars indicate the catalytic residues.
The residues involved in the N-terminal loop swapping are depicted with circles. The circles and
the filled circles represent hydrophilic and hydrophobic interactions, respectively. The diamonds
represent the interaction between the LH-loop and domain III, filled diamonds represent the dimeric
interaction between Ser139 and Q299, and red represents the DM-loop interaction.

2.2. Enzymatic Properties of the Monomeric Form of the Catalytic Domain

We characterized the enzymatic activity of entire and catalytic domains of SARS-CoV-2
3CLpro by measuring the Km and Vmax values. When 1 µM 3CLpro was mixed with various
concentrations of FRET substrate (0–30 µM), the initial velocity was measured and plotted
against the substrate concentration. The curve fitting the Michaelis–Menten equation gave
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the best-fit values of Km and Vmax as 5.723µM and 566.137 RFU/s for the entire domain
and as 6.152 µM and 71.135 RFU/s for the catalytic domain. The calculated kcat/Km were
712.247 s−1 M−1 and 83.253 s−1 M−1, respectively (Supplementary Figure S1). It represents
that the enzyme activity of the catalytic domain is about 8.6 times lower than that of the
entire domain.

The entire SARS-CoV-2 3CLpro is known to function as a dimer. In addition, its
domain III was thought to be crucial for catalytic activity [19]. Nevertheless, there are
some significant features of the catalytic domain noteworthy in structural and functional
aspects. At first, the N-terminal domain alone can contribute to forming a dimer through
the N-terminal loop swap, as shown in the X-ray crystal structures of the entire and catalytic
domains of SARS-CoV-2 3CLpro. Second, the monomeric form alone is enough for its
catalytic activity despite its low efficiency. Third, the LH-loop is important for substrate
binding and catalytic activity by finalizing the construction of the catalytic pocket. There-
fore, the catalytic domain alone can exert its enzymatic activity as we observed. Similar
properties were also found in the entire SARS-CoV 3CLpro. In low protein concentrations,
the monomer form also displayed an enzymatic activity with low efficiency [19].

2.3. Structural Comparison among Various 3CLpros

There are five 3CLpros of which the X-ray crystal structures were deter
mined [17,22,28,35,36]. They share a common architecture, as expected based on sequence
identity (Figure 4). The domain swapping of the N-terminal loop is a primary feature of all
3CLpros. It also induces the formation of a small hydrophobic core, as mentioned above.
In contrast, there is also a key additional interaction intensifying dimerization in some
3CLpros. The interaction mediated by a loop between α7 and α8 of domain III (DM-loop)
plays a key role (Figure 2, Supplementary Figure S2). The loop interaction mediated by
Thr285 (2.44 Å), Cys282 (3.82 Å), and Ser282 (3.87 Å) of MERS, HCoV-HKU1, and HCoV-
NL63, respectively, seems to strengthen the dimeric state. Since these residues on the
DM-loop are located next to the two-fold rotational symmetry operator in space, a stable
dimeric form may be augmented. However, the corresponding residues of SARS-CoV
and SARS-CoV-2 3CLpros are far apart, with their Cα atom distances being 6.88 Å and
8.00 Å, respectively. Those of MERS, HCoV-HKU1, and HCoV-NL63 are 6.19 Å, 6.58 Å, and
5.05 Å, respectively (Supplementary Table S1). This means that the interaction between
the DM-loops of SARS-CoV and SARS-CoV-2 3CLpros is weak. In particular, the last turn
of helix α7 is well formed in SARS-CoV and SARS-CoV-2 3CLpros due to the presence
of 270ELLQN274 facilitating α-helix formation (Figure 1B). However, Tyr273, Tyr270, and
His270 with bigger aromatic groups are found in the corresponding positions of MERS,
HCoV-HKU1, and HCoV-NL63, respectively (Figure 4). Therefore, the last turn of α7 is
more relaxed and thus makes the distance between DM-loops a bit closer in the latter
three cases. As a result, domain III of 3CLpros of MERS, HCoV-HKU1, and HCoV-NL63
contributes to dimerization better than those of SAR-CoV and SARS-CoV-2.

3. Materials and Methods
3.1. Protein Expression and Purification of SARS-CoV-2 3CLpro and its Catalytic Domain

The coding sequence of SARS-CoV-2 3C-like proteinase (NCBI Ref. seq. YP_009725301.1)
was synthesized chemically by Bioneer, Daejeon, Korea and cloned into a bacteriophage
T7-based expression vector. Its catalytic domain was synthesized from M1 to T196 of
3CLpro. The catalytic one was synthesized by adding ENLYFQGGG (TEV protease cleav-
age site) and the entire enzyme by adding AVLQ (autocleavage site) at the N-terminus.
The plasmid DNA was transformed into E. coli BL21 (DE3) for protein expression. E. coli
BL21 (DE3) cells were grown on Luria–Bertani (LB) agar plates containing 150 µg ml−1

ampicillin. Several colonies were picked and grown in capped test tubes with 10 mL LB
broth containing 150 µg ml−1 ampicillin. A cell stock composed of 0.85 mL culture and
0.15 mL glycerol was prepared and frozen at 193 K for use in a large culture. The frozen
cell stock was grown in 5 mL LB medium and diluted into 1000 mL fresh LB medium. The
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culture was incubated at 310 K with shaking until an OD600 of 0.6–0.8 was reached. At
this point, the expressions of SARS-CoV-2 3CLpro and its catalytic domain were induced
using isopropyl-β-D-1-thiogalactopyranoside (IPTG) at a final concentration of 1 mM. The
culture was further grown at 310 K for 3 h in a shaking incubator. Cells were harvested by
centrifugation at 7650 g (6500 rev min−1) for 10 min in a high-speed refrigerated centrifuge
at 277 K. The cultured cell paste was resuspended in 25 mL of a buffer consisting of 20 mM
Tris pH 7.5, 1 mM phenylmethylsulfonyl fluoride (PMSF), and 10 µg ml−1 DNase I. The cell
suspension was disrupted using an ultrasonic cell disruptor (Digital Sonifier 450, Branson,
MO, USA). Cell debris was pelleted by centrifugation at 24,900× g (15,000 rev min−1) for
30 min in a high-speed refrigerated ultra-centrifuge at 277 K.

The entire SARS-CoV-2 3CLpro was purified by affinity chromatography using a 5 mL
Hi-Trap His column (GE Healthcare, Piscataway, NJ, USA). The column was equilibrated
with a buffer consisting of 20 mM Tris pH 7.5, and the pooled fractions were loaded.
The fractions of 3CLpro-His tag were mixed with Human Rhinovirus (HRV) 3C protease-
His-tag at a molar ratio of 10:1 to remove the C-terminal His tag. The His-tag cleaved
3CLpro was further purified by affinity chromatography using a 5 mL Hi-Trap His column
(GE Healthcare, Piscataway, NJ, USA) and the flow-through was collected. The purified
protein was buffer exchanged into 20 mM Bis-Tris pH 7.5 using Vivaspin 20 MWCO
10 kDa (GE Healthcare), a centrifugal device. SDS–PAGE showed one band around 34 kDa
(33,796.64 Da), corresponding to the molecular weight of SARS-CoV-2 3CLpro.

The catalytic domain of SARS-CoV-2 3CLpro was purified by affinity chromatography
using a 5 mL Hi-Trap His column (GE Healthcare, Piscataway, NJ, USA). The column
was equilibrated with a buffer consisting of 20 mM Tris pH 7.5, and the pooled fractions
were loaded. The fractions of 3CLpro-His tag were mixed with TEV protease-His-tag
at a molar ratio of 10:1 to remove the N-terminal His tag. The His-tag cleaved 3CLpro
was further purified by affinity chromatography using a 5 mL Hi-Trap His column (GE
Healthcare, Piscataway, NJ, USA), and the flow-through was collected. The purified
protein was buffer exchanged into 20 mM Bis-Tris pH 7.5 using Vivaspin 20 MWCO
10 kDa (GE Healthcare), a centrifugal device. SDS–PAGE showed one band around 22 kDa
(22,533.70 Da), corresponding to the molecular weight of the catalytic domain of SARS-
CoV-2 3CLpro.

3.2. Enzymatic Kinetic Studies with SARS-CoV-2 3CLpro

The custom-synthesized fluorogenic substrate, DABCYL-KTSAVLQSGFRKME-EDANS
(ANYGEN, Gwangju, Korea), was used as a substrate for the proteolytic assay using
the SARS-CoV-2 3CLpro [37]. This substrate contains the nsp4/nsp5 cleavage sequence,
GVLQ↓SG [38], and works as a generic peptide substrate for many coronaviruses including
the SARS-CoV-2 3CLpro. The peptide was dissolved in distilled water and incubated with
each protease. A SpectraMax i3x Multi-mode microplate reader (Molecular Devices) was
used to measure spectral-based fluorescence. The proteolytic activity was determined at
310 K by following the increase in fluorescence (λexcitation = 340 nm and λemission = 490 nm,
with bandwidths = 9 and 15 nm, respectively) of EDANS upon peptide hydrolysis as a
function of time. The assays were conducted in black, 96-well plates (Nunc) in 300 µL assay
buffers containing proteases and substrates, as follows: For the measurements of Km/Vmax,
a proteolytic reaction with 2 µM 3CLpro in 300 µL of the reaction buffer was carried out at
310 K in a SpectraMax i3x (Molecular Devices) with filters for excitation at 360/40 nm and
emission at 460/40 nm. The reaction time was 2 h for both of the SARS-CoV-2 3CLpros at
310 K. A FRET substrate concentration ranging from 0 to 30µM was applied. The initial
velocity was plotted against the FRET concentration with the classic Michaelis–Menten
equation in GraphPad Prism 7.03 (GraphPad Software, San Diego, CA, USA). All reactions
were carried out in triplicate.
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3.3. Size-Exlusion Chromatography (SEC)

Size-exclusion chromatography experiments were performed using a 10/30 Superdex
200 column (Amersham Biosciences, Amersham, UK) connected to an ÄKTA-explorer
system. The typical flow rate was 0.4 mL min−1, fractions of 0.3 mL were collected, and
10 mg mL−1 of catalytic domain and 5 mg mg mL−1 of the entire domain of SARS-CoV-2
3CLpro were loaded and then eluted with a buffer consisting of 25 mM sodium phosphate
(pH 7.0) or 20 mM Tris (pH 7.8) and 100–300 mM NaCl. The column calibration was
conducted with 2 proteins: human albumin (65 kDa) and TCTP (34 kDa).

3.4. Crystallization

The catalytic domain of SARS-CoV-2 CLpro was crystallized by the hanging drop va-
por diffusion method at 296 K with drops consisting of 0.8 µL protein solution (10 mg/mL)
and 0.8 µL reservoir solution (10% PEG 20000, 0.1 M HEPES pH 7.0, and 2 M calcium
chloride). These initial crystals were used to make a seed stock using the Glass Seed Bead™
kit (Hampton Research, Aliso Vieja, CA, USA). The seeds were prepared from crystals
grown in the final crystallization condition. The drop ratios were 0.3 µL protein, 0.2 µL
reservoir solution, and 0.1 µL a seed stock dilution of 1/10. Crystals were grown using the
hanging drop vapor diffusion method and appeared within 24 h.

3.5. Structure Determination

X-ray diffraction data, collected at a single wavelength on the 7 A beamline at the
Pohang Light Source, were processed and scaled using the HKL2000 suite [39].

Crystallographic phases for the 2.27 Å catalytic domain of SARS-CoV CLpro dataset
were obtained by molecular replacement using the AutoMR wizard in PHENIX [40]. Based
on the Matthews coefficient [41], the asymmetric unit could contain four protomers with
a solvent content of 48.13% (VM = 2.37 Å3 Da−1). Iterative density modification, model
building, and refinement were performed using the AutoBuild wizard of PHENIX. An
electron density map was calculated, and an initial model containing four protomers in the
unit cell was obtained. Noncrystallographic symmetry (NCS) matrices were obtained for
four protomer molecules in the asymmetric unit and were applied during initial refinement.
NCS was released earlier to avoid model bias from the NCS average. The model was
further refined using COOT [42] and PHENIX [40].

The final model of the catalytic domain was refined to Rwork- and Rfree- values of 20.16%
and 26.41%, respectively. The stereochemical quality of the final model was evaluated by
PROCHECK [43]. The Ramachandran plot produced with PROCHECK showed 92.78%
residues in most favored regions and 6.94% in additional allowed regions. The details of
the refinement statistics are listed in Table 1.

4. Conclusions

The recent pandemic caused by SARS-CoV-2 is slowly settling down. Nevertheless,
the occurrence of mutants is still a threat globally. In this study, structural and enzymatic
characterization of the catalytic domain of SARS-CoV-2 3CLpro was provided. Intriguingly,
the crystal structure of the catalytic domain showed that the major dimeric interface
is formed in the unit cell despite the absence of the dimerization domain, domain III.
Therefore, the importance of the N-terminal and LH loops was revisited. The N-terminal
loop is critical in the formation of a domain-swapped dimer by contributing to the formation
of a hydrophobic cavity with the catalytic domain of the other subunit. Surprisingly, the
monomeric form of the catalytic domain alone is proven to be enough for its catalytic
activity with low efficiency. Sequence and structural analyses showed that the dimerization
tendency of 3CLpors is weaker in SARS species. The relatively weak interaction exerted by
the DM-loops between domain IIIs seems to be the main reason. Currently, 3CLpro is a
good target for the design of anti-SARS-CoV-2 drugs. Some targeting SARS-CoV-2 3CLpro
have already been commercialized: paxlovid, molnupiravir, and remdesivir [11–13]. More
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detailed information of the catalytic domain provided in this study may be helpful in
developing better anti-viral agents to cope with COVID-19.
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