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ABSTRACT The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a
virus that is continuously evolving. Although its RNA-dependent RNA polymerase
exhibits some exonuclease proofreading activity, viral sequence diversity can be pro-
duced by replication errors and host factors. A diversity of genetic variants can be
observed in the intrahost viral population structure of infected individuals. Most
mutations will follow a neutral molecular evolution and will not make significant
contributions to variations within and between infected hosts. Herein, we profiled
the intrasample genetic diversity of SARS-CoV-2 variants, also known as quasispecies,
using high-throughput sequencing data sets from 15,289 infected individuals and
infected cell lines. Despite high mutational background, we identified recurrent intra-
genetic variable positions in the samples analyzed, including several positions at the
end of the gene encoding the viral spike (S) protein. Strikingly, we observed a high
frequency of C—A missense mutations resulting in the S protein lacking the last 20
amino acids (SA20). We found that this truncated S protein undergoes increased
processing and increased syncytium formation, presumably due to escaping M pro-
tein retention in intracellular compartments. Our findings suggest the emergence of
a high-frequency viral sublineage that is not horizontally transmitted but potentially
involved in intrahost disease cytopathic effects.

IMPORTANCE The mutation rate and evolution of RNA viruses correlate with viral ad-
aptation. While most mutations do not make significant contributions to viral molec-
ular evolution, some are naturally selected and produce variants through positive
selection. Many SARS-CoV-2 variants have been recently described and show pheno-
typic selection toward more infectious viruses. Our study describes another type of
variant that does not contribute to interhost heterogeneity but rather phenotypic
selection toward variants that might have increased cytopathic effects. We identified
that a C-terminal truncation of the spike protein removes an important endoplasmic
reticulum (ER) retention signal, which consequently results in a spike variant that
easily travels through the Golgi complex toward the plasma membrane in a preacti-
vated conformation, leading to increased syncytium formation.

KEYWORDS COVID-19, SARS-CoV-2, syncytia, genetic variants, high-throughput
sequencing, spike protein

bserved for the first time in 2019, the severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) and its associated disease, COVID-19, have caused significant
worldwide mortality and unprecedented economic burdens. SARS-CoV-2 is an envel-
oped virus with a nonsegmented, positive-sense, single-stranded viral RNA (VRNA) ge-
nome comprised of ~30,000 nucleotides (1, 2). The virus is composed of four main
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structural proteins, encoded in the last 3'-terminal third of the viral genome: the spike
glycoprotein (S), membrane (M), envelope (E), and nucleocapsid (N) (3-5). Attachment
to the host receptor angiotensin-converting enzyme 2 (ACE2) is mediated by the S pro-
tein expressed on the surface of the virion (6). Following its association, the S protein is
cleaved into two separate polypeptides (ST and S2), which triggers the fusion of the vi-
ral particle with the cellular membrane (6, 7). Once inside a cell, its RNA-dependent
RNA polymerase (RdRp), which is encoded in the first open reading frame of the viral
genome (8), carries out transcription and replication of the vVRNA genome. In addition,
mRNAs coding for the structural proteins (e.g., S, M, E, and N) are expressed by subge-
nomic RNAs (8). Once translated, the S, M, and E proteins localize and accumulate at
the CoV budding site in the endoplasmic reticulum (ER)-Golgi intermediate compart-
ment (ERGIC) (9). One aspect of CoV biology is that CoV virions bud into the lumen of
the secretory pathway at the ERGIC and must then traffic through the Golgi complex
and anterograde system to be efficiently released from host cells (10). The S protein
possesses an endoplasmic reticulum retrieval signal (ERRS) at its carboxy terminus,
which is required for trafficking through the ERGIC (11). At this location, the spike pro-
tein interacts with the M protein, which has been shown to be essential for accumula-
tion at the ERGIC. The N protein then associates with the viral genome and assembles
into virions, which are transported along the endosomal network and released by exo-
cytosis (8). If not retained at ERGIC, the S protein traffics through the Golgi complex
and is preactivated by resident proteases prior to reaching the plasma membrane.
Here, it can mediate cell fusion between adjacent cells, resulting in the production of
multinucleated cells, or syncytia (7, 12, 13).

Genomic sequencing of SARS-CoV-2 vVRNA from infected populations has demon-
strated genetic heterogeneity (14-20). Several recurrent mutations have been identi-
fied in consensus sequences, and the geographical distribution of clades has been
established. Because they induce an abundance of missense rather than synonymous
or nonsense mutations, it was suggested that regions of the SARS-CoV-2 genome were
actively evolving and might contribute to pandemic spreading (20). It was observed
that variations are mainly comprised of transition mutations (purine—purine or pyrimi-
dine—pyrimidine), with a prevalence of C—U transitions, and might occur within a
sequence context reminiscent of APOBEC-mediated deamination (i.e., [AUIC[AU]) (21,
22). Consequently, it was proposed that host editing enzymes might be involved in co-
ronavirus genome editing (23, 24).

Transmitted genomes and consensus sequences are only part of the genetic landscape
with regard to RNA viruses. Replication of RNA viruses typically produces quasispecies in
which the transmitted viral RNA genomes do not exist as a single sequence entity but
rather as a population of genetic variants (25). These mutations are most frequently caused
by both the error-prone nature of each of their respective viral RdRps and the host RNA
editing enzymes, such as APOBECs and ADARs (26). However, the RdRp complex of large
RNA viruses, such as coronaviruses, sometimes possesses exonuclease proofreading activ-
ity, and consequently, they have lower error rates (25, 27). Quasispecies may sometimes
exhibit diminished replicative fitness or deleterious mutations and exert different roles
that are not directly linked to viral genomic propagation (28). Mutations that form the
intrahost genetic spectrum have been shown to help viruses evade cytotoxic T cell recog-
nition and neutralizing antibodies, rendering these viruses more resistant to antiviral drugs
(28). Additionally, these mutations can also be involved in modulating the virulence and
transmissibility of the quasispecies (28).

In this study, we focused on assessing intrahost genetic variations of SARS-CoV-2.
We analyzed high-throughput sequencing data sets to profile the sequence diversity
of SARS-CoV-2 variants within distinct sample populations. We observed high intrahost
genetic variability of the viral genome. By comparing variation profiles between sam-
ples from different donors and cell lines, we identified highly conserved subspecies
that independently and recurrently arose in different data sets and, therefore, in differ-
ent individuals. We further analyzed the dominant variant SA20 in a functional assay
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and demonstrate that this truncated S protein avoids inhibition caused by M protein
and enhances syncytium formation. We provide evidence for the existence of a consis-
tently emerging variant identified across geographical regions that may influence
intrahost SARS-CoV-2 pathogenicity.

RESULTS

High intragenetic variability of the SARS-CoV-2 genome in infected individuals.
To assess the extent of SARS-CoV-2 sequence intragenetic variability, we analyzed
15,224 publicly available high-throughput sequencing data sets from infected individu-
als (Table S1). The raw sequencing reads were mapped to the SARS-CoV-2 isolate
Wuhan-Hu-1 reference genome, and the composition of each nucleotide at each posi-
tion on the viral genome was generated. Consensus sequences were produced for
each data set, and the nucleotide compositions for each position were compared to
the respective consensuses. To reduce the number of variations due to amplification
bias and sequencing errors, duplicated reads were combined, and only positions
mapped with a sequencing depth of 50 reads and having at least 5 reads with varia-
tions compared to the sample consensus were considered. Overall, we identified
301,742 variations from 11,362 samples located on 26,113 positions of the 29,903-nu-
cleotide (nt) SARS-CoV-2 genome. We observed an average of 26.6 = 132.0 variable
nucleotides per sample (ranging from 1 to 5,295 variations/sample) (Fig. 1A).

Analysis of the type of intragenetic variations present in SARS-CoV-2 samples
from infected individuals. The analysis of the type of nucleotide changes within samples
revealed that 52.2% were transitions (either purine— purine or pyrimidine— pyrimidine) and
47.8% were transversions (purine—pyrimidine or pyrimidine— purine). Notably, the highest
nucleotide variations corresponded to C—U transitions (43.5%), followed by G—U transver-
sion (28.1%) (Fig. 1B), both types encompassing 71.6% of all variations. Since editing by host
enzymes depends on the sequence context, we extracted 2 nt upstream and downstream
from each genomic position corresponding to variations and generated sequence logos.
Our results indicated a high number of A’s and U’s around all variation types and sites
(62.1% = 3.4%) (Fig. 1B). However, no significant enrichment of base composition within
the motifs surrounding the variations compared to the composition of the viral genome was
observed (all Bonferroni-corrected P values were greater than 0.74, as determined using
Fisher's exact test). Because SARS-CoV-2 is composed of 62% A/U, this suggests that the
observed numbers of A’s and U's around variation sites are mainly due to the A/U content
of the viral genome and that no discernible motifs appear to be enriched around these sites.
We are therefore unable to confirm whether these intragenetic variations are caused by
host RNA editing enzymes.

Identification of recurrent genetic variants of SARS-CoV-2 in samples from
infected individuals. To identify biologically relevant intragenetic variations, we
examined the variable positions that are recurrent in the samples analyzed. The vari-
able positions were tabulated for each sample, and then recurrent intragenetic varia-
tions were calculated as percentages of samples containing a variation at each posi-
tion. Most variations are distributed homogeneously on the viral genome. The number
of variations strongly correlates with the length of each gene (Pearson correlation coef-
ficient of 0.972), and most are poorly shared among samples (Fig. 1C and D). However,
our analysis reveals 15 recurrent intragenetic variations shared by at least 5% of the
samples analyzed (Fig. 1C, above the blue line; Table 1). Among these, four transver-
sions (at nt 25324, 25334, 25336, and 25337) located at the 3’ end of the S gene are
the most recurrent variations (Fig. 1C, inset; Table 1). Three of these transversions (at nt
25334, 25336, and 25337) correspond to missense mutations: E1258D (46.4% of the
samples), E1258Q (27.6% of the samples), and D1259H (20.1% of the samples).
Interestingly, the most observed variation (at nt 25324) is shared by 58.7% of the sam-
ples (6,668 of the 11,362 samples) and corresponds to a C—A transversion producing a
nonsense mutation at amino acid 1254 of the S protein (Fig. 1C and D, red lines;
Fig. 2A, red rectangle). The resulting S protein lacks the last 20 amino acids (SA20),
which includes the ERRS motif at its carboxy terminus (Fig. 2A, white letters on a black
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FIG 1 Intrasample variability of the SARS-CoV-2 genome in infected individuals. (A) Number of intragenetic variations
observed for each sample analyzed. The red dots represent the 11,362 samples analyzed, and the blue violon shows the
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background). Among the samples with this intragenetic variation, this C—A transver-
sion represents from 2.9 to 42.4% of the subspecies identified (mean of 8.2% = 2.9%)
(Fig. 2B; Table 1).

Analysis of intragenetic variations present in SARS-CoV-2 samples from
infected cells. To further investigate variations in a more controlled system, we used
65 high-throughput sequencing data sets generated in a recent transcription profiling
study of several cell lines infected with SARS-CoV-2 (29). As described above, the raw
sequencing reads from infected cells were mapped to the SARS-CoV-2 genome
sequence, the composition of each nucleotide at each position on the viral genome
was generated, and nucleotide variations compared to respective consensus sequen-
ces were calculated (Fig. 3A). Because the sequencing depths of the samples were low,
we considered positions mapped by at least 20 reads and having at least 2 reads with
variations compared to the sample consensus. In the samples derived from infected
cells, we observed 29.7% and 70.3% of transitions and transversions, respectively.
Similar to observations in samples from infected individuals, the highest nucleotide
variations corresponded to G—U transversions (26.1%) and C—U transitions (21.6%)
(Fig. 3B). We then analyzed nucleotide compositions 2 nt upstream and downstream of
the intragenetic variations. As described above, a high number of A’s/U’s (57.8% =+
7.7%) were present around variation sites (Fig. 3B), consistent with the 62% A/U com-
position of the SARS-CoV-2 genome, indicating no enrichment of sequence motifs
around these sites, except for the expected high number of A’s and U'’s.

We then examined the intragenetic variable positions that are recurrent among the
cell lines analyzed. We identified 29 positions within the viral populations showing
intragenetic variation enrichment in at least 10% of the cell cultures, and most of them
are located on structural genes, which are carried on the last 3’-terminal third of the vi-
ral genome (Fig. 3C and D). Similar to our observation from the samples from infected
individuals, a cluster of recurrent variations is located at the 3’end of the S gene,
including the C—A transversion at position 25324 shared in 58.9% of the cell lines ana-
lyzed (Fig. 3C and D, red lines; Table 2). Overall, our results indicate consistent results
between intragenetic variations observed in infected cell lines and in samples from
infected individuals, including the presence of the viral subspecies resulting in an S
protein truncated of its last 20 amino acids (SA20).

Increased fusogenic properties of SARS-CoV-2 SA20. SARS-CoV-2 viral entry into
cells is triggered by the interaction between the S glycoprotein and its cellular receptor,
ACE2. While the complete mechanism of viral entry is not fully understood, it is known
that S undergoes different processing steps by cellular surface and endosomal proteases.
For several coronaviruses, the S protein mediates not only virion fusion but also syncy-
tium formation (7, 12, 13). The presence of dysmorphic pneumocytes forming syncytial
elements is a well-described feature of COVID-19 disease severity (30). One particularity
of SARS-CoV-2 compared to SARS-CoV is the presence of an additional furin-like cleavage
site at the S1/S2 interface. As a consequence, SARS-CoV-2-infected cells have a higher
propensity to express activated S at the surface, which can fuse with other cells express-
ing the receptor ACE2 and form syncytia (30). The normal route of S trafficking involves
an accumulation at the ERGIC, which is known to involve, at least in part, the interaction
of the cytoplasmic portion of S with the M protein encoded by SARS-CoV-2. This interac-
tion allows complex formation leading to virion formation at the ERGIC interface. The
discovery of the SA20 variant missing a portion of the C terminus directed us to investi-

FIG 1 Legend (Continued)

distribution of the data. (B) Type of variation and sequence context for each intrasample variable position. Bars represent
the percentage of each type. Sequence context is represented by logos comprised of the consensus nucleotides (center)
with 2 nt upstream and 2 downstream from each intrasample variable position. (C) Recurrent intragenetic variations are
represented as percentages of samples containing variations at each position. The SARS-CoV-2 genome and its genes are
represented by yellow boxes below the graph. The blue line indicates 5% shared variations and was used to extract the recurrent
intrasample variations listed in Table 1. The inset represents a magnification of the cluster identified at the end of the S gene. (D)
One-dimensional representation of the data shown in panel C for each type of variation individually. The location of the C—A

variation at position 25,324 is indicated by a red line in panels C and D.
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FIG 2 Localization of the C—A missense mutation on the SARS-CoV-2 S protein. (A) Schematic representation of the functional
domain of the SARS-CoV-2 S protein. Below is shown the localization of the C—A variation on the carboxy-terminal domain (CTD) of
the S protein. The mutation is colored and boxed in red. The carboxy-terminal domain (CTD) and the ERRS are colored in yellow and
black, respectfully. (B) Distribution of the intrasample proportion of the C—A transversion at position 25,324 in the 6,668 samples
containing this subspecies. The inset represents the distribution, using red dots to represent the samples having this intragenetic

variation and a blue violon to show the distribution of the data.

gate the effect on cell fusion using a syncytium assay in the presence of the M protein.
HEK-293T cells stably expressing the human ACE2 were cotransfected with plasmids
encoding green fluorescent protein (GFP), the M protein and the wild-type (WT) or A20
S protein. Consistent with previous findings (7), we observed syncytium formation in the
presence of the S WT and SA20, indicating induction of cell-to-cell fusion (Fig. 4A). We
also observed larger syncytium formation with SA20 compared to S WT, which indicates
increased fusogenic activity of this truncated variant. As expected, the coexpression of
the M protein and S WT completely abolishes syncytium formation, which is a conse-
quence of S being retained to the ERGIC. Strikingly, M protein failed to inhibit syncytium
formation in the presence of SA20 (Fig. 4A). To evaluate the effect of the A20 truncation
on spike protein processing, we coexpressed the M protein with WT or A20 S protein in
HEK293T in the absence of ACE2 to avoid cell fusion. Cells were lysed 24 h posttransfec-
tion, and spike processing was assessed by probing for SARS-CoV2 S1 and S2 subunits
by immunoblotting. As seen in Fig. 4B and quantified in Fig. 4C, the SA20 protein under-
goes increased processing, as observed by the presence of more S1 and S2 subunits
compared to S WT (Fig. 4B, lane 2 versus lane 4). The coexpression of the M protein
reduces the processing of the S WT protein while not affecting SA20 processing, as
observed by a reduction of the S1 fragment only for the S WT (Fig. 4B, lane 3 versus lane
5). Taken together, the results shown in Fig. 4 indicate that SA20 displays increased proc-
essing and syncytium formation compared to the wild-type S protein and the truncation
removes an important regulatory domain involving the M protein. As discussed earlier,
the S protein possesses an ER retrieval signal (ERRS) at its carboxy terminus, which is
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required for the S protein to interact with the M protein and accumulate at the ERGIC.
Deletion of this sequence in SARS-CoV was shown to reduce ERGIC accumulation within
the ERGIC. We observed the same phenotype with the SARS-CoV-2 SA20 (Fig. 5). When
M protein was coexpressed, the majority of the S WT was retained intracellularly, with lit-
tle detected on the cell surface. In contrast, the majority of SA20 was distributed
throughout the cytoplasm and on the cell surface. This result is consistent with recent
observations published by Boson et al. using the SA19 truncation mutant (31).

DISCUSSION

Previous analyses of SARS-CoV-2 nucleotide variations indicated a high prevalence
of C—U transitions, suggesting that the viral genome was actively evolving, and host
editing enzymes, such as APOBECs and ADARs, might be involved in this process (23,
24). Although instructive on the role of host involvement in SARS-CoV-2 genome evo-
lution, these studies were performed on consensus sequences (i.e., one per sample)
and explore only part of the genetic landscape of this RNA virus. Here, we used a large
number of high-throughput sequencing data sets to profile the intrasample sequence
diversity of SARS-CoV-2 variants in both infected individuals and infected cell lines. We
observed extensive genetic variability of the viral genome, including a high number of
transversions, and identified several positions with recurrent intragenetic variability in
the samples analyzed. Notably, most of the samples possessed a C—A missense muta-
tion, producing an S protein that lacks the last 20 amino acids (SA20) and results in
increased cell-to-cell fusion and syncytium formation.

Most intrasample variations are distributed homogeneously across the viral genome
and are not conserved or recurrent among samples, and a large number of them are
C—U or G—U mutations. Previous analyses of SARS-CoV-2 sequence variations pro-
posed that host editing enzymes might be involved in coronavirus transition editing,
based on results showing that C—U transitions occur within a sequence context remi-
niscent of APOBEC1-mediated deamination (i.e., [AUIC[AU]) (21-24). Here, we investi-
gated nucleotide compositions at each variation site and observed a high number of
A’s and U’s around all variation types and sites. However, since the SARS-CoV-2 ge-
nome is 62% A/U-rich, and similar percentages of A’s and U’s were observed around all
variations, we concluded that no motifs are enriched around these variations in the vi-
ral subspecies analyzed here. Consequently, our results do not allow us to conclude
the frequency of intrasample genetic variations caused by host RNA editing enzymes.
Previous reports used consensus sequence variation analyses to suggest the involve-
ment of editing enzymes (21-24). If host RNA editing enzymes have a major role in co-
ronavirus genome editing, such modified variants will likely be very abundant in the
quasispecies population and thus be reflected on the consensus sequence (i.e.,, >50%
positional frequency). In our study, the variations in each data set were compared to
their respective consensus sequence. This means that if RNA editing did occur at high
frequency on a defined positional hot spot, it would not have been captured by our
analysis method of the quasispecies but directly reflected on the consensus sequence.
We did not analyze variations in consensus sequences as this was done previously for
SARS-CoV-2 (23, 24).

Although it is possible that host RNA editing enzymes are responsible for the occur-
rence of some variations, C—U transitions and G—U transversions are also generally
associated with nucleotide deamination and oxidation, respectively (32-39). It is com-

FIG 3 Legend (Continued)

the data. (B) Type of variation and sequence context for each intrasample variable position. Bars represent the percentage
of each type. Sequence context is represented by logos comprised of the consensus nucleotides (center) with 2 nt
upstream and 2 downstream from each intrasample variable position. (C) Recurrent intragenetic variations are represented
as percentages of samples containing a variation at each position. The SARS-CoV-2 genome and its genes are represented
by yellow boxes below the graph. The blue line indicates 10% shared variations and was used to extract the intrasample
variations listed in Table 2. The inset represents a magnification of the cluster identified at the end of the S gene. (D) One-
dimensional representation of the data shown in panel C for each type of variation individually. The location of the C—A

variation at position 25,324 is indicated by a red line in panels C and D.
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FIG 4 Increased processing and cytopathic syncytium formation by the SARS-CoV-2 SA20 protein. (A)
Fluorescence microscopy of HEK-293T-hACE2 cells expressing GFP (green) with empty vector
(pCAGGS) or plasmid expressing SARS-CoV-2 S or SARS-CoV-2 SA20 in the presence or absence of M
protein. Counterstaining using Hoechst dye (blue), which labels nuclear DNA, is shown in the right
panel. (B) Processing of spike protein was detected using anti-S1 and anti-S2 immunoblotting of HEK-
293T cell lysates previously transfected with empty vector (pCAGGS) or vector expressing SARS-CoV-2
S or SARS-CoV-2 SA20 in the presence or absence of M protein. (C) Three independent immunoblots,
as shown in panel B, were quantified using densitometry and statistically analyzed using a two-tailed
Student's t test (**, P < 0.05).

mon practice to thermally inactivate SARS-CoV-2 samples before performing RNA
extractions, reverse transcription-PCR (RT-PCR), and sequencing (40). However, heating
samples can result in free radical formation, such as 8-hydroxy-20-deoxyguanine (8-
Oxo0-dG), which could cause high levels of C—A and G—U mutations and promote the
hydrolytic deamination of C—U (32-35, 37, 39, 41, 42). It was previously reported that
these types of mutations occur at low frequency, that they are mostly detected when
sequencing is performed on only one DNA strand, and that they are highly variable
across independent experiments (34, 36). Consequently, the transversions observed in
our analysis could be due to heat-induced damage, RNA extraction, storage, shearing,
and/or RT-PCR amplification errors. However, we identified several positions with intra-
sample variability recurrent in several independent samples from both infected individ-
uals and infected cells. They were detected at moderate to high frequencies, ranging
from 2.5 to 39.3% per sample (Tables 1 and 2), and most were derived from paired-end
sequencing (90.7% of the samples) in which the two strands of a DNA duplex were
considered. Thus, it is likely that these variations are genuine and represent hot spots
for SARS-CoV-2 genome intrasample variability.

Among the variable positions identified in infected cells, most of them are located in
the last 3'-terminal third of the viral genome. These cells were infected with a large num-
ber of viruses (i.e., a high multiplicity of infection [MOI]) for 24 h (29). The presence of
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SARS-CoV-2 SWT SARS-CoV-2 SA20

pCAGGS

FIG 5 Subcellular localization of the S WT and SA20 in the presence or absence of M protein. HEK-
293T cells expressing S proteins both with and without M protein were stained with anti-S protein
(red), and the nucleus was stained with Hoechst 33342 dye (blue). Coexpression of M protein induced
intracellular accumulation of the S WT (white arrow) but not the SA20 protein.

several variations at positions in the region coding for the main structural proteins likely
reflects that this is a region with increased transcriptional activity due to the requirement
of producing their encoded mRNAs from subgenomic negative-sense RNAs (8).

Interestingly, a cluster of variations located at the 3’end of the S gene was observed
for the two data sets analyzed. They correspond to four transversions located at the
3’end of the S gene and are shared by a large proportion of the samples. Three of these
correspond to missense mutations changing the charged side chains of two amino acids
(E1258D, E1258Q, and D1259H). Notably, most of the samples possess a variability at
position 25324, producing a nonsense mutation at amino acid 1254 of the S protein. The
resulting protein lacks the last 20 amino acids (SA20) and thus does not include the
ERRS motif at its carboxy terminus. For SARS-CoV-1, the ERRS domain accumulates the S
protein to the ERGIC and facilitates its incorporation into virions (11). While the mecha-
nism is not completely understood, mutation of the ERRS motif on S resulted in a failure
to interact with the M protein at the ERGIC and rather resulted in trafficking of S to the
cell surface. Deletion of this motif might cause the S protein of SARS-CoV-2 to accumu-
late to the plasma membrane and increase the formation of large multinucleated cells
known as syncytia. Consistent with these observations, our results indicate larger syncy-
tium formation with SA20 compared to the complete S protein. Moreover, we observed
that the M protein failed to prevent SA20-induced syncytium formation, as observed
with the WT S protein, which correlates with the role of the M protein in interacting with
the spike and retaining it in ERGIC. Similar mutants (SA18, SA19, and SA21) were recently
reported to increase both infectivity and replication of vesicular stomatitis virus (VSV)
and human immunodeficiency virus (HIV) pseudotyped with SARS-CoV-2 S protein in
cultured cells (43-46). Because these viruses bud from the plasma membrane (47, 48), an
increased localization at this site would explain the selection of these deletion mutants
in pseudotyped virions. However, such variants would unlikely be transmitted horizon-
tally in naturally occurring CoV, where the budding site is the ERGIC (9).

Our findings indicate the presence of consistent intrasample genetic variants of
SARS-CoV-2, including a recurrent subpopulation of SA20 variants with elevated fuso-
genic properties. It is tempting to suggest a link between SARS-CoV-2 pathogenesis
and the presence of SA20, since severe cases of the disease were recently linked to
considerable lung damage and the occurrence of syncytia (30, 49). Also, as observed
for several enveloped viruses, syncytium formation could allow cell-to-cell spreading
without virion production, which could facilitate not only viral dissemination but also
immune evasion (50). Clearly, more investigation is required to better define the extent
of SARS-CoV-2 variability in infected hosts and to assess the role of these subspecies in
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the life cycle of this virus. More importantly, further studies on the presence of SA20
and its link with viral pathogenicity could lead to better diagnostic strategies and
design treatments for COVID-19.

MATERIALS AND METHODS

Analysis of intragenetic variability within SARS-CoV-2 samples. A total of 15,289 publicly avail-
able high-throughput sequencing data sets were downloaded from the NCBI Sequence Read Archive
(up to 10 July 2020). They comprise 15,224 data sets from infected individuals and 65 data sets from
infected cell lines. Table S1 in the supplemental material includes all of the accession numbers. All data
sets were derived from lllumina sequencing technology. The data sets from infected cells were gener-
ated by Blanco-Melo et al. (29). Duplicated reads were combined to reduce amplification bias and
mapped to the SARS-CoV-2 isolate Wuhan-Hu-1 reference genome (NC_045512v2) using hisat2 (v.2.1.0)
(51). For each data set, the consensus sequences and the frequency of nucleotides at each position were
extracted from files generated by bcftools (v.1.10.2) of the samtools package (v.1.1) with an in-house
Perl script (52, 53). All further calculations were performed in R. To reduce the number of variations due
to sequencing errors and/or protocol differences, only positions mapped with a sequencing depth of 50
reads and having at least 5 reads with variations compared to the sample consensus were considered.
Sequence logos were generated with the ggseqlogo package (v.0.1) (54).

Cell culture and plasmids. Human embryonic kidney 293T (HEK-293T) cells were obtained from the
American Type Culture Collection (ATCC CRL-11268) and maintained in Dulbecco’s modified Eagle’s me-
dium (DMEM) supplemented with 5% fetal bovine serum (Fisher Scientific), 5% bovine calf serum (Fisher
Scientific), 100 U/ml penicillin, and 100 wg/ml streptomycin (Fisher Scientific). HEK-293T cells stably
expressing human ACE2 (HEK-293T-hACE2 cell line; BEI Resources) were cultured and maintained in
DMEM (Corning) supplemented with 10% fetal bovine serum (Sigma), 100 U/ml penicillin, and 100 ng/
ml streptomycin. All cells were cultured at 37°C in a humidified atmosphere containing 5% CO,. pCAGGS
expressing the SARS-CoV-2 S protein (Wuhan-Hu-1; WT) was provided by Florian Krammer (Mount Sinai).
SARS-CoV-2 SA20 was generated using overlapping PCR to introduce a termination codon at residue
1254. The expression construct encoding SARS-CoV-2 M was generated by PCR amplification of the M
gene from pLVX-EF1alpha-SARS-CoV-2-M-2 x Strep-IRES-Puro (a kind gift of Nevan Krogan, UCSF) and
addition of a stop codon to remove the Strep (streptavidin) tag prior to cloning into pCAGGS.

Syncytium formation assay. Twenty-four-well plates were seeded with HEK-293T-hACE2 cells in
complete medium to obtain 90% confluence the following day. Cells were then transiently cotransfected
using JetPRIME (Polyplus Transfection, France) with plasmids encoding GFP (murine leukemia virus
[MLV]-GFP, a kind gift of James Cunningham, Brigham and Women'’s Hospital), SARS-CoV-2 S or SARS-
CoV-2 SA20, and M or pCAGGS at a 0.15:0.2:0.65 ratio. Eighteen hours posttransfection, cells were
imaged (ZOE fluorescent cell imager; Bio-Rad) for syncytium formation using the green channel to visu-
alize fusion of GFP-positive cells as performed previously (55).

Western blot analysis. HEK-293T cells were transfected with the empty vector (pCAGGS), with
SARS-CoV-2 S or SARS-CoV-2 SA20 and M, or with pCAGGS using JetPRIME at a 1:1 ratio. The following
day, cells were washed once with cold phosphate-buffered saline (PBS) and lysed in cold lysis buffer (1%
Triton X-100, 0.1% IGEPAL CA-630, 150 mM NaCl, 50 mM Tris-HCl, pH 7.5) containing protease and phos-
phatase inhibitors (Cell Signaling). Proteins in cell lysates were resolved on 4 to 12% gradient SDS-poly-
acrylamide gels (NuPage; Invitrogen) and transferred to polyvinylidene difluoride (PVDF) membranes.
Membranes were blocked for 1 h at room temperature with blocking buffer (5% skim milk powder dis-
solved in 25 mM Tris, pH 7.5, 150 mM NaCl, and 0.1% Tween 20 [TBST]). Processing of spike protein was
detected by immunoblotting using an anti-S1 antibody (SARS-CoV/SARS-CoV-2 spike protein S1 polyclo-
nal; Invitrogen) and anti-S2 antibody (SARS-CoV/SARS-CoV-2 spike protein S2 monoclonal; Invitrogen).
Overexpression of M was also detected by immunoblotting and using an anti-M antibody (rabbit anti-
SARS membrane protein; Novus Biologicals). Membranes were incubated overnight at 4°C with the
appropriate primary antibody in the blocking buffer. Blots were then washed in TBST and incubated
with horseradish peroxidase (HRP)-conjugated secondary antibody for 1 h at room temperature (anti-
mouse HRP and anti-rabbit HRP; both from Cell Signaling). Membranes were washed, incubated in
chemiluminescence substrate (SuperSignal West Femto Maximum Sensitivity substrate; Thermo Fisher
Scientific), and imaged using the ChemiDoc XRS+ imaging system (Bio-Rad). In some instances, the
same membrane was stripped and reprobed for actin (monoclonal anti-B-actin; Millipore Sigma).
Densitometry was performed using ImagelJ software (56) and data analysis with Prism 8 (GraphPad).

Immunofluorescence. HEK-293T cells were transiently cotransfected using JetPRIME (Polyplus
Transfection, France) with plasmids encoding SARS-CoV-2 S or SARS-CoV-2 SA20 and M proteins.
Twenty-four hours posttransfection, an 18-mm poly-L-lysine (PLL)-coated glass coverslip was seeded
with cells in complete medium to obtain a 25% confluence the following day. Cells were then stained
with an anti-S2 antibody (SARS-CoV/SARS-CoV-2 spike protein S2 monoclonal; Invitrogen) and sand-
wiched with a goat anti-mouse IgG conjugated with Alexa Fluor 594 (Thermo Fisher Scientific). Nuclei
were counterstained with Hoechst 33342 stain solution. Cells were imaged on a Zeiss Axio Observer D1
fluorescence microscope, and the image was analyzed using ImagelJ software (56).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TABLE S1, TXT file, 0.2 MB.
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