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Interest regarding stem cell based therapies for the treatment of congenital or acquired
craniofacial deformities is rapidly growing. Craniofacial problems such as periodontal dis-
ease, cleft lip and palate, ear microtia, craniofacial microsomia, and head and neck cancers
are not only common but also some of the most burdensome surgical problems worldwide.
Treatments often require a multi-staged multidisciplinary team approach. Current surgical
therapies attempt to reduce the morbidity and social/emotional impact, yet outcomes can
still be unpredictable and unsatisfactory. The concept of harvesting stem cells followed
by expansion, differentiation, seeding onto a scaffold and re-transplanting them is likely to
become a clinical reality. In this review, we will summarize the translational applications of
stem cell therapy in tissue regeneration for craniofacial defects.
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INTRODUCTION
Although conventional surgical treatments for congenital and
acquired craniofacial problems continue to make progress, the
final functional and cosmetic outcomes can be varied, unpre-
dictable and sometimes unsatisfactory mostly because of com-
plications, infections, and scar tissue. The promise of regenerative
medicine brings new energy and hope for improved outcomes
by replacing damaged or absent tissues with healthy regenerated
tissue (Figure 1).

One potential stem cell based strategy for repairing craniofacial
defects is the use of embryonic stem (ES) cells. ES cells are derived
from the inner cell mass (ICM) of the blastocyst and possess the
capacity to differentiate into all cell types (Evans and Kaufman,
1981; Martin, 1981; Thomson et al., 1998). However, the applica-
tion of ES cells for clinical purposes has been limited by ethical
issues, dysregulated ES cell differentiation, and immune rejection.
In addition, the possibility of genomic instability and tumori-
genesis still needs to be examined before any large-scale clinical
experiments are planned.

The ability to generate induced pluripotency stem (iPS) cells is
one of the major breakthroughs in stem cell study in recent years
(Takahashi and Yamanaka, 2006; Takahashi et al., 2007). Somatic
cells from human fibroblast cells can be reprogrammed into a pri-
mordial, ES-like state and are able to differentiate into all three
germ layers (ectoderm, endoderm, and mesoderm). This technol-
ogy offers a revolutionary approach for the introduction of autolo-
gous multipotential stem cells into patient-specific, tissue-specific
regeneration and repair.

Applications of iPS cell technology to the clinic are still at a
preliminary stage and face some of the same concerns as their ESC
counterpart. Foremost amongst them is the issue of dysregulated
growth (Li et al., 2008) and lack of methods for is ensuring accu-
rate and complete reprogramming of differentiated somatic cells
from progeny. The second issue of major concern is the potential
for tumor growth and development from even micro contami-
nation of undifferentiated cells. This is further compounded by
the persistence of ectopic gene expression, since iPS cells are often
produced by transduction of somatic cells with lentivirus encod-
ing ectopic transgenes. There are concerns that the continuous
expression of transgenes may bring the risk of abnormal tumor
growth (Nelson et al., 2010). The next generation technologies
using small molecules or alternative approaches to gene induction
may address these limitations. Coupled with recent advances in
identifying biomarkers to select against tumor forming pluripo-
tent cells and robust techniques to differentiate the iPS and ES cells
into lineage restricted stem cells, the potential therapeutic use of
stem cells ideally suited for craniofacial repair is gaining ground
(Alvarez-Manilla et al., 2010; Bajpai et al., 2010; Curchoe et al.,
2010).

Tissue-specific postnatal stem cells have been isolated from a
variety of organs and tissues, including but not limited to, bone
marrow (Castro-Malaspina et al., 1980; Civin et al., 1984), neural
tissue (Flax et al., 1998; Johansson et al., 1999), muscle (Chen
and Goldhamer, 2003; Huard et al., 2003), and skin (Janes et al.,
2002; Lavker and Sun, 2003). Compared to ES or iPS cells that
self-renew indefinitely, tissue-specific adult stem cells also have
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significant self-renewal capability, but severely limited differen-
tiation ability. In the craniofacial region, multiple types of stem
cells have been recognized, including bone marrow mesenchymal
stem cells (BMMSC), muscle satellite cells (MSCs), dental pulp
stem cells (DPSCs), periodontal ligament stem cells (PDLSCs),
and stem cells from human exfoliated deciduous (SHED teeth;
Gronthos et al., 2000, 2002; Miura et al., 2003; Seo et al., 2004;
Akintoye et al., 2006) (Figure 2).

In the current review, we aim to summarize the application of
stem cell therapies in tissue regeneration of various craniofacial
defects.

SCAFFOLDS AND BIOMATERIALS
Craniofacial reconstructive surgery manipulates available tissues
in a three dimensional field, either by transferring tissue from a
donor site or supporting and shaping the repair with artificial scaf-
folds and biomaterials. Biomaterials in stem cell tissue engineering
and regeneration not only provide a supportive scaffold but also
create an artificial niche that allows natural processes of stem
cell renewal, proliferation, and differentiation while promoting
vascularization, integration, adhesion, and survival of the newly
generated tissue (Rossi et al., 2010a). Incorporating small mole-
cules and growth or differentiation promoting factors within the
biomaterials can further potentiate these natural repair processes
resulting in efficient biological repair. The basic requirement for
all biomaterial used for tissue engineering purposes is that it be
inert and does not provoke a significant inflammatory response.
However the tensile strength, biostability or biodegradability are
features that will be favored in a context dependent manner. Inert
stable scaffolds provide rigidity but lack the ability to remodel with
age. While biodegradable scaffolds that provide transient three-
dimensional contour for the regenerating tissue are especially
appealing for soft tissue repair but raise the concern of inade-
quate regeneration, inadequate mechanical properties of the newly
formed tissue and sustained function over long periods of time.

CRANIOFACIAL BONE TISSUE ENGINEERING AND STEM
CELLS
Current clinical approaches for reconstructing craniofacial bone
defects include autologous bone grafts, allogeneic bone grafts, and
prosthetic grafts such as titanium frameworks (Marchac, 1982;

Shenaq, 1988; Goodrich et al., 1992; Cowan et al., 2004). Stem cell
based strategies are currently a promising approach in craniofacial
bone tissue engineering (Figure 1).

Different cell sources have been used for repairing craniofa-
cial bony defects. BMMSCs have been reported to be capable of
multipotential differentiation. When cultured in the presence of
dexamethasone, inorganic phosphate, and vitamin C, BMMSCs
can be induced to become osteoblast-like cells in vitro and form
calcified nodules (Gronthos et al., 1994). However, when trans-
planted into immunocompromised mice, only a subset of the
BMMSCs was able to form ectopic bone in the host, suggest-
ing that heterogeneity exists among BMMSCs (Kuznetsov et al.,
1997; Gronthos et al., 2003). Successful repair of bony defects
has been demonstrated in both calvarial and long bone in vari-
ous animal models (Bruder et al., 1998; Krebsbach et al., 1998;
Kon et al., 2000; Mankani et al., 2001). Autologous BMMSCs have
also been used in clinical experiments to repair bony defects in
the mandible. In a study conducted by Warnke and coworkers,
autologous BMMSCs were seeded onto custom-made mandible
scaffolds composed of titanium and bone mineral blocks contain-
ing BMP7. The construct was placed under the patient’s skin for
7 weeks and then transplanted into the patient’s mouth to repair
the mandible defect. The patient showed significantly improved
masticatory function and was satisfied with the esthetic outcome
(Warnke et al., 2004).

Adipose-derived mesenchymal stem cells (AMCs) are also used
for repairing craniofacial bone defects. AMCs are readily obtained
via lipo-aspiration and expand easily in vitro. They are multipo-
tential and capable of forming different types of tissue including
muscle, bone, neural, and chondrocyte tissues (Zuk et al., 2001;
Gimble and Guilak, 2003; Hicok et al., 2004). AMCs taken from
human sources were shown to be able to form bone when seeded in
an HA-TCP scaffold and transplanted into immunocompromised
mice (Hicok et al., 2004). In a clinical experiment conducted by
Cowan and coworkers, AMCs were expanded in vitro and seeded
in apatite-coated, PLGA scaffolds. The construct was then trans-
planted into a human patient to repair a critical size calvarial bone
defect. New bone formation was observed 2 weeks after transplan-
tation and complete bony bridging was observed by 12 weeks. Over
90% of the new bone formation was contributed by the transplant
(Cowan et al., 2004).

FIGURE 1 | Craniofacial structures and potential for regenerative repair.
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FIGURE 2 | Major sources of cells for craniofacial repair and
regeneration. (A) Pluripotent stem cells, (B) Adult stem cells.

For tissue engineering purposes, stem cells are usually delivered
with scaffolds. One critical requirement for the bone-engineering
scaffold is osteoconductivity, which means the ability of the scaf-
fold construct to integrate with the host bone (Zaky and Cancedda,
2009). It has been widely accepted that the HA-TCP combination
provides the best bone integration ability and maintains a proper
resorption rate (Cancedda et al., 2007). In addition, polymeric
materials have also been widely tested as the scaffold. These scaf-
fold materials are based on alpha-hydroxy acids and are usually
composed of polyglycolic acid, poly-l-lactic acid, or both. They
have limited osteoconductive ability but can be excellent scaffold
materials when combined with HA for bone repair (Cancedda
et al., 2007).

Besides supporting the cells, another important function of
the scaffold is to deliver growth factors. Various growth factors

promote angiogenesis and osteogenesis. For example, BMP2, TGF-
beta, and VEGF all enhance bone formation from osteogenic cells
(Rose et al., 2004; Yang et al., 2004; Montjovent et al., 2007; Oest
et al., 2007). Transgenic BMMSCs that over express BMP-4 also
enhance bone formation (Savarino et al., 2007). Despite the many
informative and promising results, the effects of growth factors still
need to be studied more thoroughly, considering some unexpected
effects such as oncogenicity (Hunter and Avalos, 2000).

SKELETAL MUSCLE TISSUE REGENERATION AND STEM
CELLS
Functional muscle regeneration is likely the most challenging
task in craniofacial tissue regeneration, yet with the potential for
the greatest impact. Muscle reconstruction plays a critical role
in rebuilding functional craniofacial structures like cleft palate
repair, whole face reconstruction from congenital or acquired
deformities and tongue reconstruction after tumor resection. Cur-
rent therapies require surgical tissue transfer from local or distant
donor sites, which can generate secondary morbidity of volume
loss and pain, with potential additional risks of infection and
functional loss.

Multiple stem cell sources of skeletal muscle cells have been
identified either within or outside the muscle compartments.
Skeletal muscle precursors (myoblasts) can be derived from satel-
lite cells (reserve cells located on the surface of mature myofibers
underneath the basal lamina) or from cells lying beyond the
myofiber, e.g., interstitial connective tissue or bone marrow. Both
of these classes of cells may have stem cell properties (Grounds
et al., 2002). In vivo, SCs can be characterized by their expression
of Pax7 (Seale et al., 2000). SCs can be isolated through either
mechanical or enzymatic disassociation from muscle fibers and
can be expanded in vitro (Rosenblatt et al., 1995; Collins et al.,
2005; Cerletti et al., 2008; Rossi et al., 2010b). After transplanta-
tion, they maintain a strong myogenic potential both in vitro and
in vivo. SCs obtained from single fiber explants, then expanded and
injected intramuscularly, showed poor proliferation and regenera-
tion ability, yet freshly isolated SCs present better proliferative and
regeneration potential (Beauchamp et al., 1999; Collins et al., 2005;
Montarras et al., 2005; Rossi et al., 2010b). Therefore, the preferred
method of delivering SCs might be to isolate SCs freshly from a
muscle biopsy and deliver them directly, to avoid the disadvantages
of in vitro culture.

Several other cell types have been identified as myogenic within
the muscle compartment. The mesoangioblasts are associated
with blood vessels and express early endothelial markers includ-
ing Flk1, CD34, stem cell antigen-1, and VE-Cadherin (Barberi
et al., 2007). They can proliferate for several passages with no
obvious tumorigenic potential. Using co-culture with myoblasts,
they can be easily induced into myoblasts (Cossu and Bianco,
2003). Some factors including integrin-alpha4, stromal cell derived
factor-1 (SDF-1), and TNF-alpha promote the migration of wild
type mesoangioblasts to dystrophic muscles by five fold, which
enables the production of new muscle fibers expressing a nor-
mal amount of the mutated genes (Galvez et al., 2006). Another
myogenic stem cell population within the muscle compartment is
the pericyte. The pericyte can be characterized by expression of
NG2 and PDGF receptor beta. Pericytes isolated from numerous
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human organs have been shown to be myogenic both in vitro
and in vivo (Quattrocelli et al., 2011). Skeletal myogenic prog-
enitors (SMPs) have been isolated based on beta1-integrin and
CXCR4 expression from skeletal muscle (Cerletti et al., 2008).
SMPs were able to restore dystrophin expression and improve
muscle function and histology when transplanted into dystrophic
mice. SMP transplantation resulted in the rebuilding of a func-
tional stem cell pool within the muscle compartment of the
recipient mice.

Muscle stem cells (MuSCs) were also isolated by the specific
expression of integrin-alpha7 and CD34. MuSCs injected into
muscles of mice damaged with notexin were able to rebuild
the host SC niche and generate new muscle fibers (Sacco et al.,
2008).

Outside of the muscle compartment, BMMSCs are capable
of undergoing myogenic differentiation (Bianco et al., 2008).
After direct injection, BMMSCs can migrate to damaged muscle
sites and undergo myogenic differentiation (Bianco et al., 2008).
CD133+ cells into the blood stream have also been tested for their
myogenic potential (Torrente et al., 2007). They can be induced
in vivo and in vitro into myogenic progenitors and may be able
to contribute to the treatment of muscular diseases together with
other bone marrow derived progenitors.

Until now, there have been only a few human clinical tri-
als of stem cell based strategies to treat muscular dystrophy,
myocardial infarction and stress urinary incontinence by using
SC or CD133+ cells (Tedesco et al., 2010). There have been
no reports of regenerating the craniofacial skeletal muscles.
Although they share many common properties with the limb
skeletal muscles, craniofacial skeletal muscles also possess many
unique features. Their embryonic origins are different from
the limb muscles (McLoon et al., 2007). Craniofacial skeletal
muscles express some immature myosin heavy chain isoforms
not present in the limb muscles (McLoon et al., 2007). More-
over, craniofacial skeletal muscles, especially extraocular mus-
cles (EOM) and laryngeal muscles (LM), contain a population
of activated satellite cells that is nearly twofold more than that
of the limb skeletal muscles (Renault et al., 2002). This raises
the interesting possibility that craniofacial muscles might be a
better source than limb muscles for obtaining progenitor cells
to treat Duchenne and related muscular dystrophies or other
musculoskeletal defects.

DENTAL STEM CELLS AND TOOTH REGENERATION
Human teeth are comprised of enamel, dentin, tooth, pulp, and
cementum covering the root surface. The periodontal ligament
surrounds and supports the tooth. Unlike bone, most hard tis-
sue in the tooth does not undergo renewal after its formation;
only dentin can regenerate itself internally upon injury, suggesting
the existence of stem cell populations within the tooth pulp. One
of the first dental related stem cell populations identified are the
DPSCs (Gronthos et al., 2000). DPSCs are capable of differenti-
ating into multiple types of tissue including odontoblast, bone,
adipocyte, and neuron (Gronthos et al., 2000; Miura et al., 2003;
Huang et al., 2009). In addition, SHED teeth pulp also possess
multipotential differentiation ability (Miura et al., 2003). Both
SHED and DPSCs are able to generate tissue resembling human

tooth pulp under appropriate conditions (Cordeiro et al., 2008;
Casagrande et al., 2010; Demarco et al., 2010; Sakai et al., 2010).
Several studies have attempted to rebuild teeth in vitro by com-
bining tooth pulp derived stem cells with proper scaffold materials
(Young et al., 2002; Ohazama et al., 2004; Cordeiro et al., 2008). In
the Ohazama study, different types of non-dental derived mes-
enchymal cells including ES cells, neural stem cells and adult
BMMSCs were mixed with embryonic oral epithelium cells. The
mesenchyme-epithelium cell mixtures were then delivered into
kidney capsules of adult mice in an effort to recapitulate the clas-
sical dental epithelium-mesenchyme interactions which initiate
and direct tooth development. All the mixtures resulted in the
development of tooth-like structures and surrounding bone. This
experiment indicated that it is possible to regenerate a tooth by
mimicking the natural developmental process (Ohazama et al.,
2004). Other studies have used DPSCs or SHED for treatment of
disease of non-dental tissue such as muscle dystrophies, critical
size bony defect, spinal cord damage, corneal injury, and even sys-
temic lupus erythematosus (Nosrat et al., 2001; Kerkis et al., 2008;
Seo et al., 2008; Monteiro et al., 2009; Ishkitiev et al., 2010; Yamaza
et al., 2010).

Scaffolds provide a 3-D framework for cells and serve as an
extracellular matrix for a finite period of time. Scaffolds provide
an environment that allows both cell migration and proliferation,
and may be fabricated in pre-determined shapes and composi-
tion (Nakashima and Akamine, 2005). The first scaffold material
used successfully for tooth tissue engineering was a copolymer of
PGA/PLLA and PLGA (Young et al., 2002), which are the most
commonly used scaffold materials for tissue engineering studies.
These scaffolds are biodegradable and biocompatible. Changing
the component ratio can control the degradation rate of the
PLLA/PGA scaffold. PLLA has also been used in many tooth tissue
engineering studies, and tissue with morphology and structure
resembling that of human tooth pulp has been generated after
seeding dental pulp stem cells onto the PLLA scaffolds (Cordeiro
et al., 2008; Casagrande et al., 2010; Demarco et al., 2010; Sakai
et al., 2010). Odontoblast specific marker DMP-1 is detectable
within scaffolds generated with gelatin or salt porogens (Demarco
et al., 2010). In the future, the ability to control the shape of the
tissue engineered tooth generated with appropriate scaffold mate-
rials will be a crucial step towards bringing the technique to the
clinic (Modino and Sharpe, 2005).

PERIODONTIUM TISSUE REGENERATION AND STEM CELLS
Periodontal diseases affect 15% of the human adult population,
with periodontal soft tissue loss and subsequent supporting bone
resorption leading to loss of teeth (Mase et al., 2006). Current
treatment approaches include the use of guided tissue regener-
ation, bioactive grafting materials, and application of bioactive
molecules to induce regeneration, but the overall effects of these
approaches are relatively modest and limited in practical appli-
cations. Regenerating the periodontium is a challenge in the
treatment of periodontal diseases due to its complex structure,
consisting of cementum, periodontal ligament, gingiva, and sup-
porting bone. Thus, regeneration of the periodontium will require
either multiple cell populations or a multipotential stem cell
population.
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The Periodontal ligament is unique among the ligament and
tendon tissues of the body, because it is the only soft tissue
connecting two distinct hard tissues (McCulloch et al., 2000).
The periodontal ligament suspends the tooth like a cushion in
order transduce the mechanical load from the teeth evenly onto
the supporting bone. Early studies of different animal models
demonstrated that the periodontal tissues possess some regen-
eration activity, suggesting the existence of stem cell population
within the periodontium (Karring et al., 1980; Nielsen et al., 1980;
Nyman et al., 1980, 1982; Parlar et al., 2005). After depletion
of various periodontal tissues, not only the periodontal liga-
ments, but also cementum and alveolar bone, can be regenerated,
suggesting the presence of multipotential stem cell populations
(Nielsen et al., 1980; Nyman et al., 1982; Parlar et al., 2005).
Studies conducted on the human periodontium indicate the pres-
ence of a putative PDLSCs population (Seo et al., 2004), posi-
tive for MSC markers including STRO-1 and CD146 and able
to differentiate into osteoblasts, adipocytes, and cementoblasts
(Seo et al., 2004). Human PDLSCs expanded in vitro can con-
tribute to periodontal tissue regeneration when transplanted into
immunocompromised mice (Seo et al., 2004). PDLSCs are mul-
tipotential and can differentiate in vitro into various mesodermal
(adipocyte, osteoblast, and chondrocyte), ectodermal (neuron),
and endodermal (hepatocyte) cell types (Seo et al., 2005).

Cells of non-dental origins have also been tested for periodontal
tissue regeneration. In 2004, Kawaguchi et al. and coworkers trans-
planted ex vivo expanded bone marrow MSCs into recipient dogs
with periodontal defects. After a month, the transplanted cells were
able to repair the defective periodontal tissue, including cemen-
toblasts, periodontal ligament, and bone. This study suggested
that bone marrow MSCs could be used as a source for periodon-
tal tissue regeneration (Kawaguchi et al., 2004). Their following
study indicated that regeneration by MSCs could be enhanced
by addition of brain-derived neurotrophic factor (BDNF). BDNF
increased the expression level of multiple bone and periodontal
tissue related markers including OPN, BMP2, collagen I, ALPase,
and VEGF (Takeda et al., 2005).

Cell sheet engineering has emerged as a novel alternative
approach for periodontal tissue engineering without the disrup-
tion of critical cell surface proteins such as ion channels and growth
factor receptors or cell-to-cell junction proteins. In this approach,
PDL cells are isolated from an extracted tooth and cultured on
temperature-responsive culture dishes at 37˚C. Transplantable cell
sheets can be harvested by reducing the temperature to 20˚C and
transplanted into a bony defect (Huang and Zhang, 2011). This
method results in an obvious cementum layer and Sharpey’s fibers
(Flores et al., 2008). Cell sheet engineering therefore allows for
tissue regeneration by either direct transplantation of cell sheets
to host tissues or the creation of three dimensional structures
via the layering of individual cell sheets. By avoiding the use of
any additional materials such as carrier substrates or scaffolds,
the complications associated with traditional tissue engineering
approaches, such as host inflammatory responses to implanted
polymer materials, can be avoided. Thus, cell sheet engineering
presents several significant advantages and can overcome many
of the problems that have previously restricted tissue engineering
with biodegradable scaffolds (Yang et al., 2005).

ORAL MUCOSA STEM CELLS AND TISSUE ENGINEERING
The human oral mucosa is highly active in terms of cell turnover
and regeneration, which suggests the existence of one or more
types of stem cell populations. Recently a stem cell population was
identified from the lamina propria of adult human oral mucosa.
This population was identified by positive expression of ES cell
markers Oct4, Sox2, Nanog, and p75. These cells were local-
ized in vivo to cord-like structures. They are highly proliferative
in vitro and are able to differentiate into tissue of mesodermal
(osteoblast, chondrocyte, and adipocyte), endodermal (endothe-
lium), and ectodermal lineages (neuronal cells). Surprisingly,
when transplanted into nude mice and treated with dexametha-
sone, these cells were able to form tumors containing mixed types
of tissue (Marynka-Kalmani et al., 2010). This study indicates
caution needs to be taken when applying stem cells for tissue
engineering. In addition, Tran et al. (2003) reported the trans-
differentiation of BMMSCs into buccal epithelial cells in human
patients. By tracing the Y-chromosome of the bone marrow MSC
male donor in the female recipient patients, they were able to
localize the distribution of donor bone marrow MSCs cells on
the buccal epithelial cells of the recipients. 1.8% of the recipi-
ents’ cheek epithelial cells originated from the donor MSC and
were detectable 56–1964 days after the procedure (Tran et al.,
2003).

Regenerative therapy aims to reduce wound healing time and
minimize scar formation. Wound healing of the skin is com-
prised of three phases: coagulation/early inflammation phase, late
inflammation phase, and proliferative phase (Nauta et al., 2011).
Although oral mucosa healing goes through the same three phases,
it proceeds with an accelerated rate and reduced scar formation
(Whitby and Ferguson, 1991). Fibroproliferative scars such as
keloid and hypertrophic scars are rarely seen in the oral cavity
(Wong et al., 2009). The only exception is the hard palate of the
mouse which heals at a much slower rate than any other area of the
oral mucosa (Graves et al., 2001). This unique property of the oral
mucosa is critical to consider for any tissue engineering study. The
first reason for the difference between oral mucosa healing and
skin healing processes is the distinctive inflammatory response to
the injury. The ratio of TGF-beta1 to TGF-beta3 is much lower in
the oral mucosa than in the skin (Schrementi et al., 2008). In addi-
tion, fewer inflammatory cells infiltrate the mucosa wound at the
initial stage and fewer inflammatory cytokines and chemokines
are activated in the wound. Also, angiogenesis is less active in the
oral mucosa wound than the skin, so that oral wound healing is
quite similar to fetal skin wound healing (Mak et al., 2009).

To date, no satisfactory FDA-approved therapy is available for
the treatment of scar tissue. Some reagents have been shown to
possess anti-scarring effects. Topical hyaluronic acid and saponin
may reduce scar formation by stimulating hyaluronic acid pro-
duction (Mast et al., 1991). Some TGF-beta3 formulations and
neutralizing antibody to TGF-beta1 or 2 have been shown to be
effective at reducing scar formation (Rhett et al., 2008). Decorin
can limit the duration of TGF-beta effects on inflammation and
fibrosis (Jarvelainen et al., 2006). Other factors including TNF-
alpha, PDGF, FGF, VEGF, ILGF, EGF, and others have also demon-
strated various effects on preventing scar formation (Lawrence,
1998).
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TMJ TISSUE ENGINEERING AND STEM CELLS
The temporomandibular joint (TMJ) is comprised of both osseous
and cartilaginous structures. It can deteriorate due to injuries,
osteoarthritis, or rheumatoid arthritis. The cartilage tissue has a
limited capacity of intrinsic repair, so even minor lesions of injury
may lead to progressive damage. Severe TMJ lesions need surgical
replacement of the mandibular condyle (Sarnat and Laskin, 1992).
Currently, a few studies on TMJ tissue engineering have been con-
ducted in animal models. In one study, bone marrow MSCs were
isolated from the long bone marrow and expanded in vitro under
either osteogenic or chondrogenic culture conditions (Alhadlaq
and Mao, 2003, 2004). The expanded osteogenic and chondro-
genic cells were mixed with PEGDA hydrogel and seeded onto an
adult human cadaver mandible condyle in two stratified yet inte-
grated layers. These bi-layer constructs were then placed under
nude mice skin for culture. After 4 weeks of implantation, de
novo formation of human condyle-like structures was detectable
replicating the relevant shape and dimensions. Chondrocytes and
osteocytes of donor origin were identified in separated layers,
and the two cell types infiltrated into the territory of each other,
resembling the native condition. However, both chondrogenic and
osteogenic layers showed suboptimal maturation, possibly due to
an insufficient amount of cells. The same group also constructed
a mandibular condyle scaffold by using CAD/CAM techniques
and combined it with autologous bone marrow MSC cells. The
construct was then transplanted into minipig TMJs. Evaluation
and analysis after 1 and 3 months indicated bone regeneration

of condyle shape and thus improvement of masticatory function
(Mao et al., 2006).

SUMMARY
The impact of tissue engineering and potential applications of
stem cells to reconstruct different dental, oral, and craniofacial
tissues and structures extend well beyond craniofacial and dental
practices. It is to be hoped that future stem cell based therapeutics
will replace allograft and autologous tissue grafts, while improving
long-term function and eliminating donor site morbidity.
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