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A B S T R A C T   

Objective: This study aims to develop and test a new computer-aided diagnosis (CAD) scheme of chest X-ray 
images to detect coronavirus (COVID-19) infected pneumonia. 
Method: CAD scheme first applies two image preprocessing steps to remove the majority of diaphragm regions, 
process the original image using a histogram equalization algorithm, and a bilateral low-pass filter. Then, the 
original image and two filtered images are used to form a pseudo color image. This image is fed into three input 
channels of a transfer learning-based convolutional neural network (CNN) model to classify chest X-ray images 
into 3 classes of COVID-19 infected pneumonia, other community-acquired no-COVID-19 infected pneumonia, 
and normal (non-pneumonia) cases. To build and test the CNN model, a publicly available dataset involving 8474 
chest X-ray images is used, which includes 415, 5179 and 2,880 cases in three classes, respectively. Dataset is 
randomly divided into 3 subsets namely, training, validation, and testing with respect to the same frequency of 
cases in each class to train and test the CNN model. 
Results: The CNN-based CAD scheme yields an overall accuracy of 94.5 % (2404/2544) with a 95 % confidence 
interval of [0.93,0.96] in classifying 3 classes. CAD also yields 98.4 % sensitivity (124/126) and 98.0 % spec
ificity (2371/2418) in classifying cases with and without COVID-19 infection. However, without using two 
preprocessing steps, CAD yields a lower classification accuracy of 88.0 % (2239/2544). 
Conclusion: This study demonstrates that adding two image preprocessing steps and generating a pseudo color 
image plays an important role in developing a deep learning CAD scheme of chest X-ray images to improve 
accuracy in detecting COVID-19 infected pneumonia.   

1. Introduction 

From the end of 2019, a new coronavirus namely COVID-19, was 
confirmed in human bodies as a new category of diseases that cause 
dangerous respiratory problems, heart infection, and even death. To 
more effectively control COVID-19 spread and treat patients to reduce 
mortality rate, medical images can play an important role [1]. In current 
clinical practice, chest X-ray radiography and computed tomography 
(CT) are two imaging modalities to detect COVID-19, assess its severity, 
and monitor its prognosis (or response to treatment). Although CT can 
achieve higher detection sensitivity, chest X-ray radiography is more 
commonly used in clinical practice due to the advantages, including low 
cost, low radiation dose, easy-to-operate and wide accessibility in the 
general or community hospitals [2]. However, pneumonia can be caused 

by many different types of viruses and bacterial. Thus, it may be 
time-consuming and challenging for general radiologists in the com
munity hospitals to read a high volume of chest X-ray images to detect 
subtle COVID-19 infected pneumonia and distinguish it from other 
community-acquired non-COVID-19 infected pneumonia. It is because 
there are many similarities between pneumonia infected by COVID-19 
and other types of viruses or bacteria. Thus, this is a clinical challenge 
faced by the radiologists in this pandemic [3]. 

To address this challenge, developing computer-aided detection or 
diagnosis (CAD) schemes based on medical image processing and ma
chine learning has been attracting broad research interest, which aims to 
automatically analyze disease characteristics and provide radiologists 
valuable decision-making supporting tools for more accurate or efficient 
detection and diagnosis of COVID-19 infected pneumonia. To this aim, 
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studies may involve following steps of preprocessing images, segment
ing regions of interest (ROIs) related to the targeted diseases, computing 
and identifying effective image features, and building multiple-feature 
fusion-based machine learning models to detect and classify cases. For 
example, one study [4] computed 961 image features from the 
segmented ROIs depicting chest X-ray images. After applying a feature 
selection algorithm, a KNN classification model was built and yielded an 
accuracy of 96.1 % to classify between COVID-19 and non-COVID-19 
cases. 

However, due to the difficulty in identifying and segmenting subtle 
pneumonia-related disease patterns or ROIs on chest X-ray images, 
recent studies have demonstrated that developing CAD schemes based 
on deep learning algorithms without segmentation of suspicious ROIs 
and computing handcrafted image features is more efficient and reliable 
than the use of the classical machine learning methods. As a result, many 
deep learning models have been reported recently in the literature to 
detect and classify COVID-19 cases [2,5–13]. Although some deep 
learning convolution neural network (CNN) models are applied to CT 
images [5,6], more studies applied CNN models to detect and classify 
COVID-19 cases using chest X-ray images. They include different exist
ing CNN models (i.e., Resnet50 [2,7], MobileNetV2 [8], CoroNet [9], 
Xception + ResNet50V2 [10]) and several new special CNN models (i.e., 
DarkCovidNet [11], COVID-Net [12] and COVIDX-Net [13]). These 
studies used different image datasets with a varying number of 
COVID-19 cases (i.e., from 25 to 224) among the total number of cases 
from 50 to 11,302. The reported sensitivity to detect COVID-19 cases 
ranged from 79.0%–98.6%. 

Despite the promising results reported in previous studies, many is
sues have not been well investigated regarding how to train deep 
learning models optimally. For instance, whether applying image pre
processing algorithms can help to improve the performance and 
robustness of the deep learning models. To better address some of the 
challenges or technical issues, we in this study develop and test a new 
deep learning based CAD scheme of chest X-ray radiography images. The 
scheme can detect and classify images into 3 classes namely, COVID-19 
infected pneumonia, the other community-acquired non-COVID-19 
infected pneumonia, and normal (non-pneumonia) cases. The hypoth
esis in this study is that instead of directly using the original chest X-ray 
images to train deep learning models, we can apply image processing 
algorithms to remove the majority of diaphragm regions, normalize 
image contrast and reduce image noise, and generate a pseudo color 
image to feed in 3 input channels of the existing deep learning models 
that were pre-trained using color (RGB) images in the transfer learning 
process. It may help significantly improve model performance and 
robustness in detecting COVID-19 cases and distinguishing them from 
other community-acquired non-COVID-19 infected pneumonia cases. To 
test this study hypothesis and demonstrate the potential advantages of 
new approaches, we assemble a relatively large chest X-ray image 
dataset with 3 class cases. Then, we select a well-trained VGG16 based 
CNN model as a transfer learning model used in our CAD scheme. The 
details of the study design and data analysis results are reported in the 
following sections of this article. 

2. Materials and method 

2.1. Dataset 

In this study, we utilize and assemble a dataset of chest X-ray radi
ography (CXR) images that are acquired from several different publicly 
available medical repositories [14–18]. These repositories were initially 
created and examined by the Allen Institute for AI in partnership with the 
Chan Zuckerberg Initiative, Georgetown University’s Center for Security 
and Emerging Technology, Microsoft Research, and the National Library 
of Medicine - National Institutes of Health, in coordination with The 
White House Office of Science and Technology Policy. Specifically, the 
dataset used in this study includes 8474 2D X-ray images in the 

posteroanterior (PA) chest view. Among them, 415 images depict with the 
confirmed COVID-19 disease, 5179 with other community-acquired 
non-COVID-19 infected pneumonia, and 2880 normal (non-pneumonia) 
cases. 

2.2. Image preprocessing 

Fig. 1 shows examples of three chest X-ray images acquired in three 
classes of normal, community-acquired non-COVID-19 infected pneu
monia and COVID-19 pneumonia cases (from top to bottom). It shows 
that the bottom part of images includes a diaphragm region with high- 
intensity (or bright pixels), which may have a negative effect on dis
tinguishing and quantifying lung disease patterns using deep learning 
models. Hence, an image pre-processing algorithm is applied to identify 
and remove diaphragm regions. Specifically, the algorithm detects the 
maximum (the brightest - Vmax) and minimum (the darkest - Vmin) pixel 
value of the image, then uses a threshold T = Vmin + 0.9 × (Vmax − Vmin)

to segment the original image into a binary image as shown in Fig. 1(b). 
Next, after labeling all connected regions in the binary image, CAD 
scheme detects the biggest region, fills the holes in this region, and 
deletes all other small regions (if any) as shown in Fig. 1(c). This 
detected region locates in the diaphragm. Then, morphological filters 
are applied to smooth the boundary of the region as shown in Fig. 1(d). 
Last, the processed binary image is mapped back to the original image, 
CAD scheme removes overlapped pixels in the corresponding locations 
on the original image as shown in Fig. 1(e). Images after this step are 
named (Ip). 

In the next step, we convert the segmented grayscale images (Ip) to 3- 
channel images suitable for fine-tuning an existing CNN model pre- 
trained using color (RGB) images. To do so, we apply an image noise 
filtering method and a contrast normalization method to preprocess the 
image after removing the diaphragm region. First, since the X-ray im
ages often include additive noise, we apply a bilateral low-pass filter 
(BF) to Ip. This filter is a non-linear filter and highly effective at noise 
removal while preserving textural information compared to the other 
low pass filters. In other words, this filter analyzes intensity values 
locally and considers the intensity variation of the local area to replace 
the intensity value of each pixel with the averaged intensity value of the 
pixels in the local area. To calculate the weights, we apply a Gaussian 
low-pass filter in the space domain. This step generates a noise-reduction 
image. Based on our experimental results, we select the following pa
rameters in the bilateral filtering (= 9 and σ = 75). Second, chest X-ray 
images may have different image contrast or brightness due to the dif
ference in patient body size and/or variation of X-ray dose. To 
compensate such a potentially negative impact, we apply a histogram 
equalization (HE) method to normalize Ip images. This filter can 
enhance lung tissue patterns and characteristics associated with COVID- 
19 infection. Then, as shown in Fig. 2, three preprocessed images 
namely, Ip, Ib = BF(Ip) and Ieq = HE(Ip) form a pseudo color image 
that is fed into 3 input (RGB) channels of the CNN model. 

2.3. Transfer learning 

In this study, we adopt a transfer learning approach since the pre
vious studies have shown in order to avoid either overfitting or under
fitting consequences using a small training dataset, a better approach is 
to take advantage of a CNN initially trained using a large-scale dataset 
[19]. Currently, many CNN models have been previously developed and 
are available for different engineering applications. In this study, we 
select a VGG16 model, which was pre-trained on the ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC) using a large dataset with 
14 million images [20]. VGG16 model won the first place on image 
localization task and second place on image classification task in the 
2014 ILSVRC challenge [21]. As shown in Fig. 3, the VGG16 model has 
13 convolutions, 5 max pooling and 3 fully connection layers in 6 blocks, 
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which include over 138 million trainable parameters. 
In our transfer learning, the weights between all connected nodes in 

front or low layers of the VGG16 based CNN model maintain unchanged 
(blocks 1–5 as shown in Fig. 3). Next, block 6 in the model is modified by 
replacing with one flatten layer and two fully connected layers, which 

include 256 and 128 nodes, respectively. In these layers, the rectified 
linear unit (ReLU) [22] is used as their activation function. Then, all 
trainable weights in all connection nodes of the whole modified VGG16 
model are fine-tuned using chest X-ray image data. In this fine-tuning 
process, a small learning rate (learning rate = 10− 5) is used to make a 

Fig. 1. Example of chest X-ray images in three classes (top – normal, middle – community-acquired non-COVID-19 pneumonia, and bottom – COVID-19 infected 
pneumonia case). The figure also shows (a) the original Images, (b) the binary images after threshold, (c) images after selecting the biggest segmented region, (d) 
images after applying morphological filtering and (e) the original image after removing the majority part of diaphragm region (Ip). 

Fig. 2. A flow diagram to illustrate image pre-processing steps to generate input of a CNN model, where (I) is the original Image in the dataset. (Ip) is the diaphragm 
removed image. (Ieq) is an image after applying histogram equalization on (Ip), and (Ib) is an image after applying bilateral filtering on (Ip). Three images (Ip), (Ib), and 
(Ieq) are fed into three channels of the CNN model to simulate the RGB image. 
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small variation to the pre-trained parameters. In this way, we will pre
serve the valuable parameters as much as possible by avoiding dramatic 
changes on the pre-trained parameters and let the model learn the 
special characteristics of chest X-ray images. Finally, in the last classi
fication layer, Softmax is used as the activation function. As a result, a 
new transfer learning model is built to fulfill a three-class classification 
task. The complete CNN model is compiled with Adam [23] optimizer 
with a batch size of 4, max epoch = 200, initial learning rate = 10− 5, and 
monitoring validation loss for reducing the learning rate every 5 epochs 
with a factor of 0.8. Table 1 shows the complete architecture of the 
transfer learning VGG16 model built in this study. 

2.4. Model training and testing 

First, the original chest X-ray image has 1024 × 1024 pixels, while 
the VGG16 model was pre-trained using images of 224 × 224 pixels. 
Thus, each chest X-ray image is down-sampled to 224 × 224 pixels to fit 
the VGG16 model. Then, for training and evaluating the proposed 
VGG16 based transfer leaning CNN model, we randomly split the entire 
image dataset of 8474 cases into 3 independent subsets of training, 
validation, and testing. Overall, 10 % of cases (848) are assigned to test 
subset. On the remaining 7626 cases, 10 % cases are assigned to the 
validation subset (757), while 90 % case (6869) are formed as the 
training subset. To maintain the same case partition ratios for three 
classes of COVID-19 infected pneumonia, other community-acquired 
non-COVID-19 infected pneumonia and normal cases, the case parti
tion or assignment is done on three classes independently. Table 2 shows 
the number of cases in each subset. 

Second, there are different available techniques to deal with 
imbalanced data [24]. In this study, the class weight technique, as one 
possible way, is applied during training to reduce the potential con
sequences of imbalance data. In the class weigh technique, we adjust 

weights inversely proportional to class frequencies in the input data 
[25]. The weight, ωi in class i is computed using the following 
equation. 

ωi=(Totalnumberof cases)/(numberof classes)×(numberof casesinclass(i))
(1) 

The weights of the classes are utilized while fitting the model. Hence, 
in the loss function, we assign higher values to the instances of smaller 
classes. Therefore, the calculated loss will be a weighted average, where 
the weights of each sample corresponding to each class during loss 
calculation are specified with ωi. 

Additionally, in the training data of minority cases (COVID-19 
cases), a common augmentation technique [26] is applied to increase 
the training sample size. First, using shearing factors (≤0.2), image in
tensity is sheared based on the shearing angle in a counter-clockwise 
direction. Second, using zooming factors (≤0.2), images are randomly 
magnified. Third, using rotation factors (within ±20◦ ), images are 
randomly rotated. Fourth, using a shift factor (≤0.2), images are 
randomly shifted in 4 directions (up, left, down right). Last, images are 
flipped horizontally in a random base to generate as much augmented 
data as possible. 

Multiple iteration or epochs are applied to train the VGG16 based 
CNN model. The model is first trained using the data in the training 
subset and validated using validation subset. During the training pro
cess, the optimizer tries to force the architecture to learn more and more 
information to reduce the performance gap between training and vali
dation. To control overfitting and maintain training efficiency, we limit 
model training epochs to 200. Hence, at the end of 200 training epoch, 
the trained model is saved and then tested using the data in the testing 
subset, which does not involve in the model training and validation 
process. 

To reduce the risk of potential bias in data partition into three subsets 
of training, validation, and testing, we repeat this model training and 
testing process three times by randomly dividing all cases into training, 
validation and testing subsets three times using the same case ratios or 
numbers as shown in Table 2. In addition, during these three times of 
case partition, the cases assigned to the validation and testing subsets 
are totally different (no duplication). Three trained models are tested 
using totally different testing cases. Thus, the total number of testing 
cases increases (as shown in Table 2) to 2544 (848× 3). Fig. 4 shows a 
schematic diagram that illustrates the complete architecture of this 
VGG16 transfer learning CNN model, as well as the training, validation, 
and testing phase. 

Fig. 3. Illustration of the architecture of VGG16 based CNN model.  

Table 1 
The architecture of the new VGG16 model after transfer learning with new 
layers (19 to 22).  

Number Layer Size Activation 

0 Input Image 224× 224× 3  — 
2 2× Convolution (3× 3) 224× 224× 64  ReLu 
3 Max Pooling 112× 112× 64  ReLu 
5 2× Convolution (3× 3) 112× 112× 128  ReLu 
6 Max Pooling 56× 56× 128  ReLu 
9 3× Convolution (3× 3) 56× 56× 256  ReLu 
10 Max Pooling 28× 28× 256  ReLu 
13 3× Convolution (3× 3) 28× 28× 512  ReLu 
14 Max Pooling 14× 14× 512  ReLu 
16 3× Convolution (3× 3) 14× 14× 512  ReLu 
18 Max Pooling 7× 7× 512  ReLu 
19 Flattening 25,088 — 
20 Fully Connected 256 ReLu 
21 Fully Connected 128 ReLu 
22 Fully Connected 3 SoftMax  

Table 2 
Distribution of cases in three subsets.  

Image Data Subset Training Validation Testing 

COVID-19 cases 366 37 42 
Other pneumonia cases 4201 460 518 
Normal cases 2332 260 288 
Total number of cases 6899 757 848  

M. Heidari et al.                                                                                                                                                                                                                                



International Journal of Medical Informatics 144 (2020) 104284

5

2.5. Performance assessment 

We perform experiments to analyze two different accuracies. The 
first one is accuracy for a three-class classification to distinguish be
tween COVID-19 infected pneumonia, community-acquired pneumonia, 
and normal (non-pneumonia) cases. We compute accuracy values in 
detecting images in 3 classes. We also calculate (1) a macro averaging, 
which is the average of 3 accuracy values of 3 classes without consid
ering the proportion of the number of the cases in each class (Amac =

(A1 + A2 + A3)/3), and (2) a weighted averaging, which is the weighted 
average of 3 accuracy values weighted with respect to the proportion of 
the classes (Aw = w1A1 + w2A2 + w3A3), where A1, A2, A3 are accuracy 
values of 3 classes, while w1, w2,w3 are weighting factors of 3 classes 
representing the ratios of cases in 3 classes. Then, for the three-class 
classification, a confusion matrix is generated from which several 
evaluation indices, including precision, recall, F1-score, and Cohen’s 
Kappa [27] values are computed to evaluate CAD performance. The 
value of Cohen’s kappa coefficients (ranging from zero and one) in
dicates the possibility of the predicted results occurring by chance. The 
lower Kappa value shows the more randomness of the results, while the 
higher value shows a better similarity and higher robustness. 

The second accuracy evaluation refers to classification between the 
COVID-19 and non-COVID19 cases (including both normal and 
community-acquired pneumonia cases). In this circumstance, we 
compute true positive (TP) for the cases correctly identified as COVID- 
19, false negative (FN) for the COVID-19 cases being incorrectly clas
sified as normal or community-acquired pneumonia cases, true negative 
(TN) for the cases correctly identified as non-COVID-19 cases, and false 
positive (FP) for the normal and community-acquired pneumonia cases 

being incorrectly classified as COVID-19 by the CNN model. Then, the 
accuracy, sensitivity, specificity, recall, and F1-scores of model classi
fication are computed and tabulated. 

3. Results 

Fig. 5(a–c) presents trend curves of training and validation accuracy 
of the new transfer learning VGG16 based CNN model in three experi
ments using different training and validation subsets in the left column. 
Then, by applying the trained models on the corresponding testing 
subsets, three confusion matrices of the models on the testing subsets are 
shown in the right column. All three curves show that as the increase of 
training iteration epochs during the training process, the prediction 
accuracy of the validation subset varies greatly (with big oscillation) 
initially, and then gradually converges to a higher accuracy level with 
much small oscillation. Thus, for all three subsets after epoch 75, vali
dation accuracy is following the training accuracy, which indicates that 
learning is happening during different epochs. The trend graph also 
shows that the proposed technique does not suffer significant overfitting 
or underfitting in our transfer learning model. Then, by combining three 
confusion matrixes of the three independent testing subsets, as shown in 
second column of Fig. 5(a–c), Fig. 5(d) displays a combined 3-class 
confusion matrix of 2544 (3 × 848) cases. 

First, based on three confusion matrices as shown in Fig. 5(a–c), the 
overall 3-class classification accuracy levels are 93.9 % (796/848), 94.7 
% (803/848), and 94.9 % (805/848), respectively. The difference is 
approximately 1%. Then, based on the confusion matrix of the combined 
data as shown in Fig. 5(d), we compute the precision, recall rate, F1- 
score, and prediction accuracy of the new transfer learning VGG16 

Fig. 4. schematic representing training and validation phase of the proposed scheme.  
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Fig. 5. (a-c) Left column show three sets of performance curves applying to the training and validation subsets for 3 experiments in 200 training epochs, respectively. 
The horizontal axis shows the number of epochs, and the vertical axis shows the accuracy. The right column show three confusion matrices of the corresponding 
testing results are shown on the right. (d) A combined confusion matrix of applying three trained models to three independent testing data subsets with total 
2544 cases. 
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based CNN model, as shown in Table 3. Among 2544 testing cases, 2404 
are correctly detected and classified into 3 classes. The overall accuracy 
is 94.5 % (2404/2544) with 95 % confidence interval of [0.93, 0.96]. In 
addition, the computed Cohen’s kappa coefficient is 0.89, which con
firms the reliability of the proposed approach to train this new deep 
transfer learning model to do this classification task. 

To further evaluate the performance of our CAD scheme in detecting 
the COVID19 infected pneumonia cases using chest X-ray images, we 
place both normal and community-acquired pneumonia images into the 
negative class and COVID-19 infected pneumonia cases into the positive 
class. Combining the data in the confusion matrix, as shown in Fig. 5(d), 
the CAD scheme yields 98.4 % detection sensitivity (124/126) and 98.0 
% specificity (2371/2418). The overall accuracy is 98.1 % (2495/2544). 

Next, Table 4 shows and compares (1) confusion matrixes generated 
by four models trained and tested using different input images and three 
data subsets generated from the data partition, as well as (2) overall 
classification accuracy and 95 % confidence intervals. The results indi
cate that (1) without using the data augmentation technique, the model 
accuracy on data of the testing subset drops to 82.3 % with the kappa 
score of 0.71. (2) Without applying image preprocessing and directly 
feeding the original chest X-ray images into the VGG16 based CNN 
model (“simple model”), classification accuracy is 88.0 % with a 
Cohen’s kappa score of 0.75. (3) Using image filtering and pseudo color 
images without removing the majority part of diaphragm regions, the 
“filter-based model” yields 91.2 % accuracy and a Cohen’s kappa score 
of 0.83. All three models yield lower classification accuracy than the 
proposed model involving data augmentation technique and two steps 
of image preprocessing. 

In addition, Table 5 compares our transfer learning VGG16 based 
CNN model and 10 state-of-art models recently reported in the literature 
to detect and classify COVID-19 cases. The Table shows the number of 
cases in the training and testing data subsets, imaging modality (CT or X- 
ray radiography), and reported classification performance including 
either 3-class or 2-class classification for these studies. Although the 
reported performance of these studies cannot be directly compared due 
to the use of different image dataset and testing methods, the presented 
data clearly demonstrate that our model is tested using relatively large 
dataset and yields very comparable classification performance as 
comparing to the state-of-art models developed and tested in this 
research field. 

4. Discussion 

In this study, we developed and tested a novel deep transfer learning 
CNN model to detect and classify chest X-ray images depicting COVID19 
infected pneumonia. This study has several unique characteristics as 
compared to the previously reported studies in this field and produces 
several new interesting observations. First, since the deep learning CNN 
model includes a considerable number of parameters that need to be 
trained and determined, a large and diverse image dataset is required to 
produce robust results [28]. Although we used a relatively large image 
dataset of 8474 chest X-ray images, the dataset is unbalanced in 3 classes 
of images, and the number of the COVID-19 infected pneumonia cases 
(415) remains small. Thus, in order to build a robust deep learning 
model, we apply a class weight technique during the training process 

and select a well-trained VGG16 model and apply a transfer learning 
approach. Specifically, the original VGG16 model includes over 138 
million parameters. These parameters have been trained and deter
mined using a large ImageNet database over 14 million images. It is 
difficult to train so many parameters from scratch robustly using a 
dataset of 8474 images. Thus, we retrain or fine-tune the pre-trained 
VGG16 (as shown in Fig. 3) to reduce the overfitting risk. Study re
sults demonstrate that this transfer learning approach can yield higher 
performance with the overall accuracy of 94.5 % (2404/2544) in the 
classification of 3 classes and 98.1 % (2495/2544) in classifying cases 
with and without COVID-19 infection, as well as the high robustness 
with a Cohen’s kappa score of 0.89. 

Second, unlike the regular color photographs, chest X-ray images are 
gray-level images. Thus, in order to fully use the pre-trained VGG16- 
based CNN model, we generate two new gray-level images. Then, 
instead of applying the original chest X-ray image to the CNN model 
directly, 3 different gray-level images are fed into 3 input (RGB color) 
channels of the CNN model. Specifically, we apply a bilateral low-pass 
filter to generate a noise-reduced image and a histogram equalization 
method to generate a contrast normalized image. Comparing two ap
proaches of using only original chest X-ray image and 3 different images 
to generate a pseudo color image as an input image to the CNN model, 
our study results show that using a pseudo color image approach, overall 
classification accuracy increases 3.6 % from 91.2%–94.5%, and Cohen’s 
kappa score increases 7.2 % from 0.83 to 0.89, respectively. The results 
demonstrate the advantage of using our new approach to fully use 3 
input channels of the CNN model pre-trained using color images because 
these two filtered gray-level images contain additional information, 
which can enhance image classification capability. 

Third, since in the area of medical imaging, generally, disease’s 
patterns are not comparable to the other existing patterns in the image, 
preprocessing steps are noteworthy [29]. Hence, we apply an image 
preprocessing algorithm to automatically detect and remove the ma
jority part of the diaphragm region from the chest X-ray images. 
Comparing the approaches with and without removing the diaphragm 
regions, classification performance of the CNN model changes from 
94.5%–88.0% and 0.89 to 0.75 for the overall classification accuracy 
and Cohen’s kappa coefficients, respectively, which indicates a 7.4 % 
increase in the overall classification accuracy and 18.7 % increase in 
Cohen’s kappa coefficient by removing the majority of diaphragm re
gions. Thus, although skipping segmentation of the suspicious disease 
regions of interest is one important characteristic of deep learning, our 
study demonstrates that applying an image preprocessing and segmen
tation algorithm to remove irrelevant regions on the image can also play 
an important role in increasing performance and robustness of deep 
learning models. 

In addition, we observe and confirm that applying data augmenta
tion in the training data is also essential. Without data augmentation to 
increase training dataset size, the overall classification accuracy of the 
CNN model significantly reduces to around 82.3 %. In summary, we in 
this paper present a new deep transfer learning model to detect and 
classify the COVID-19 infected pneumonia cases, as well as several 
unique image preprocessing approaches to optimally train the deep 
learning model using the limited and unbalanced medical image dataset. 
The similar learning concept and image preprocessing approaches can 
also be adopted to develop new deep learning models for other medical 
images to detect and classify other types of diseases (i.e., cancers [30, 
31]). 

Despite encouraging results, this study also has limitations. First, 
although we used a publicly available dataset of 8474 cases, including 
415 COVID-19 cases, due to the diversity or heterogeneity of COVID-19 
cases, the performance and robustness of this CAD scheme need to be 
further tested and validated using other large and diverse image data
bases. Second, this study only investigates and tests two image pre
processing methods to generate two filtered images, which may not be 
the best or optimal methods. New methods should also be investigated 

Table 3 
Classification report of the proposed method.   

Precision Recall F1-score Support cases 

Normal 0.96 0.91 0.93 864 
Other Pneumonia 0.96 0.96 0.96 1554 
COVID19 0.73 0.98 0.84 126 
Accuracy — — 0.95 2544 
Macro avg 0.88 0.95 0.91 2544 
Weighted avg 0.95 0.94 0.94 2544  
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and compared in future studies. Third, to further improve model per
formance and robustness, it also needs to develop new image processing 
and segmentation algorithms to more accurately remove the diaphragm 
and other regions outside lung areas in the images. Therefore, more 
research work is needed to overcome these limitations in the future 
studies. 

5. Conclusion 

In this study, we proposed and investigated several new approaches 

to develop a transfer deep learning CNN model to detect and classify 
COVID-19 cases using chest X-ray images. Study results demonstrate the 
added value of performing image preprocessing to generate better input 
image data to build deep learning models. These include removing 
irrelevant regions, normalizing image contrast-to-noise ratio, and 
generating pseudo color images to feed into all three channels of the 
CNN models in applying the transfer learning method. The reported high 
classification performance is also promising, which provides a solid 
foundation to further optimize the deep learning models to detect 
COVID-19 cases and validate its performance and robustness using large 

Table 4 
Confusion matrix of four CNN models on X-ray Images. 95 % confidence interval (CI) for the accuracy is shown in the last column.     

Normal Pneumonia COVID19 Accuracy 95 % CI 

Proposed Model 

True Label 

Normal 788 56 20 
94.5 % [0.93,0.96] Pneumonia 35 1492 27 

COVID 19 1 1 124 

Filter-based model 
Normal 750 89 25 

91.2 % [0.90,0.92] Pneumonia 64 1452 38 
COVID19 2 6 118 

Simple model 
Normal 701 123 40 

88.0 % [0.86,0.89] Pneumonia 72 1431 51 
COVID19 6 13 107 

No-augmentation 
Normal 653 158 53 

82.3 % [0.80,0.84] Pneumonia 124 1346 74 
COVID19 8 23 95  

Table 5 
Comparison accuracy results of the proposed method with the other deep learning methods on COVID-19 diagnosis.  

Approach Data 
Type 

Cases number (including COVID- 
19 cases) 

Method utilized 2 classes accuracy 
(%) 

3 classes accuracy 
(%) 

COVID-19 detection 
Sensitivity (%) 

Narin et al. [2] X-ray 100 (50) ResNet50 98.0 — 96.0 
Sethy et al. [7] X-ray 50 (25) ResNet50+SVM 95.4 — 97.0 
Ioannis et al. [8] X-ray 1427 (224) MobileNetV2 96.7 93.5 98.6 
Wang et al. [5] CT 237 (119) M-Inception 82.9 — 81.0 
Tulin et al. [11] X-ray 1127 (127) DarkCovidNet 98.08 87.02 90.6 
Khan et al. [9] X-ray 221 (29) CoroNet (Xception) 98.8 94.52 95.0 
Rahimzadeh & attar 

[10] 
X-ray 11,302 (31) Xception + ResNet50V2 99.5 91.4 80.53 

Wang et al. [12] X-ray 300 (100) COVID-Net 96.6 93.3 91.0 
Ying et al. [6] CT 57 (30) DRE-Net (ResNet50) 86 — 79.0 
Hemdan et al. [13] X-ray 50 (25) COVIDX-Net 90 — —— 
Our new method X-ray 2544 (126) VGG16 98.1 94.5 98.4  

Summary points 

What was Already Known on the topic  

• Due to the low cost, low radiation, wide accessibility, chest X-ray radiography is a good imaging modality to detect COVID-19. However, its 
sensitivity is lower than CT.  

• Developing deep learning model based CAD schemes of chest X-ray images may play a useful role in facilitating detection and diagnosis of 
COVID-19.  

• A few deep learning models using chest X-ray images to detect COVID-19 have been reported using small datasets. The models were trained 
using the original images only. 

What this study adds to our knowledge  

• Due to the diversity of image contrast and noise, adding image preprocessing steps is important and can help improve deep learning model 
performance.  

• In transfer learning, one should not only use original images. It should add two additional filtered images to fill in 3 input channels of the deep 
learning model, which can enhance information learning and improve model performance.  

• The deep learning CAD scheme can achieve high performance in detecting and classifying not only between COVID-19 cases and healthy (non- 
pneumonia) cases, and also between COVID-19 infected pneumonia and other community-acquired non-COVID-19 infected pneumonia cases.  

• Our model is tested using a larger dataset as comparing to previous studies reported in the literature, which further supports the feasibility of 
this CAD approach.  
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and diverse image datasets in future studies. 
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