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Abstract

The enzyme tRNase Z, a member of the metallo-β-lactamase family, endonucleolytically

removes 3’ trailers from precursor tRNAs, preparing them for CCA addition and aminoacyla-

tion. The short form of tRNase Z, tRNase ZS, functions as a homodimer and is found in all

prokaryotes and some eukaryotes. The long form, tRNase ZL, related to tRNase ZS through

tandem duplication and found only in eukaryotes, possesses ~2,000-fold greater catalytic

efficiency than tRNase ZS. tRNase ZL consists of related but diverged amino and carboxy

domains connected by a flexible linker (also referred to as a flexible tether) and functions as

a monomer. The amino domain retains the flexible arm responsible for substrate recognition

and binding while the carboxy domain retains the active site. The linker region was explored

by Ala-scanning through two conserved regions of D. melanogaster tRNase Z: NdomTprox,

located at the carboxy end of the amino domain proximal to the linker, and Tflex, a flexible

site in the linker. Periodic substitutions in a hydrophobic patch (F329 and L332) at the carboxy

end of NdomTprox show 2,700 and 670-fold impairment relative to wild type, respectively,

accompanied by reduced linker flexibility at N-T inside the Ndom- linker boundary. The Ala

substitution for N378 in the Tflex region has 10-fold higher catalytic efficiency than wild type

and locally decreased flexibility, while the Ala substitution at R382 reduces catalytic efficiency

~50-fold. These changes in pre-tRNA processing kinetics and protein flexibility are inter-

preted in light of a recent crystal structure for S. cerevisiae tRNase Z, suggesting transmis-

sion of local changes in hydrophobicity into the skeleton of the amino domain.
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Introduction

Transfer RNA (tRNA) is central to translation [1]. Sequencing of the first tRNAs established a

canonical secondary structure (cloverleaf) which arises from intramolecular base pairing, and

a conserved L-shaped tertiary structure. D—T loop pairing forms the elbow, with the antico-

don and acceptor stem at opposite ends. CCA at the 3’ end is universally conserved. C74C75 of

P-site tRNA H-bond with large subunit rRNA, positioning it for peptidyl transfer; the 2’OH of

A76 on the peptidyl tRNA participates critically in catalysis.

tRNAs are transcribed as precursors and processed by endonucleolytic removal of a 5’

leader by RNase P, first characterized as a ribozyme and later shown to be a protein-only

enzyme in mitochondria and chloroplasts (for reviews, see [2], [3]). Some tRNAs are tran-

scribed with introns that are removed by splicing and all tRNAs undergo extensive post-tran-

scriptional nucleoside modification. The 3’ trailer is removed by a combination of endo- and

exonucleases in E. coli, in which -CCA76 is transcriptionally encoded. In eukaryotes, -CCA76 is

not transcriptionally encoded; CCA-addition is thus required in eukaryotic nuclei and plastids.

tRNase Z provides the principal mechanism for endonucleolytic removal of eukaryotic 3’ trail-

ers, leaving the discriminator base (N73) with a 3’-OH ready for CCA addition. This pathway

may be complemented by exonucleases in S. cerevisiae ([4], [5]).

The tRNase Z function and a gene encoding the enzyme are widely conserved [6]. A short

and long form (tRNase ZS and tRNase ZL, respectively) both endonucleolytically cleave pre-

tRNA 3’ end trailers, however the two forms are unevenly distributed among the domains of

life. Bacteria and archae exclusively possess tRNase ZS. While tRNase ZS is found in some

eukaryotes, tRNase ZL is more widespread (for example, tRNase ZS is absent from S. cerevisiae,

C. elegans and D. melanogaster).

tRNase Z is a member of the β-lactamase family of metal-dependent hydrolases, character-

ized by an αβ/βα sandwich fold with the active site located at the interface between the

domains [7]. Motifs I–V are conserved, including seven residues (His and Asp) that coordinate

binding of two Zn++ ions which direct H2O in general in-line acid-base catalysis, four of them

in the signature His cluster (HxHxDH; Motif II).

tRNase ZS functions as a homodimer of identical subunits. In addition to Motifs I–V, a unique

flexible arm [8], [9] protrudes from the globular core of tRNase Z and binds the elbow of tRNA,

directing the acceptor stem including the scissile bond into the active site of the enzyme. The flex-

ible arm in subunit 1 thus positions the 3’ end of the substrate in the active site of subunit 2.

Sequence and structural studies show that tRNase ZL emerged as a tandem duplication of

tRNase ZS with subsequent divergence of the amino and carboxy domains (first suggested by

[10] and subsequently supported by numerous studies, reviewed in [11]). The amino domain

retained the flexible arm but lost the key His and Asp residues from the catalytically important

motifs otherwise related by sequence, while the carboxy domain retained functional motifs

required for catalysis and lost the flexible arm. The resulting enzyme is better adapted for pre-

tRNA 3’ end processing, based on ~2,000-fold higher catalytic efficiency of H. sapiens tRNase

ZL than that of tRNase ZS [12]. tRNase ZL is a monomer in solution based on size exclusion

chromatography [13] and in the recently solved crystal structure of S. cerevisiae tRNase Z [11]

(a tRNase ZL).

A 62–85 residue flexible linker joins the conserved, relatively stable amino and carboxy

domains in tRNase ZL [13]. The boundary between the linker and the carboxy domain is delin-

eated by homology between the carboxy domain of tRNase ZL and the amino end sequence of

tRNase ZS. Interestingly, the linker spans the protein surface like a flexible strap [11]; the inter-

face between the amino and carboxy domains of tRNase ZL is much like the dimer interface of

tRNase ZS.

The Flexible Linker of tRNase ZL
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Within the amino domain of tRNase ZL, sequences align with the carboxy domain of

tRNase ZL and with tRNase ZS up to and including the flexible arm. In the second half of the

amino domain, homology blocks identifiable in tRNase ZLs are less clearly related to sequences

in the carboxy domain.

We used previously developed methods ([14]; [13]) to investigate the function and flexibil-

ity in regions preceding and within the linker. Ala scans (substitution of alanine for each wild

type residue) with processing kinetics were performed followed by flexibility analysis of

selected variants. Results were interpreted based on local changes in hydrophobicity in light of

the newly available S. cerevisiae tRNase Z structure [11].

Methods

Structure modeling

Secondary structure prediction was performed using PsiPred. Hydropathy plots were obtained

using the Wolfenden subprogram [15] in ExPASy. The 1st inframe methionine (MYLV. . .) of

D. melanogaster tRNase Z (NCBI NP_724916.1) and the following 19 residues are interpreted

to be a mitochondrial targeting sequence [16] and the nuclear form (presented here) is num-

bered from the 2nd inframe methionine (. . .MAAT. . .). The recently published S. cerevisiae
tRNase Z structure [11] was interpreted using PyMOL [17].

Ala scanning mutagenesis

Conserved regions were selected for Ala scanning mutagenesis, one just before the flexible

linker and two within the linker. NdomTprox consists of 19 residues in the last homology block

in the amino domain on the amino side of the linker (H315 –G333). Tflex consists of 9 residues

from the most flexible conserved internal region of the linker (M376 –R384). The PEEY region,

glutamate rich and less conserved, consists of 9 residues further toward the carboxy end of the

linker (P397—H405). These 37 residues were individually substituted with alanine by replacing

the wild type codon at each position with a GCC triplet using A, B amplification and A-B seg-

ment joining by PCR and overlap extension PCR, as previously described [18]. ~40-mer oligo-

nucleotides were typically used with the 1, 2 or 3 nt substitution in the middle and with a GC-

rich cluster at the 3’ end for stability of primer annealing. The AflII site (nt 1077–1082) sub-

cloning forward primer combined with the reverse mutagenesis primer were used to amplify

the A segment using a wild type template. The coding strand (forward) mutagenesis primer

combined with the SacI site (nt # 1527–1532) subcloning reverse primer were used to amplify

the B segment. A and B segments were gel purified and joined by overlap extension and ampli-

fication using the AflII forward and SacI reverse primers. Joined segments were gel purified,

recovered, double digested, recovered, and ligated into the AflII-SacI digested vector from

which the 454 bp wild type segment had been removed. Plasmids that passed the RE screen

were sequenced (Macrogen) to confirm presence of each intended GCC codon and absence of

any other sequence changes. The FastBacHT (Invitrogen) transfer vectors with variant tRNase

Z cDNAs were transposed into bacmids using DH10Bac (Invitrogen). Large true white colo-

nies produced by successful transformation and transposition were selected for bacmid DNA

isolation and transfection into insect Sf9 cells using Cellfectin 2 reagent (Invitrogen).

Baculovirus expression and affinity purification

Amplified baculoviruses with variant D. melanogaster tRNase Z cDNAs were used to infect

insect Sf9 cells for 72 h using Hyclone SFX insect cell medium supplemented with 0.5% FBS to

minimize degradation of recombinant proteins by endogenous proteases. Cells were lysed

The Flexible Linker of tRNase ZL
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with NP40, expressed proteins were affinity purified using Ni-NTA Sepharose (Qiagen) and

the 6XHis tag was cleaved overnight at 4˚C with AcTEV protease as previously described [18].

tRNase Z reaction kinetics

Nuclear encoded pre-tRNAArg transcript was prepared with T7 RNA polymerase and cleaved

using a cis-acting hammerhead leaving a 5’-OH at +1 of the tRNA as previously described

[19]. Kinasing with γ-32P-ATP by polynucleotide kinase was performed at +1 of the tRNAs,

followed by gel purification and recovery. The processing reaction buffer (PB) consisted of 25

mM Tris-Cl pH 7.2, 2.5 mM MgCl2, 1 mM freshly prepared DTT, and 100 μg/ml BSA. Unla-

beled substrate concentration was varied over a range of 4–100 nM with a fixed trace amount

of 5’-labeled substrate. tRNase Z stocks were adjusted to 25 μM before use from which a dilu-

tion series was prepared. Analytical lanes were run with known concentration standards for

both input tRNase Z and unlabeled tRNA and the enzyme and unlabeled substrate concentra-

tions used in each experiment was corrected accordingly. Reactions at 28˚C were sampled

after 5, 10 and 15 min, and quenched with formamide-marker dye mix on ice. Electrophoresis

of the samples was carried out on a 6% polyacrylamide gel containing 8 M urea. Gels were

dried and exposed overnight using a phosphor screen, which was scanned using a Typhoon

9410 imager and analyzed with IQTL v8.1. Each lane trace yielded a % product and the time

course results were converted to % product/min using Excel, equivalent to 0.01 X V/[S], then

converted to V X 10−11 M/min by multiplying by nM [S], and further analyzed using the single

ligand binding function in SigmaPlot. kcat was obtained by dividing Vmax by [E]. Concentra-

tion of each variant enzyme was adjusted as necessary depending on the impairment factor

observed in previous kinetic experiments. The processing experiments with each variant were

repeated until acceptable standard errors were achieved.

Flexibility of wild type and variant tRNase Z analyzed by limited

proteolysis and protein electrophoresis

Wild type and selected variant tRNase Zs were proteolyzed with trypsin at 1 μg/ml in PB at

28˚C and reactions were sampled after 0, 3, 10 and 30 min reaction. Limited proteolysis reac-

tions were analyzed on 1D SDS polyacrylamide gels or using a 2D system (BioRad) with iso-

electric focusing in 0.75 mm diam 1st dimension tube gels and SDS electrophoresis in the 2nd

dimension as previously described [13]. Protein bands and spots were detected by staining

with Sypro Orange and scanning with a Typhoon 9410 and quantitated using IQTLv8.1.

Results

A local hydropathy plot [15] provides a useful extension to PsiPred for interpretation of

tRNase Z structure and flexibility (Fig 1). For example, pronounced hydrophobicity troughs

found close to both ends of the protein, typical of globular proteins in aqueous solution, coin-

cide with flexible regions (cf [13]). N-T and Tflex, the two most flexible regions in the linker,

are also predicted local hydrophobicity troughs.

The carboxy domain of tRNase ZL is homologous to tRNase ZS, including the active site.

Similarly, the flexible arm (FA) in tRNase ZL is related to one of the three branches of flexible

arms [9], and the sequence that precedes it is also related, in agreement with the evolution of

tRNase ZL from a tandem duplication of tRNase ZS followed by divergence of the amino and

carboxy domains. Less is known about the flexible linker of tRNase ZL, however. The S. cerevi-
siae tRNase Z linker closely follows the exterior contours of the protein as it joins the amino

and carboxy domains ([11]; Fig 2). A multiple sequence alignment (Fig 2A; see [20]) combined

The Flexible Linker of tRNase ZL
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Fig 1. D. melanogaster tRNase Z primary structure and prediction of secondary structure and hydrophobicity. The

amino acid sequence is shown with secondary structure predicted by PsiPred. Rectangles enclose the amino and carboxy

domains joined by the flexible linker; dashed lines indicate conserved motifs and black triangles indicate identified trypsin

cleavage sites [13] which occur at flexible, hydrophilic regions. Directly above the predicted secondary structure, a

hydropathy plot (created with ExPASy using the Wolfenden scale [15]) depicts the relative hydrophobic and hydrophilic

character of the corresponding regions, the dashed red line indicating approximate neutrality.

https://doi.org/10.1371/journal.pone.0186277.g001
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with the flexibility results ([13]; Fig 1) suggest the most important regions for further investiga-

tion of this extrinsic feature of the enzyme.

Little structural information was available on the amino domain and linker until the recent

publication of a S. cerevisiae tRNase Z structure [11]. The basic structure of the S. cerevisiae
tRNase Z amino domain is an αβ/βα sandwich fold, like that of the carboxy domain. The

flexible arm, located between two strands of β twisted sheet, is extruded from the body of the

amino domain. The tRNase Z linker spans the globular core of the enzyme like a strap (Fig 2B;

[11]). The linker is an adjunct to, not a substitute for, the domain interface between the amino

and carboxy domains, which is much like that observed in the tRNase ZS homodimer ([11]; cf

[8]).

Fig 2. The flexible linker of tRNase ZL. The flexible linker of tRNase ZL connects the enzyme’s amino (binding) and carboxy

(catalytic) domains. (A) Multiple sequence alignment includes a conserved region directly preceding the linker as well as within the

linker of tRNase ZL. Sequences are from Drosophila melanogaster (NP_724916.1), Homo sapiens (NP_060597.4), Arabidopsis

thalania (NP_188247.2), Caenorhabditis elegans (NP_001023109.1), and Saccharomyces cerevisiae (NP_013005.1). Residue

numbers for D. melanogaster tRNase Z are shown above and for S. cerevisiae below. Secondary structure elements identified in [11]

in S. cerevisiae tRNase Z are shown below. (B) An overview of the crystal structure of S. cerevisiae TrZ1 ([11]; PDB 5MTZ) shown in

cartoon using PyMOL. The linker (shown in blue and cyan) runs like a strap along the enzyme’s exterior, extending from the amino

domain (light grey) to the carboxy domain (dark grey). (C) NdomTprox and linker shown in isolation.

https://doi.org/10.1371/journal.pone.0186277.g002
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NdomTprox (within the N domain, proximal to the linker) is the last such homology block

preceding the linker [19], [13]. Based on the S. cerevisiae tRNase Z crystal structure [11], the 1st

half of NdomTprox has little secondary structure, followed by a short β strand and an α helix

(α8) with high local hydrophobicity. A flexible hydrophilic patch located on the linker side

of the amino domain—linker boundary designated N-T, less conserved than NdomTprox, which

in S. cerevisiae tRNase Z consists of a short helix followed by a β strand (β13), gives rise to the

limited proteolysis species Cdom1 [13]. Another conserved flexible hydrophilic region desig-

nated Tflex, found ~35 residues within the linker, gives rise to the Cdom2 family of proteolysis

products.

The regions subjected to single residue Ala substitution and kinetic analysis include 19 resi-

dues in NdomTprox and 13 residues in Tflex. A short sequence further into the linker is charac-

terized by contiguous glutamates (PEEY region). The goal of an Ala scan is to discover

residues of sufficient importance that, when replaced by Ala, cause a significant effect on

enzyme activity. Such effects were not observed within the PEEY region, which will therefore

not be discussed further. The N-T region is generally conserved in location and hydrophilicity

but does not align well and was therefore not examined. Once results of processing kinetics

were available, flexibility of selected variants with suggestive functional impairments were

studied by limited proteolysis with trypsin and protein gel electrophoresis as in [13].

Substitutions in two bulky hydrophobic NdomTprox residues close to the

Ndom-linker boundary greatly impair processing and also reduce

flexibility in the N-T region

The Ala scan processing results in the 1st half of NdomTprox, suggested by PsiPred to be in α-

helix, are unremarkable. Alanine substitutions in two bulky hydrophobics spaced three resi-

dues apart close to the carboxy end of NdomTprox, Phe329Ala and Leu332Ala, strikingly impair

processing with impairment factors of 2,700X and 700X relative to wild type (Figs 3 and 4). In

the example illustrated (Fig 3), it was necessary to use the Phe329Ala variant at a>1,000-fold

higher concentration than wild type enzyme to obtain a comparable series of processing time

courses over the range of unlabeled substrate concentrations used in kinetic experiments.

These substitutions for bulky hydrophobic residues on the carboxy side of NdomTprox were

selected for further examination for limited proteolysis with trypsin and protein gel electro-

phoresis (Fig 5 and data not shown). Phe329Ala demonstrated a marked change in the ratio of

stable Cdom products produced upon trypsin cleavage compared to WT tRNase Z (similar

results were obtained from Leu332Ala, not shown). The NdomTprox region is proximal to the

preferred trypsin N-T cleavage site at K348/K351 which produces stable Cdom1species (accom-

panying schematics at bottom of Fig 5) that differ slightly in size and charge depending on

cleavage at clustered basic residues ([14]; Fig 1). The Tflex site further into the linker at R384/

K385 gives rise to the smaller Cdom2 species. The Cdom1 to Cdom2 ratio in WT tRNase Z is 2:1;

in the F329 variant this ratio decreases to 0.33:1, showing that the alanine substitution at F329

locally reduces N-T site flexibility.

Effects of Tflex region substitutions on processing kinetics and local

flexibility

Of the nine Tflex alanine variants expressed and analyzed with processing kinetics, Arg382Ala

at the carboxy end of the Tflex region showed the greatest impairment factor, an approximately

50X reduced processing efficiency relative to WT tRNase Z (Fig 6). Multiple sequence align-

ment shows this to be a conserved residue (Fig 2). Asn378Ala, a substitution in a non-con-

served residue near the amino boundary of Tflex, unexpectedly showed a tenfold increase in
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processing efficiency (Figs 6 and 7). Additionally, the Asn378Ala substitution markedly

reduces local flexibility as shown by limited proteolysis (Fig 8). The Tflex region includes the

trypsin cleavage site at R384/K385 which gives rise to the stable Cdom2 species. In WT tRNase Z

the spot intensity ratio of Cdom1 to Cdom2 is 1.5:1 (from schematic at bottom of Fig 8, like the

Fig 3. Processing kinetics with wild type tRNase Z and Phe329Ala variant. The Phe329Ala substitution impairs pre-

tRNAArg processing approximately 2,700-fold compared to WT. (A) Enzymes expressed using baculovirus, affinity

purified and used for processing experiments were analyzed with 10% polyacrylamide gel, here shown with two other

alanine substitutions from the NdomTprox region, to correct the final enzyme concentrations used in the kinetic

experiments. (B) The concentration of unlabeled pre-tRNAArg substrate used in a substrate concentration series was

determined using A260 readings by NanoDrop, and confirmed or corrected by comparison with a eukaryotic tRNA

standard on a 6% gel. (C-D) Michaelis-Menten kinetics experiments were performed using constant concentration of 32P

labeled substrate with added unlabeled substrate varied over a concentration range from 4.8–120 nM (shown below gel

panels), with reactions incubated at 28˚C and sampled after 5, 10, and 15 minutes. WT and F329A enzyme

concentrations (shown above gel panels) were adjusted to obtain roughly equivalent product in the variant, here requiring

an almost 1,000-fold higher concentration of F329A variant than WT. (E-F) Michaelis-Menten plots with kinetic

parameters calculated using SigmaPlot. The 2,700X decrease in catalytic efficiency for the Phe329Ala variant is

principally due to a 1,000-fold decrease in kcat, combined with a modest increase in KM.

https://doi.org/10.1371/journal.pone.0186277.g003
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Fig 4. Tabulated variant kinetics for the Ala scan through the NdomTprox region. Means and standard

errors of Michaelis-Menten experiments with tRNase Z processing of pre-tRNAArg. Kinetic parameters re: WT

are shown for each variant, calculated using the data from a WT experiment run in tandem the same day and

then averaged. aThe form of tRNase Z (WT or Variant), bThe number of times experiment was repeated,
cmin-1, dx10-8 M, ex108 M-1min-1. The bar graph below shows values from the table above.

https://doi.org/10.1371/journal.pone.0186277.g004
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value obtained in Fig 5). For the Asn378Ala variant this ratio increases to 4:1. Alanine substitu-

tion at N378 thus causes a dramatic decrease in Cdom2 species seen after trypsin digestion due

to a local decrease in flexibility.

A subdomain defined by interior hydrophobicity arises from interactions

across the amino domain—Flexible linker boundary

The greatest impairment of tRNase Z activity obtained in the Ala scan through the NdomTprox

region was observed with substitution of bulky hydrophobics spaced three residues apart (F329,

L332) toward the carboxy end of the region (Figs 3 and 4). The most closely corresponding resi-

dues in S. cerevisiae tRNase Z are Y361 and F364 in α8 (Fig 2A). If the backbone in this region is

α-helical or helix-like (in the D. melanogaster sequence a proline at 330 would be expected to

interrupt an α-helical path; Fig 1), these bulky R-groups would point in roughly the same

direction, with potential to collaborate in formation of a hydrophobic cluster. Such a local

structural subdomain inflated with high hydrophibicity would not be located deep within the

protein considering that the flexible linker spans the enzyme surface (Fig 2B). Based on the

recent structure 5MTZ [11], the best candidate hydrophobic partners are I391 and I393 in β13

of S. cerevisiae tRNase Z (Fig 9A). α8 in NdomTprox is the last homology block at the carboxy

end of the amino domain before the start of the flexible linker. β13 is on the carboxy side of the

Fig 5. D. melanogaster tRNase Z Phe329Ala substitution in the NdomTprox region locally reduces flexibility. A) WT; B) Phe329Ala

variant. Trypsin digestions were sampled at 0, 3, 10, and 30 minutes and electrophoresed on 1D SDS gels (left panels in A and B).

Additionally, 10 minute reactions were electrophoresed using 1st dimension isoelectric focusing followed by 2nd dimension SDS-PAGE (right

panels in A and B). Cdom1 species are marked in blue (� on the 1D SDS-PAGE and enclosed in a dashed ellipse in the accompanying 2D gel);

Cdom2 species in green (� on the 1d SDS-PAGE and enclosed by a green dashed ellipse in the 2D gel). Cleavage at clusters of basic residues

accounts for the multiple Cdom1 and Cdom2 species. Cdom1/Cdom2 ratios determined with IQTL are shown at lower right of the 2D gel panels in

A, B. The schematic diagrams below illustrate the location of NdomTprox with respect to the N-T and Tflex sites.

https://doi.org/10.1371/journal.pone.0186277.g005
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N-T hydrophilic patch that marks the amino boundary of the flexible linker, corresponding to

the flexible region sensitive to trypsin (K348KTKL) in D. melanogaster tRNase Z which gives

rise to the Cdom1 species (Figs 5 and 8, cf [14]). Corresponding hydrophilic residues in S. cere-
visiae tRNase Z (E387KDN; blue in Fig 9) are in a short helical element with R-groups facing

solvent. Bulky hydrophobic pairing partners for D. melanogaster F329 and L332 in the N-T

region of the flexible linker cannot be identified due to imperfect alignment (Fig 2A).

Internal subdomains are apparently created by juxtaposition of several bulky hydrophobic

R groups shielded from solvent, producing a micellar spherule inflated like a beach ball (Fig

9A). Substitution of either of the identified bulky hydrophobic R groups in NdomTprox with the

single methyl group of alanine (white in Fig 9B and 9C) leads to hydrophobicity collapse (illus-

trated with dashed ellipses and arrows). The Y361 side chain -OH also makes a polar contact

Fig 6. Processing kinetics with wild type tRNase Z and the Tflex variants Asn378Ala and Arg382Ala. The Asn378Ala

substitution increases processing efficiency, while the Arg382Ala substitution impairs processing of pre-tRNAArg. (A) tRNase Z

dilutions used in processing experiments were electrophoresed on a 10% polyacrylamide SDS gel and compared to a BSA standard

to determine concentrations. (B-D) Kinetic experiments were performed with a constant concentration of 5’ end 32P labeled pre-

tRNAArg substrate and varying concentration of unlabeled substrate, from 4.6–114 nM as indicated below gel panels. Reactions

were sampled after 5, 10, and 15 minute incubation at 28˚C. Wild type enzyme was used at 32.5 pM; N378A enzyme at 5.6 pM, and

R382A enzyme at 400 pM (above gel panels). Phosphorimages were obtained using a Typhoon 9410 scanner. % product/minute,

equivalent to V/[S], was determined using IQTLv8.1 software. (E-G) Michaelis-Menten plots were created using SigmaPlot, with

kinetic parameters displayed on the corresponding graphs.

https://doi.org/10.1371/journal.pone.0186277.g006
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with the I322 backbone amino group in the β12—α7 loop (not shown); the bulky hydrophobic

character of Y361 is, however, probably more important than the polarity of its OH group.

Longer range effects of NdomTprox and Tflex substitutions on the skeleton

of twisted β sheets flanking the flexible arm in the amino domain

Substitutions in both NdomTprox and Tflex regions exert their effects through interactions with

the skeleton of two twisted β sheets that organize the amino domain (Fig 10). Fig 10A shows

the full structure of S. cerevisiae tRNase Z (5MTZ) with the amino domain light grey, carboxy

domain dark grey, twisted β sheet 15, 14, 1–6 green and 13–7 blue. The hydrophobicity

Fig 7. Compilation of Tflex variant kinetic results. Means and standard errors of Michaelis-Menten

experiments with tRNase Z processing of pre-tRNAArg using Ala substitution variants in the Tflex region.

Kinetic parameters re: WT are shown for each variant. The ratios were calculated using data from a WT

experiment run in tandem the same day before being averaged. aThe form of tRNase Z (WT or Variant), bThe

number of times experiment was repeated, cmin-1, dx10-8 M, ex108 M-1min-1. The bar graph below shows the

results from the table above.

https://doi.org/10.1371/journal.pone.0186277.g007
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collapse in α8/β13 could thus be transmitted into the twisted β sheet in the amino domain on

the carboxy side of the flexible arm, as suggested by the enlarged view in Fig 10B.

β13 is a member on one edge of a 7-stranded β sheet, in which H392 makes backbone H-

bonds with the carboxy group of H315 and the amino group of H317 in β12 (Fig 10A and

10B). The first four strands from β13 (13/12/11/10) are parallel; the last two strands (10/9/8/

7) are antiparallel, and β9,10 ascend to and descend from the flexible arm, respectively. The

collapse (deflation) of the α8—β13 spherule arising from substitution of the specific bulky

hydrophobic residues in NdomTprox with Ala (Fig 9B and 9C) damages the overall fold of

tRNase Z, explaining the 2,700-fold and 700-fold impairment of tRNase Z activity (Figs 3

and 4). This also reduces local flexibility (Fig 5) by occluding the N-T site that produces the

Cdom1 family of spots relative to Tflex, which produces Cdom2. In some ways, these long-

range effects of changes in internal subdomain hydrophobicity resemble those of the L187A

substitution at the flexible arm-hand boundary in the ascending stalk of D. melanogaster
tRNase Z, which causes a close to 100-fold impairment in enzyme activity due to increased

KM [14], accompanied by increased flexibility [13].

Tflex coincides with a short β strand (β15), one of two short antiparallel β strands in the

linker (β15–14) which join a twisted sheet (β1—β6) on the amino side of the flexible arm

through backbone H-bonds between β14—β1 (Fig 10C). Concerning the strongest impairment

observed in the region with the R382A substitution (Figs 6 and 7), ionized residues on the sur-

face of the protein such as E419 and D422 in the S. cerevisiae tRNase Z β15-α9 loop face the

polar solvent as expected for Tflex. Replacement with a small hydrophobic residue could lead to

structural eversion in which the substituted residue buries itself in a partially exposed hydro-

phobic patch, like the effects of the HbS substitution on hemoglobin structure and function.

Fig 8. D. melanogaster tRNase Z variant Asn378Ala reduces local flexibility. Trypsin digestions and electrophoresis were performed as

described in Fig 5 and Methods. (A) WT enzyme; (B) tRNase Z with the N378A substitution. Color coding of spots and bands are the same as in Fig

5. The N378A substitution dramatically reduces flexibility at the nearby Tflex site relative to WT.

https://doi.org/10.1371/journal.pone.0186277.g008
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The reduced flexibility at the Tflex site arising from the N378A substitution (Fig 8) is inter-

pretable in a general way (Fig 10C). The short antiparallel β strands β14–15 in the S. cerevisiae
tRNase Z linker are joined through β1 to an 8-stranded twisted sheet in the order β15-14-1-2-

3-4-5-6 (β15-14-1-2-3 are antiparallel and β3-4-5-6 are parallel). The flexible linker clearly

Fig 9. A cluster formed by hydrophobic interactions between residues in NdomTprox and N-T. A) The region of S.

cerevisiae tRNase Z ([11]; 5MTZ) from α8 through β13 is shown in cartoon using PyMOL. α8 and β13 are in red and a short

helical hydrophilic segment preceding β13 (E387KDN) is in blue with sticks. Key hydrophobic residues in α8 and β13 are shown

in ball and stick with dots. (B) Y361 is substituted with Alanine (white); (C) F364 is substituted with Alanine. The substitutions in

(B, C) model the substitution of the smaller R-group of Alanine for the bulky hydrophobic R-groups in D. melanogaster F329 and

L332. Dashed ellipse and curved arrow in (B, C) illustrate the collapse from full inflation due to replacement of a bulky

hydrophobic residue required to support the regional structure.

https://doi.org/10.1371/journal.pone.0186277.g009
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Fig 10. Linker interactions with two skeletal β-twisted sheets in the amino domain of tRNase ZL. As

illustrated using the crystal structure of S. cerevisiae Trz1 [11], short β strands in the flexible linker are

incorporated by polar backbone contacts into the two β twisted sheets which provide the structural core of the

amino domain tRNase ZL. (A) Overview of the S. cerevisiae Trz1 structure (PDB 5MTZ) with the two β twisted

sheets in the amino domain highlighted. (B) Isolated view of the β twisted sheet (β7-β13) rotated for optimal
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associates here with the twisted β sheet which forms half the skeleton of the amino domain, on

the amino side of the flexible arm (Fig 10C).

Based on the alignment in Fig 2A, N415 in S. cerevisae tRNase Z is the most similar residue

in position and identity to N378 in D. melanogaster tRNase Z. Replacement of N415 in β15 with

a small hydrophobic residue would locally reduce linker flexibility by strengthening skeletal

architecture of the amino domain preceding the flexible arm. The reduced linker flexibility

arising from the N378A substitution in D. melanogaster tRNase Z (Figs 6 and 7) could thus

improve catalytic efficiency by stiffening the skeleton of β structure on the amino side of the

flexible arm. Also noteworthy in this regard, the conservative substitution Leu423Phe in H.

sapiens tRNase ZL (ELAC2) associated with mitochondrially based cardiac hypertrophy [21] is

located at the start of β15.

Conclusion

A biochemical exploration of little-understood regions of D. melanogaster tRNase Z through

Ala scanning mutagenesis followed by processing kinetics was aided by analysis of flexibility

using limited proteolysis and two-dimensional protein electrophoresis. This approach,

informed by interpretation of a recent crystal structure of the S. cerevisiae homolog, uncovered

a previously unknown hydrophobic subdomain formed across the amino domain—linker

boundary, leading us to suggest that peripheral substitutions affect the skeleton of twisted β
sheets in the amino domain on both sides of the flexible arm.
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