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Abstract: Horses have been studied for exercise function rather than food production, unlike most
livestock. Therefore, the role and characteristics of tissue landscapes are critically understudied,
except for certain muscles used in exercise-related studies. In the present study, we compared
RNA-Seq data from 18 Jeju horse skeletal muscles to identify differentially expressed genes (DEGs)
between tissues that have similar functions and to characterize these differences. We identified DEGs
between different muscles using pairwise differential expression (DE) analyses of tissue transcriptome
expression data and classified the samples using the expression values of those genes. Each tissue
was largely classified into two groups and their subgroups by k-means clustering, and the DEGs
identified in comparison between each group were analyzed by functional/pathway level using gene
set enrichment analysis and gene level, confirming the expression of significant genes. As a result
of the analysis, the differences in metabolic properties like glycolysis, oxidative phosphorylation,
and exercise adaptation of the groups were detected. The results demonstrated that the biochemical
and anatomical features of a wide range of muscle tissues in horses could be determined through
transcriptome expression analysis, and provided proof-of-concept data demonstrating that RNA-Seq
analysis can be used to classify and study in-depth differences between tissues with similar properties.
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1. Introduction

Genetic studies of livestock have primarily been aimed at increasing production. Most livestock
animals raised today are for meat, and improvements have been made to control fat content and
muscle properties to induce rapid muscle growth or maximize the favored types of tissues [1–6].

Horses have been identified as a suitable model for studying gene expression in skeletal muscle
related to exercise ability [7–11], which is rare for livestock. The present study is similar to a prior
report of muscle activity and associated genes in humans [12–15]. Skeletal muscles have different
physiological characteristics depending on their role, which is related to the composition of muscle
fibers according to the main purpose of the muscle in question.

The primary component that determines the physiological function of muscles is myosin heavy
chain (MyHC), which is myofibril’s thick filament. MyHC is classified into three types, type I, type IIa,
and type IIb/IIx, depending on their contraction rate and metabolic phenotype. Type I is a slow
oxidative (SO) fiber that has a slow contraction speed and obtains ATP from oxidative phosphorylation
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(OXPHOS). Type IIb/IIx is a fast glycolytic muscle (FG) that contracts rapidly and take ATP from
glycolysis, and type IIa is a fast-oxidative-glycolytic (FOG) fiber with intermediate properties of type I
and type IIb/IIx.Type I is a slow oxidative (SO) fiber that has a slow contraction speed and obtains
energy from OXPHOS.

Higher content of type I fibers is associated with slower contraction and highly oxidative
metabolism. These slow-twitch muscles are reddish due to the high mitochondria, myoglobin,
and capillary distribution. The force that can be created by muscle contraction is not strong, but their
fatigue resistance makes them used for posture maintenance or continuous and repetitive activities.
On the contrary, a higher content of type II (b) fibers is associated with faster contraction and a a
glycolytic phenotype [16,17]. Fast-twitch muscles such as these produce ATP through anaerobic
glycolysis, and they can exert a strong force in a short time due to their fast-contraction speed but
become fatigued easily. Because they use less oxygen, they contain fewer mitochondria, blood vessels,
and myoglobin. Consequently, they are less reddish than slow-twitch muscle and look beige or
pale-colored. MyHC fibers vary in composition depending on the muscle’s use, and their ratio can be
changed by muscle conditioning. Additionally, depending on the characteristics of muscles altered by
MyHC content, gene expression associated with the corresponding functions will differ.

In general, to evaluate the distribution, or ratio, of each fiber, measurement of protein expression,
or comparison of cross-section thickness to identify the fiber types via microscopy is used [7,16].
However, next-generation sequencing (NGS) analysis of RNA-Seq data can reveal the dominant
characteristics of each tissue by comparing global gene expression between tissues, even though the
actual fiber composition cannot be directly identified. In addition, it is also possible to compare one
tissue repeatedly with tissues from different sites [18].

Most studies of equine muscle tissue are focused on the analysis and improvement of exercise
function. The primary breeds used in these studies have been Thoroughbred and Arabian horses,
which are used primarily for horse racing or riding, and only a few tissues, such as the blood or gluteus
medius, have been evaluated [7–11]. In the present study, we analyzed transcriptome sequencing data
from 18 different skeletal muscle tissues taken from the Jeju horse. The Jeju horse is a type of pony that
lives on Jeju Island in Korea. It is ~110–120 cm in height and resilient to disease [19].

However, we could not study the unique characteristics of Jeju horse itself because a sufficient
number of samples were not secured. Furthermore, because of the specificity of finely classified muscle
data from the whole body, we could not obtain similar data from previous studies. Thus, we aimed to
identify the transcription expression between skeletal muscle tissues by utilizing the particularity of
the subdivided tissue data.

RNA-Seq data of 18 different muscle regions of the Jeju horse were subjected to differential
expression (DE) analysis (Figure 1) [20,21], which was classified by k-mean clustering. We used RNA-Seq
data to determine if the detailed classification of skeletal muscles with similar properties ware possible.
Additionally, we sought to determine the physiological characteristics of each muscle compared with
similar and proximal tissues by identifying specific gene expression patterns between tissues.
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Figure 1. Name and location of 18 skeletal muscle tissues of Equus caballus.

2. Materials and Methods

2.1. Ethics Statements

All animal experiments were performed in accordance with the guidelines of the Institutional
Animal Care and Use Committee and were approved by the Animal Genomics and Bioinformatics
Division, National Institute of Animal Science (No.2014-080). All efforts were made to minimize
animal suffering.

2.2. Sample Collection

The specimens were obtained from a male horse, born on 12 June 2012, managed by the National
Institute of Animal Science, R.D.A, Jeju, South Korea. It was slaughtered through exsanguination after
electric stunning. Each tissue was collected from 18 regions of skeletal muscles in a hot-carcass state
and immediately frozen to liquid nitrogen and preserved at −80 ◦C.

2.3. RNA Sequencing

Samples were obtained from a Jeju horse, a region-specific horse breed in Jeju, South Korea.
Sample libraries from 18 different skeletal muscles were obtained from one Jeju horse. Ribosomal
RNA was removed from total RNA using a RiboMinus Eukaryote kit for RNA-Seq (Thermo Fisher
Scientific, Sunnyvale, CA, USA). The RNA-Seq library was prepared using a TruSeq RNA kit (Illumina;
San Diego, CA, USA). Sampling and RNA sequencing were conducted by the National Institute of
Animal Science, Rural Development Administration, and sequenced using an Illumina HiSeq 2000
(2 × 101 bp). The GEO accession number for this data set is GSE113147.

2.4. Data Processing

Quality assessment was conducted using FastQC version 0.11.5 software (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc) to analyze sequence reads in the fastq file format.
Using the NGSQCToolkit [22] with a Phred quality score < 20 and less than 50 bp in total length were
removed with paired-read and adapter sequences were trimmed.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
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The reference RNA sequence FASTA files were mapped to the horse genome (EquCab2 79,
Equus_caballus.EquCab2.DNA.chromosome.1~31, X, MT, nonchromosomal.fa) downloaded from the
Ensembl FTP database. The alignment was performed using the STAR (v 2.5.2b) RNA-Seq aligner
with a two-pass method [23]. Using this approach, the first alignment detected splice junctions based
on transcript information, and the final alignment was performed using splice junctions as a guide.
As a guide for transcript alignment, we used the relevant gtf file (Equus_caballus.EquCab2.87.gtf) as a
reference. The alignment process provided read counts for a total of 26,841 genes in 18 samples.

2.5. Differential Expression Analysis

First, the differentially expressed genes (DEGs) between each Jeju horse skeletal muscle were
identified by pairwise analysis using the negative binomial test of the DESeq R package [24]. Based on
the reads per gene counts identified through sequence mapping, the pairwise DEGs (p-value < 0.05) of
all 18 tissues were identified. All DEGs (n = 1292) identified by pairwise analysis and their read counts
were used to implement clustering of samples by their differential gene expression.

Clustering was performed using the hclust and the k-means function of the R package, and the
optimal k value (k = 2) was calculated by the NbClust package in the R. The k-means clustering divides
18 tissues into large two groups, and we subdivided two groups into three subgroups each. Based on
the classified cluster information, we conducted a DE analysis between groups using entire genes
(n = 26,841). DESeq2 was used for DE analysis [25].

2.6. IPA Analysis

Further analysis to determine the functions of the identified DEGs was conducted using Ingenuity
Pathway Analysis (IPA, Ingenuity Systems, Redwood, CA, USA) [26]. IPA was used to conduct
enrichment analysis of the canonical pathway of the gene set and the inter-molecule network. To import
the gene list and avoid omissions in the advanced analysis results as much as possible, the Ensembl
Equus Caballus gene ID was converted into a well-annotated Ensembl human ID to identify DEGs.

2.7. Gene Ontology

Gene ontology (GO) enrichment analysis of DEGs was performed using the biological processes
of the GeneOntology site (http://geneontology.org/, Powered by PANTHER) [27]. GO terms selected
only the term of the main category, except subcategories.

3. Results

3.1. Read Alignments and Results

By mapping the raw data to the ensemble horse genome (EquCab2 79) using STAR-2PASS
alignment, the raw reads were aligned to a total of 26,841 genes. The number of raw sequence reads
per sample ranged from 55.7 to 83.1 M, with an average of 64.1 M and an average input read length
of 202 bp (2 × 101 bp). Uniquely mapped reads averaged 53.1 M, representing 83.2% of the total
average reads.

3.2. Differential Expression Analysis

3.2.1. Classification

A total of 1292 DEGs were identified through pairwise analysis. This number means that most of
the DEGs shown in Figure 2 are overlapping. These are key features that can explain the difference
between skeletal muscles among 26,841 genes prepared for clustering 18 samples. We classified samples
into hierarchical clustering (using the value of log2 (count + 1)) and k-means clustering through the
raw count data of these 1292 DEGs. The optimal k value calculated using the NbClust was set as 2
(Supplementary Materials Figure S1).

http://geneontology.org/
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Figure 2. Number of DEGs (Differentially expressed genes). Number of DEGs per tissues identified
through pairwise tests of 18 skeletal muscles (min = 20, max = 198), the sample ID is the same as shown
in Figure 1.

Samples were divided primarily into two groups, and the classification results were the same in
both hierarchical clustering and k-means clustering (Figure 3). Each group classified by clustering was
labeled as “A” or “B” (Figure 3A) and normalized using DESeq2 [25], and subsequently plotted on
a PCA plot (Figure 3B). Groups A and B were further divided into subgroups based on the results
of k-means clustering (k = 3). The k = 3 is a maximum value that allows two or more tissues to be
included in one subgroup for DESeq2 analysis. The clustering results through k-means are presented
on the PCA plot of Figure 3B–D.

Figure 3. Classification of samples by gene counts. The results of k-means clustering are shown on
hierarchical clustering and PCA (Principal component analysis) plot. (A) The result of hierarchical
clustering using read counts of total DEGs was the same as K-means clustering (k = 2). (B) Clustering
results for all 18 groups on PCA plot. (C) Subgroups in group A by k-means clustering on the PCA plot.
(D) Subgroups in group B by k-means clustering on the PCA plot.

3.2.2. Comparison of A vs. B

As a result of performing DE analysis on the total gene counts of groups classified into A and B
using DESeq2, a total of 1264 DEGs (up = 597, down = 667, adjusted-p < 0.05, |log2Foldchange| > 0.58
(FC = 1.5)) were identified. The expression fold-change for A vs. B in DESeq2 results represents the
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value of A/B. Subsequent “upregulated/downregulated” means higher/lower expression in the former’s
condition of A vs. B. Genes in the Ensemble gene id format were converted into HGNC gene symbol
format for further analysis, and a total of 857 (up = 487, down = 370) were successfully converted.

The IPA and gene ontology were used for gene set enrichment analysis of the identified DEGs.
Table 1 shows the pathways within the top 10 scores (–log (p-value); > 1.3) with z-score values (not 0)
in the IPA canonical pathway results.

Table 1. Top 10 canonical pathway in IPA analysis of group A vs. group B.

Ingenuity Canonical Pathways -log
(p-Value) z-Score Molecules

Estrogen Receptor Signaling 4.1 1.569

ADCY1, ADCY5, ADCY9, CACNA1C,
CARM1, CREB5, CREBBP, DDX5, FBXO32,

FOXO4, GNAZ, GPS2, IGF2R, MAP2K2,
MED4, MMP14, MMP15, MMP16, MMP2,
NCOR2, NOS3, NOTCH1, PIK3CB, PLCB3,

PRKACA, TRIM63

Endocannabinoid Cancer
Inhibition Pathway 3.89 −1.807

ADCY1, ADCY5, ADCY9, CREB5, CREBBP,
DDIT3, MAP2K2, MAP2K7, MMP2, NOS1,
NOS2, NOS3, NUPR1, PIK3CB, PRKACA

Semaphorin Neuronal Repulsive
Signaling Pathway 3.48 −0.535

CSPG4, ITGA3, MAP2K2, MAP2K7, MAPT,
PAK4, PDE4A, PIK3CB, PLXNA1, PLXNA2,

PLXND1, PRKACA, SEMA3E, SMC3

GNRH Signaling 3.47 1.941

ADCY1, ADCY5, ADCY9, CACNA1C,
CACNA1G, CACNA1H, CREB5, CREBBP,
HBEGF, MAP2K2, MAP2K7, MAP3K11,

MMP2, PAK4, PLCB3, PRKACA

Corticotropin Releasing
Hormone Signaling 3.3 1.387

ADCY1, ADCY5, ADCY9, CACNA1C,
CACNA1G, CACNA1H, CREB5, CREBBP,
MAP2K2, NOS1, NOS2, NOS3, PRKACA,

SLC39A7

Gαs Signaling 2.93 2.111
ADCY1, ADCY5, ADCY9, ADD3, ADRB2,

CREB5, CREBBP, MAP2K2, PRKACA,
RAPGEF2, RYR1

Spliceosomal Cycle 2.92 −2.646 DDX46, DHX15, MAGOH, PRPF18,
RBM8A, SLU7, ZNF830

Adrenomedullin signaling
pathway 2.86 2.673

ADCY1, ADCY5, ADCY9, KCNH2, KCNN3,
MAP2K2, MAP2K7, MMP2, MYLK2, NOS3,
PIK3CB, PLCB3, PRKACA, RAMP2, RXRA,

SLC39A7

White Adipose Tissue Browning
Pathway 2.77 2.887

ADCY1, ADCY5, ADCY9, CACNA1C,
CACNA1G, CACNA1H, CREB5, CREBBP,

LDHD, PPARA, PRKACA, RXRA

Calcium Signaling 2.66 1.897

ATP2A2, CACNA1C, CACNA1G,
CACNA1H, CHRNG, CREB5, CREBBP,

MICU1, MYH14, MYH7, MYH8, PPP3CB,
PRKACA, RCAN1, RYR1, TP63

GO analysis was performed to elucidate the functional enrichment of upregulated DEGs of
biological processes using PANTHER. Table S1 contains the top 10 GO terms based on the fold
enrichment value. Directly related to the function of skeletal muscles are “regulation of muscle
adaptation (GO:0043502)” and “regulation of striated muscle contraction (GO:0006942)”.

3.2.3. Group A

To identify the characteristics of the muscles in each group, we conducted DE for subgroups
in groups A and B, respectively. In A and B, a total of three sets of 1 vs. 2, 1 vs. 3, and 2 vs. 3
were performed. In comparison of group A1 and A2, a total of 236 DEGs (up = 128, down = 108,
adjust-P < 0.05, |log2FC| > 1) were identified, of which 200 genes (up = 101, down = 99) were
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converted to the human gene symbol. As a result of analyzing the DEGs by IPA (Table 2), an increase
in the glycolysis and gluconeogenesis canonical pathway was confirmed. This is similar in GO
(Table S2), as we could find fast-twitch glycolytic muscle-related GO terms like “positive regulation
of fast-twitch skeletal muscle fiber contraction (GO:0031448)”, “canonical glycolysis (GO:0061621)”,
and “gluconeogenesis (GO:0006094)” in GO analysis of upregulated DEGs. Considering these results,
the muscles of group A1 are more glycolytic than the muscles of A2 and are thought to be closer to the
fast twitch.

Table 2. Top 10 IPA canonical pathways in group A.

Ingenuity Canonical
Pathways

-log
(p-Value) z-Score Molecules

A1 vs. A2

Glycolysis I 14 1.897 ALDOA, ALDOC, ENO3, GPI, PFKL, PFKM,
PGAM2, PGK1, PKM, TPI1

Gluconeogenesis I 7.11 1.633 ALDOA, ALDOC, ENO3, GPI, PGAM2,
PGK1

Calcium Signaling 5.71 1
ATP2A1, ATP2B2, CASQ2, CREB3L4,

MYH1, MYH11, MYL1, MYL6B, TNNI2,
TNNT3, TPM1

Actin Cytoskeleton Signaling 5.47 1.667 ACTN3, DIAPH3, EGF, FGF9, HRAS, LIMK1,
MYH1, MYH11, MYL1, MYL6B, MYLPF

Protein Kinase A Signaling 4.96 1.265

CREB3L4, MYL1, MYL6B, MYLPF,
NAPEPLD, PGP, PHKB, PLCL1, PLCL2,

PPP1R3D, PTPN3, PYGM, TNNI2,
UBASH3B

Estrogen Receptor Signaling 3.84 1.508 BCL2, CREB3L4, EGF, HRAS, LIMK1, MYL1,
MYL6B, MYLPF, PLCL1, PLCL2, SETD7

Apelin Cardiomyocyte
Signaling Pathway 3.65 1.633 ATP2A1, MYL1, MYL6B, MYLPF, PLCL1,

PLCL2
Synaptic Long Term

Potentiation 3.03 0.816 CREB3L4, HRAS, PLCL1, PLCL2, PPP1R1A,
PPP1R3D

Semaphorin Neuronal
Repulsive Signaling Pathway 3.02 0.816 DPYSL2, LIMK1, MYL1, MYL6B, MYLPF,

VCAN
PAK Signaling 2.8 1.342 HRAS, LIMK1, MYL1, MYL6B, MYLPF

A1 vs. A3

iCOS-iCOSL Signaling in T
Helper Cells 24.8 −4.359

CAMK4, CD247,CD28, CD3D, CD3E, CD3G,
CD4, CD80, CD86, FCER1G, HLA-DOA,

HLA-DOB, HLA-DRA, ICOS, IKBKE, IL2RA,
IL2RB, IL2RG, ITK, LAT, LCK, LCP2,

PIK3CG, PTPRC, VAV1, ZAP70

CD28 Signaling in T Helper
Cells 23.8 −3.771

ARPC1B, CAMK4, CARD11, CD247, CD28,
CD3D, CD3E, CD3G, CD4, CD80, CD86,

FCER1G, HLA-DOA, HLA-DOB, HLA-DRA,
IKBKE, ITK, LAT, LCK, LCP2, PIK3CG,

PTPN6, PTPRC, SYK, VAV1, ZAP70

Th2 Pathway 19.8 −3.638

CCR1, CD247, CD28, CD3D, CD3E, CD3G,
CD4, CD80, CD86, CXCR4, HLA-DOA,

HLA-DOB, HLA DRA, ICOS, IKZF1, IL2RA,
IL2RB, IL2RG, ITGB2, JAK3, PIK3CG, SPI1,

TIMD4, VAV1

Th1 Pathway 17.2 −3.638

CD247, CD28, CD3D, CD3E, CD3G, CD4,
CD80, CD86, CD8A, CXCR3, HLA-DOA,

HLA-DOB, HLA-DRA, ICOS, IL10RA,
IL18R1, IRF1, ITGB2, JAK3, PIK3CG, VAV1

PKCθ Signaling in T
Lymphocytes 16.1 −4.69

CARD11, CD247, CD28, CD3D, CD3E,
CD3G, CD4, CD80, CD86, FCER1G,

HLA-DOA, HLA-DOB, HLA-DRA, IKBKE,
LAT, LCK, LCP2, PIK3CG, RAC2, VAV1,

VAV3, ZAP70
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Table 2. Cont.

Ingenuity Canonical
Pathways

-log
(p-Value) z-Score Molecules

Role of NFAT in Regulation of
the Immune Response 15.7 −4.796

CAMK4, CD247, CD28, CD3D, CD3E, CD3G,
CD4, CD80, CD86, FCER1G, FCGR2C,

HLA-DOA, HLA-DOB, HLA-DRA, IKBKE,
ITK, LAT, LCK, LCP2, PIK3CG, PLCB2, SYK,

ZAP70

Calcium-induced T
Lymphocyte Apoptosis 12.9 −3.606

ATP2A3, CAMK4, CD247, CD3D, CD3E,
CD3G, CD4, FCER1G, HLA-DOA,

HLA-DOB, HLA-DRA, LCK, PRKCB, ZAP70

PD-1, PD-L1 cancer
immunotherapy pathway 11.1 3.873

CD247, CD28, CD80, HLA-DOA, HLA-DOB,
HLA-DRA, IL2RA, IL2RB, IL2RG, JAK3, LAT,

LCK, LCP2, PIK3CG, ZAP70

Type I Diabetes Mellitus
Signaling 10.8 −2.828

CASP8, CD247, CD28, CD3D, CD3E, CD3G,
CD80, CD86, FCER1G, HLA-DOA,

HLA-DOB, HLA-DRA, IKBKE, IRF1, PRF1

B Cell Receptor Signaling 10.4 −3.051

APBB1IP, CAMK4, DAPP1, FCGR2C, IGHE,
IGHG4, IGHM, IKBKE, PIK3AP1, PIK3CG,

PRKCB, PTK2B, PTPN6, PTPRC, RAC2,
SYK, VAV1, VAV3

A2 vs. A3

iCOS-iCOSL Signaling in T
Helper Cells 12.3 −3.464

CD3D, CD3E, CD4, FCER1G, HLA-DOA,
ICOS, IL2RA, IL2RG, ITK, LCK, LCP2,

PIK3CD, PIK3CG, PTPRC, VAV1, ZAP70

B Cell Receptor Signaling 10.8 −2.496

CD22, CREB3L4, DAPP1, FCGR2C, IGHE,
IGHG4, IGHM, MAP2K6, PIK3AP1, PIK3CD,

PIK3CG, PLCG2, PRKCB, PTPRC, RAC2,
RASSF5, SYNJ2, VAV1

Phospholipase C Signaling 10.1 −2.138

CD3D, CD3E, CREB3L4, FCER1G, FCGR2C,
IGHG4, ITGA4, ITK, LCK, LCP2, MYL2,

MYL6B, MYLPF, NAPEPLD, PLCB2, PLCG2,
PLD4, PRKCB, RAC2, ZAP70

Glycolysis I 9.21 −1.414 ALDOA, ALDOC, ENO3, PFKL, PFKM,
PGAM2, PGK1, PKM

Actin Cytoskeleton Signaling 8.71 −1.604

EGF, FGD3, FGF9, ITGA4, LIMK1, MYH1,
MYH10, MYL2, MYL6B, MYLPF, NCKAP1L,
PIK3CD, PIK3CG, RAC2, TIAM2, TMSB4Y,

VAV1

CD28 Signaling in T Helper
Cells 8.51 −3

CD3D, CD3E, CD4, FCER1G, HLA-DOA,
ITK, LCK, LCP2, PIK3CD, PIK3CG, PTPRC,

VAV1, ZAP70
Calcium-induced T

Lymphocyte Apoptosis 8.11 −3 ATP2A1, ATP2A3, CD3D, CD3E, CD4,
FCER1G, HLA-DOA, LCK, PRKCB, ZAP70

A total of 383 DEGs (up = 3, down = 380, adjust-p < 0.05, |log2FC| > 1) were identified through
DE analysis of groups A1 and A3 (301 genes (up = 1, down = 300) were converted to a gene symbol).
In A1 vs. A3, all genes were down regulated except three genes, including the only annotated TLE1.
The results of the IPA analysis could not identify canonical pathways directly related to metabolic
processes, such as glycolysis, and most pathways were associated with immune responses, including T
cell signaling pathways (Table 2). Additionally, in GO analysis, which was conducted on downregulated
DEGs (Table S3), most of the GO terms related to T cell and immune response were confirmed, and there
was no direct result on metabolism.

In group A2 vs. A3, a total of 363 DEGs (up = 98, down = 265, adjust-p < 0.05, |log2FC| > 1) were
identified. Among them, 283 were converted to human gene symbols, 89 upregulated DEGs, and 194
downregulated DEGs. In the IPA canonical pathway, downregulation of glycolysis was confirmed,
and also included a number of immune-related pathways, such as those found in A1 vs. A3 (Table 2).
Likewise, in the GO of downregulated DEGs (Table S3), “canonical glycolysis (GO:0061621)” and
“gluconeogenesis (GO:0006094)” were identified, and the GO term related to the immune response
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occupied the majority as in the IPA analysis. GO terms identified in upregulated DEGs (Table S2)
include “cardiac myofibril assembly (GO:0055003)”, “detection of calcium ion (GO:0005513)”, “muscle
system process (GO:0003012)”, “locomotion (GO:0040011)”, and “movement of a cell or subcellular
component (GO:0006928)”.

3.2.4. Group B

The same as group A, organizations classified as group B were also divided into three subgroups
by k-means clustering, and DE analysis was conducted for each group. In comparison with group
B1 and group B2, a total of 416 DEGs (up = 184, down = 232, adjust-p <0.05, |log2Foldchanage| > 1)
were identified, of which 355 (up = 148, down = 208) has been converted to human gene symbol.
The upregulation of glycolysis, oxidative phosphorylation, and gluconeogenesis was found in the
IPA canonical pathway for these genes (Table 3). This suggests that in tissues belonging to group B1,
overall energy metabolism occurs more actively than muscles in group B2. This is the same in GO
analyzed using upregulated gene (Table S4), “canonical glycolysis (GO:0061621)”, “gluconeogenesis
(GO:0006094)”, “regulation of oxidative phosphorylation (GO:0002082)”, “mitochondrial electron
transport, NADH to ubiquinone (GO:0006120)”, “aerobic respiration (GO:0009060)”, and other GO
terms were also identified.

Table 3. Top 10 IPA canonical pathway in group B.

Ingenuity Canonical Pathways -log
(p-Value) z-Score Molecules

B1 vs. B2

Actin Cytoskeleton Signaling 6.57 0.632
ACTN3, ARHGAP24, EGF, FGF1, FGF10,

FGF7, FGF9, HRAS, MYH1, MYH10, MYH3,
MYL6B, MYLPF, PAK1, PFN2, TIAM2

Glycolysis I 5.67 2.449 ALDOA, ENO3, GPI, PGAM2, PGK1, PKM

Oxidative Phosphorylation 5.17 3.162
COX4I1, COX5A, COX7A1, CYB5A,

MT-ND4L, NDUFA8, NDUFS7, NDUFS8,
NDUFV1, UQCR11

Gluconeogenesis I 4.39 2.236 ALDOA, ENO3, GPI, PGAM2, PGK1

Sirtuin Signaling Pathway 3.78 −1.732
ARG2, IDH2, LDHA, MT-ND4L, NDUFA8,

NDUFS7, NDUFS8, NDUFV1, PFKFB3,
PGAM2, PGK1, PPIF, SREBF1, TUBA8

Calcium Signaling 3.46 −1
CAMKK2, CASQ2, CREB3L4, MYH1,

MYH10, MYH3, MYL6B, SLC8A3, TNNI2,
TNNT3, TPM1

FGF Signaling 2.74 −0.816 CREB3L4, FGF1, FGF10, FGF7, FGF9, HRAS
Neuregulin Signaling 2.45 0.447 BTC, EGF, ERBIN, HRAS, RNF41, STAT5A

Bladder Cancer Signaling 2.43 −0.447 EGF, FGF1, FGF10, FGF7, FGF9, HRAS
LPS/IL-1 Mediated Inhibition of

RXR Function 1.66 0.0357 ABCB9, ACOX3, APOE, FABP4, MAOB,
PLTP, SREBF1, TNFRSF11B

B1 vs. B3

AMPK Signaling 3.34 0.816 ACACB, ADIPOQ, EIF4EBP1, PCK2,
PFKFB3, PIK3R6, TBC1D1

Senescence Pathway 2.07 1.633 ACVR1C, DHCR24, E2F8, EIF4EBP1,
PIK3R6, TGFB3

Synaptogenesis Signaling
Pathway 1.82 1.633 APOE, CDH15, EIF4EBP1, GSK3B, PIK3R6,

SNCG
Factors Promoting

Cardiogenesis in Vertebrates 1.8 2 ACVR1C, BMPR1B, GSK3B, TGFB3

Colorectal Cancer Metastasis
Signaling 1.63 2 BAX, GSK3B, PIK3R6, PTGER3, TGFB3

Adrenomedullin signaling
pathway 1.42 1 BAX, GSK3B, GUCY2C, PIK3R6
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Table 3. Cont.

Ingenuity Canonical Pathways -log
(p-Value) z-Score Molecules

B2 vs. B3

Glycolysis I 11.6 −2.121 ALDOA, ALDOC, ENO3, GPI, PFKM,
PGAM2, PGK1, PKM

Calcium Signaling 8.23 −0.447
ATP2A1, CAMKK2, CASQ2, CREB3L4,

MYH1, MYH3, MYL2, MYL6B, PPP3CA,
TNNI2, TNNT3, TPM3

Gluconeogenesis I 7.99 −1.633 ALDOA, ALDOC, ENO3, GPI, PGAM2,
PGK1

Semaphorin Neuronal Repulsive
Signaling Pathway 4.79 −0.378 DPYSL2, DPYSL3, MYL2, MYL6B, PAK1,

PDE4D, PLXNA3

Actin Cytoskeleton Signaling 4.2 −1.134 ACTN3, EGF, MYH1, MYH3, MYL2, MYL6B,
PAK1, SSH2

PFKFB4 Signaling Pathway 3.74 1 CREB3L4, GPI, PFK M, TGFB3
HIF1α Signaling 2.76 −1.633 ADM, EGF, GPI, LDHA, PKM, PPP3CA

Colanic Acid Building Blocks
Biosynthesis 2.49 #NUM! GPI, UGP2

White Adipose Tissue Browning
Pathway 2.08 1 CAMKK2, CREB3L4, FNDC5, LDHA

AMPK Signaling 1.97 1 CAMKK2, CREB3L4, GYS1, PFKM, ULK1

In group B1 vs. group B3, a total of 219 DEGs (up = 151, down = 68, |log2Foldchanage| > 1) were
identified, of which 164 (up = 117, down = 46) were converted to gene symbols. In the IPA analysis,
a pathway showing a certain tendency to metabolism was not found (Table 3), and pathways presumed
to be upregulated are AMPK signaling, senescence pathway, synaptogenesis signaling pathway,
factors promoting cardiogenesis in vertebrates, colorectal cancer metastasis signaling, adrenomedullin
signaling pathway, cardiac hypertrophy signaling (enhanced), systemic lupus erythematosus in B cell
signaling pathway, neuroinflammation signaling pathway, and hepatic fibrosis signaling pathway
were identified. In GO of upregulated DEGs (Table S4), “response to nutrient levels (GO:0031667)”,
“regulation of lipid metabolic process (GO:0019216)”, “positive regulation of developmental process
(GO:0051094)”, and “positive regulation of multicellular organismal process (GO:0051240)” enrichment
was confirmed for, and the GO term indicating a certain metabolism type was not identified.

In the DE of group B2 vs. group B3, a total of 164 DEGs (up = 81, down = 83, |log2Foldchanage| > 1)
were identified. Of these, 141 (up = 72, down = 69) were converted to human gene symbols. These DEGs
showed downregulation of glycolysis and gluconeogenesis in the IPA canonical pathway (Table 3).

The upregulated DEGs showed only association with “muscle contraction (GO:0006936)” in GO
of upregulated DEGs (Table S4), but in analysis using downregulated DEGs (Table S3), they also
identified the characteristics of the fast-twitch muscle, such as “positive regulation of fast-twitch skeletal
muscle fiber contraction (GO:0031448)”, “canonical glycolysis (GO:0061621)”, and “gluconeogenesis
(GO:0006094)”.

4. Discussion

In general, it is known that the difference in muscle fiber type and their metabolic properties
is the trait that classifies the skeletal muscles. Many studies have demonstrated differences in
biochemical-metabolic phenotypes depending on muscle use and fiber composition. In addition,
the type and nature of the skeletal muscle fiber that makes up the muscle are transformable and
can vary depending on the role the muscle plays. As a result of previous studies of equine exercise
capacity, the classification, properties, and related genes of skeletal muscle tissue are well characterized.
These prior studies demonstrated a large number of exercise-induced changes, with increased expression
of genes associated with oxidative phosphorylation and mitochondrial function in skeletal muscle of
individuals endurance-exercised continuously for long periods of time [8,11,15,27]. These results have
been verified by molecular biology studies [8,9,15].
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In the present study, biochemical analyses using RNA-Seq data from various regions of horse
skeletal muscle tissue were conducted, with the objective of identifying whether a classification based
on tissue characteristics was possible within very similar tissues. In our 18 skeletal muscle tissue data
obtained from Jeju horse, there were no biological or technical replicates for each of the muscle tissues.
To compensate for this limitation, the DE between groups was identified by considering the groups of
k-means clustering as a replicate for a similar trait.

The DEGs obtained in the pairwise comparison classified 18 muscle tissues into two groups
(hierarchical and k-means both), and these were subdivided into three subgroups each. When the
expression of genes that determine the fiber type, and the accompanying genes [28], and the expression
of genes involved in the functional enrichment of the related traits [29–33] were compared by listing
on the basis of clustered samples as a form of the heatmap (Figure 4), it was found that the genes are
known to be expressed together with the type of muscle fiber [28], usually increased and decreased
here as well. However, the expression of the gene that represents the muscle fiber type and the type of
gene that is expected to accompany were not completely consistent.

Figure 4. Expression heatmaps in each group and sample for slow-twitch- and fast-twitch-specific
genes. The list of genes is based on the (i) fiber-type-specific genes from the literature base (TNNC2
and TNNI1 are not included because they do not have annotation ids in the reference), (ii) DEGs in
IPA canonical pathways and GO, (iii) GO database (positive regulation of FA β-oxidation). The color
of the heatmap for gene counts is blue for the lower percentile than 50 and red for higher than 50
(for each row).
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Among DEGs, the expression of the gene known to be muscle fiber specific also represented various
values within the same group A and group B. The difference between the two main groups was more
distinguishable in the gene expression of the functional enrichment group of GO. Among the identified
DEGs on the heatmap (Figure 4), genes included in “regulation of muscle adaptation (GO:0043502)”
were upregulated in group A and downregulated in group B, and genes in the “positive regulation of FA
β-oxidation (GO:0032000)” represent similar patterns as well. The functional enrichment for “regulation
of muscle adaptation (GO:0043502)” was also identified in the GO results of upregulated DEGs of group
A (Table S1). These results suggest that the classification results were preferentially distinguished by
differences in muscle adaptation-related functions and gene expressions involved therein.

The canonical pathways identified from group A vs. group B do not directly refer to the effect
on skeletal muscle, but many studies have verified their metabolic functions in skeletal muscle and
muscle adaptation. As shown in Figure S2, estrogen receptor (ER) signaling exists at the center of
functions that DEGs are involved (Table 1). Estrogen is a type of sex hormone that circulates in the
body and directly or indirectly affects many molecular pathways through ER, and exercise-induced
skeletal muscle adaptation is also affected by ER. ER signaling increases muscle mass regulation and
regeneration and is known to enhance ATP production and lipid metabolism by promoting fission
fusion and β-oxidation of mitochondria [34–38]. In addition, it was confirmed that a number of
canonical pathways included in the table were also affected by the control mechanisms of ER signaling
or involved in changes in the types associated with exercise-indicated adaptation [39–49].

In the distribution of muscles shown in Figure 1, the muscles in group A are usually located in
the anterior and the muscles in group B are mostly located in the posterior. Taking together these
differences in group A vs. group B, this result suggests that the muscles located in the front and rear
perform different main functions and thus exhibit different gene expression. Anatomical research of
the muscle architecture revealed that the muscle of the forelimbs and hindlimbs have different main
roles [21,50]. The proximal horse muscles of the hindlimbs provide energy for locomotion and the
muscles of forelimbs act as stiff spring-like struts to support a greater proportion of the body mass [21].
Therefore, the gene expressions for adapting to continuous activity are stronger in the muscles of the
forelimbs and anterior that supports the weight of the body. On the other hand, the gene expression
for energy generation appears to be more dominant in the muscles of the hindlimbs and the posterior
that provide power.

In skeletal muscle adaptation research conducted on porcine, it has been found that adaptation to
endurance exercise occurs primarily in forelimb musculature [51]. As shown in Figures 1 and 4, gene
expressions for exercise adaptation are dominant in muscles of the anterior and it is thought that the
same mechanism will work in equine also. According to Harrison et al. [52], muscle #9 (extensor carpi
radialis) located in the forelimbs is activated in the swing state, unlike most of the other muscles in the
forelimbs, which are activated in the state of stance. This report could explain why muscle #9 shows a
similar expression to the muscles of group B, even though it is located in the anterior.

Unlike general knowledge, the expression of genes directly associated with the skeletal muscle
fiber type and with a metabolic tendency (glycolysis, OXPHOS) caused by the fiber type is not
unilaterally proportional to the associations of “slow-OXPHOS” and” fast-glycolytic”. It has complex
patterns that cannot be explained by a single element. The sub-clusters of groups A and B are sets
of tissues that have similarities in these complex expression patterns. The analysis of DEGs between
sub-clusters could identify the direct differences of detailed traits, such as fiber-specific gene expression,
glycolysis, and oxidative phosphorylation levels (Tables 1–3) (Figure 4). Here, the tissues included in
the cluster are also mostly located in close or homologous positions (group B3) and are expected to
play similar roles. As more tissues are added or replication is secured, more clusters are separated.
Thus, differences in simple traits overlap and multiple expression types appear, making it possible to
classify a narrower range of locations and functions with only in silico data.
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5. Conclusions

In this study, we analyzed the function of muscles with gene expression values obtained from
transcriptome sequencing data based on in silico data and literature. We identified that RNA-Seq
expression data can be used to classify tissues according to their specific characteristics, even among
highly similar tissues, such as different skeletal muscles. Skeletal muscles were categorized by their role
and difference in gene expression caused by hormonal and cell signaling pathways. The muscles we
analyzed were largely classified into two groups by muscle adaptation-related pathways, which reflected
their main roles and location. The two groups of tissues classified can once again form clusters with
those with similar properties. This sub-cluster is clustered by detailed types of gene expressions,
such as fiber types of muscles or energy metabolic pathways.

If there is an opportunity to confirm the tissue composition and protein expression through
analyses using classical methods, this would provide an opportunity to verify the results of the present
study and to examine the utility of studying animal tissues with NGS analysis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/11/1359/s1,
Figure S1: Optimal number of clusters for k-means clustering, Figure S2: IPA Summary network of Group A vs.
Group B, Table S1: GO biological process of up-regulated DEGs in Group A vs. Group B, Table S2: GO biological
process of up-regulated DEGs in Group A sub-clusters, Table S3: GO biological process of down-regulated DEGs,
Table S4: GO biological process of up-regulated DEGs in Group B sub-clusters.
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