ORIGINAL RESEARCH

Impact of Gender-Affirming Hormonal Therapy on Cardiovascular Risk Factors in Transgender Health

An Updated Meta-Analysis

Saad Ur Rahman, MD,^a Nouraldeen Manasrah, MD,^b Nomesh Kumar, MD,^c Mohammad Hamza, MD,^d Aakanksha Sharma, MD,^e Neel Patel, MD,^f Bansari Patel, MD,^g Masooma Naseem, MBBS,^h Saman Razzaq, MD,ⁱ Seemab Imtiaz Gill, MD,^j Hamza Naveed, MD,^k Khaled M. Harmouch, MD,¹ Yasemin Bahar, MD,^m Muhammad Aamir, MD,ⁿ Yasar Sattar, MD,^o M. Chadi Alraies, MD^p

ABSTRACT

BACKGROUND Gender-affirming hormone therapy (GAHT) is common among transgender individuals, but its impact on lipid profile and cardiovascular health is not well studied.

OBJECTIVES The authors performed a systematic review and meta-analysis of existing literature to assess the impact of GAHT on lipid profiles and metabolic cardiovascular risk factors in transgender individuals.

METHODS Online databases including MEDLINE/PubMed, Embase, and Cochrane Central registry were searched to find studies on lipid profile changes in women who are transgender, also referred to as transfeminine (TF), and men who are transgender, also referred to as transfeminine (TM) before and after GAHT. Baseline comorbidities were analyzed using descriptive statistics, and R-statistical software was used to analyze the mean difference in lipid profile change between the two cohorts (pre- and post-GAHT therapy) including transgender patients.

RESULTS Overall, 1,241 TM and 992 TF patients were included from 12 observational studies and 12 randomized controlled trials. The mean age among TM and TF was 28 years and 30 years, respectively. The mean follow-up duration (including pre- and post-GAHT therapy) was 28 months in TM patients and 39 months in TF patients. When compared to baseline measures, TM patients had a significant increase in low-density lipoprotein, triglyceride levels, and total cholesterol while high-density lipoprotein levels decreased. In TF patients, there was a significant increase in triglyceride levels.

CONCLUSIONS GAHT affects lipid profiles in transgender patients; however, additional studies are needed to determine how these changes impact clinical outcomes. (JACC Adv. 2024;3:101265) Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

From the ^aDivision of Cardiovascular Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts, USA; ^bDivision of Cardiovascular Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; ^CDepartment of Internal Medicine, Wayne State University School of Medicine, Detroit Medical Center, Detroit, Michigan, USA; ^dDepartment of Internal Medicine, Guthrie Medical Group, New York, USA; ^eDepartment of Cardiovascular Medicine, Yale University School of Medicine New Haven, Connecticut, USA; ^fDepartment of Internal Medicine, New York Medical College/Landmark Medical Center, Woonsocket, Rhode Island, USA; ^gDepartment of Internal Medicine, West Virginia University, Morgantown, West Virginia, USA; ^hZiauddin Medical College, Ziauddin University, Karachi, Pakistan; ⁱDepartment of Internal Medicine, Carle Foundation Hospital/Carle Health,

ABBREVIATIONS AND ACRONYMS

BMI = body mass index

- CVD = cardiovascular disease
- DBP = diastolic blood pressure
- **GAHT** = gender-affirming hormone therapy
- HDL = high-density lipoprotein
- IM = intramuscular
- LDL = low-density lipoprotein
- ROB = Risk of Bias
- SBP = systolic blood pressure SMD = standard mean
- difference
- SQ = subcutaneous
- TC = total cholesterol
- TF = transfeminine
- **TG** = triglyceride
- TM = transmasculine

VTE = venous thromboembolism Transgender is a broad term encompassing individuals whose gender identity differs from the one assigned to them at birth.¹ Transgender individuals often go through gender-affirming hormone therapy (GAHT) or surgeries to achieve their desired sex appearance. Transgender men, also referred to as transmasculine (TM) use testosterone to obtain masculine features, while transgender women, also referred to as transfeminine (TF) utilize estrogen and antiandrogen hormones like spironolactone for feminization.²

The use and effects of GAHT have significantly been studied in premenopausal and postmenopausal women and males with hypogonadism. Supplementing androgen to hypogonadal males has been suggested to increase body muscle mass with positive effects on lipid and glycemic profiles or negative outcomes as reported by the World Health Organization controlled trial on the use of combined contraceptive pills that in-

crease the risk of the cardiovascular and thrombotic incident.³⁻⁵ However, there are limited data regarding long-term clinical safety and outcome of hormonal therapy in transgender individuals.

Several studies on GAHT in healthy individuals suggest that estrogen and testosterone may elevate the risk of metabolic syndrome by inducing insulin resistance, dyslipidemia, and increased abdominal fat deposition, which leads to an increased risk of cardiovascular diseases (CVDs).⁶⁻⁸ However, conflicting conclusions arise from other studies indicating the short-term safety of GAHT for transgender individuals.⁹ The long-term cardiovascular safety of GAHT remains uncertain, primarily due to the current evidence relying heavily on expert opinion and retrospective case series, utilizing varied GAHT regimens, including older protocols, and occasionally lacking guidelines-based proactive risk management.

Therefore, we conducted a systematic review and meta-analysis of currently available literature to evaluate the influence of GAHT on the lipid profile and metabolic CVD risk factors that can impact cardiovascular outcomes in transgender individuals.

METHODS

This systematic review was conducted by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The study eligibility criteria included populations that are either: 1) TF or TM individuals; 2) transgender individuals on GAHT; 3) age >12 years; 4) baseline reporting on metabolic and lipid profiles; and 5) outcomes reporting on changes in metabolic and lipid profiles before and after GAHT use. The exclusion criteria were age <12 years, no reporting of lipid profile or desired outcome, and patient pool not including TF or TM individuals.

A literature search was conducted on Medline/ PubMed, Embase, and Cochrane for trials or observational studies with the abovementioned inclusion criteria using a systematic search strategy by PRISMA from inception until January 2023. Search terms employed using Boolean Operators "OR" and "AND" among and between 2 subsets of keywords as "Transgender persons," "transsexual persons" AND "sex hormones" OR "hyperlipidemias" OR "metabolome."

STUDY SELECTION. All available clinical trials or observational studies were evaluated. Two authors (S.R. and M.H.) independently reviewed the search results for studies that met the eligibility criteria. Any uncertainty regarding study selection was resolved with consensus with a third author (Y.S.).

In the first phase, titles and abstracts were screened and studies fulfilling the inclusion were selected for the second phase. In the second phase, we went through the full texts of the selected studies and further narrowed down our selection based on whether the studies reported items for data extraction.

PRIMARY AND SECONDARY OUTCOMES. The primary outcome of the study was the lipid profile of the TF and TM patients including triglyceride (TG) levels, total cholesterol (TC) levels, low-density lipoprotein

Manuscript received February 21, 2024; revised manuscript received August 13, 2024, accepted August 15, 2024.

2

Urbana, Illinois, USA; ^kHCA Houston Kingwood/University of Houston, Texas, USA; ^lDepartment of Internal Medicine, Wayne State University School of Medicine, Detroit Medical Center, Detroit, Michigan, USA; ^mWayne State University, Detroit, Michigan, USA; ⁿDivision of Cardiovascular Medicine, Lehigh Valley Health Network, Pennsylvania, USA; ^oDepartment of Cardiology, West Virginia University, Morgantown, West Virginia, USA; and the ^pCardiovascular Institute, Detroit Medical Center, DMC Heart Hospital, Detroit, Michigan, USA.

The authors attest they are in compliance with human studies committees and animal welfare regulations of the authors' institutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information, visit the Author Center.

(LDL), and high-density lipoprotein (HDL). Secondary outcomes included other factors that could have impacted CV outcomes including body mass index (BMI), systolic blood pressure (SBP), and diastolic blood pressure (DBP).

COMPARISON OF OUTCOMES. We compared the change in the variables mentioned above from their baseline levels before the initiation of GAHT to their levels after the application of GAHT.

DATA COLLECTION AND STATISTICAL ANALYSIS. Statistical analysis was performed using the CRAN-R software. Data from each study included after the secondary screening were extracted in a Microsoft Excel sheet. Data elements collected were the number of TF and TM individuals, androgen or estrogen use, and mean age. Other characteristics collected were TG, TC levels, LDL, HDL, BMI, SBP, and DBP before and after GAHT.

A *meta-cont* module was used along with the inverse variance random effects model to calculate the pooled standard mean difference (SMD) with a probability value of P < 0.05 considered to be statistically significant. The "test for overall effect" was reported

as a z-value corroborating the 95% CI's inference. Higgins I-squared (I²) was determined as a measure of statistical heterogeneity where values of ≤50% corresponded to low to moderate heterogeneity while values ≥75% indicated high heterogeneity.¹⁰ For heterogeneity of more than 50%, we conducted a leave-one-out analysis to assess for studies contributing the most to heterogeneity using the meta-inf module in CRAN-R software. We also conducted a subgroup analysis based on follow-up duration. Four subgroups were identified: 1) up to 1 year; 2) 1 to 3 years; 3) 3 to 5 years; and 4) 5 to 10 years. The publication bias was depicted graphically and numerically as a forest plot and Begg's test.¹¹ The quality assessment of the included articles was performed using the Cochrane Risk of Bias (ROB) and Newcastle Ottawa Scale.¹²⁻¹⁴

RESULTS

Our search identified 564 articles and following the removal of duplicates (n = 89), 475 records were screened in the first phase. Among them, 431 articles were removed. In the second phase, after removing

duplicates and irrelevant studies, a total of 44 articles were selected for a full-length analysis. Of these, 24 studies were included in the final analysis which reported on our desired outcome. A total of 1241 TM and 992 TF individuals were included in our review (**Central Illustration, Figure 1, Supplemental S1**).

We included all GAHT therapies used for gender affirmation that were administered in various formulations such as oral, intramuscular (IM) injections, subcutaneous (SQ) injections, and gel. The GAHT utilized included combination of 17- β -estradiol and cyproterone acetate (oral), ethinyl estradiol (oral), goserelin acetate (SQ), and estradiol valerate (oral) for TF; and testosterone undecanoate (IM), lynestrenol (oral), testosterone cypionate (IM), testosterone enanthate (IM), testoviron depot (IM), anastrozole (oral), and testosterone gel for TM.

The mean follow-up duration for which studies were conducted (including pre- and post-GAHT therapy) was 27.69 months in TM patients and 39.23 months in TF patients. The mean SBP was 120.40 \pm 11.31 mm Hg in TM patients and 119.60 \pm 14.90 mm Hg in TF patients. The mean diastolic pressure was 73.96 \pm 9.07 mm Hg in TM

TABLE 1	Baseline Demographics ,	Treatment Regimens, a	ind Follow-Up Duration of	f Individual Transmasc	uline (TM) Studies Included
---------	--------------------------------	-----------------------	---------------------------	------------------------	-----------------------------

Patient #	First Author, Year	Follow-Up Duration (months) ^a	Number of FTM Transgender Individuals	GAHT Regimen lised (Formulation)	Mean Age (v)
1	Abdala et al. 2018 ¹⁵	12	30		27 + 8
2	Asscheman et al. 1994 ¹⁶	6	10	Testosterone undecanoate (IM)	30 ± 5.76
3	Auer et al 2016 ¹⁷	12	20	Testosterone undecanoate (IM)	-
4	Bunck et al. 2006 ¹⁸	3	30	Anastrozole (oral)	37.1 + 7
5	Chandra et al. 2010 ¹⁹	12	12	Testosterone, crypionate (IM)/enanthate (IM)	29 + 9
6	Cocchetti et al. 2021 ²⁰	24	165	Testosterone undecanoate (IM), enanthate (IM), and transdermal gel	26.78 ± 7.48
7	Deutsch et al, 2015 ²¹	6	31	Testosterone cypionate (IM)	27 ± 6.9
8	Elbers et al, 2003 ²²	12	20	Testosterone esters (IM)	26 ± 6
9	Giltay et al, 2004 ²³	4	81	Testosterone esters (IM)/Testosterone undecanoate (IM)	36.7
10	Jacobeit et al, 2007 ²⁴	12	12	Testosterone undecanoate (IM)	33 ± 6
11	Jacobeit et al, 2009 ²⁵	36	17	Testosterone undecanoate (IM)	34 ± 7
12	Klaver et al, 2020 ²⁶	84	121	Mixed testosterone esters "Sustanon"; testosterone propionate, phenylpropionate, isocaproate, and decanoate (IM)	15.2 ± 2
13	Korpaisarn et al, 2021 ²⁷	24	39	Testosterone enanthate (IM)	$\textbf{27.8}\pm\textbf{6}$
14	Leemaqz et al, 2023 ²⁸	57	196	Testosterone ethanate (IM)/cypionate (IM)	$\textbf{16.4} \pm \textbf{7.2}$
15	Liu et al, 2021 ²⁹	27	45	Testosterone cypionate (IM)	26 ± 1.1
16	Milionis et al, 2023 ³⁰	18	33	Testosterone undecanoate (IM)	$\textbf{23.45} \pm \textbf{5.9}$
17	Mueller et al, 2010 ³¹	24	45	Testosterone undecanoate (IM)	$\textbf{30.4} \pm \textbf{9.1}$
18	Ott et al, 2011 ³²	60	89	Testosterone undecanoate (IM)/lynestrenol (oral)	$\textbf{35.7} \pm \textbf{11.4}$
19 ^b	Pelusi et al, 2014 ³³	12	15	Testoviron depot (IM)	$\textbf{30.9} \pm \textbf{5.41}$
19 ^b	Pelusi et al, 2014 ³³	12	15	Testosterone gel	$\textbf{29.4} \pm \textbf{5.05}$
19 ^b	Pelusi et al, 2014 ³³	12	15	Testosterone undecanoate (IM)	$\textbf{28.2} \pm \textbf{4.69}$
20	Quiros et al, 2015 ³⁴	48	97	Testosterone (IM and transdermal)	$\textbf{28.6} \pm \textbf{8.6}$
21	Tangpricha et al, 2010 ³⁵	12	12	Testosterone esters (IM), cypionate (IM), and enanthate (IM)	29 ± 9
22	Wierckx et al, 2012 ³⁶	120	50	Testosterone esters (IM)	$\textbf{37} \pm \textbf{8.2}$
23	Wierckx et al, 2014 ³⁷	12	53	Testosterone undecanoate (IM)	24.5 ± 7.5

Values are mean \pm SD unless otherwise indicated. ^aDuration refers to follow-up duration which is after initiation of GAHT. ^bPelusi et al, 2014 is a single unique study that has included 3 different testosterone formulations (testosterone depot IM injections, testosterone gel, and testosterone undecanoate). All 3 were separately included to analyze individual effects of the treatment regimen. BMI = body mass index; FTM = female to male; GAHT = gender-affirming hormone therapy; HDL = high-density lipoprotein; IM = intramuscular; LDL = low-density lipoprotein; TC = total cholesterol; TG

triglyceride.

Continued on the next page

5

patients and 71.73 \pm 10.40 mm Hg in TF patients. The mean age of the TM and TF cohorts was 28 years and 30 years, respectively. Baseline characteristics for TF and TM individuals are shown in Tables 1 and 2, respectively.

TM INDIVIDUALS' PRIMARY AND SECONDARY OUTCOMES. TM individuals showed a statistically significant elevation in the primary outcomes when compared to the baseline, including LDL (SMD: 0.28 mg/dl [95% CI: 0.11-0.44] P = <0.01, $I^2 = 61.1\%$), TG levels (SMD: 0.42 mg/dL [95% CI: 0.25-0.59] P = <0.01, $I^2 = 62.8\%$), TC (SMD: 0.17 mg/dL [95% CI: 0.05-0.29] P = <0.01, $I^2 = 30.5\%$) while HDL levels were significantly decreased from baseline (SMD: -0.50 mg/dl [95% CI: -0.67 to -0.32] P = <0.01, $I^2 = 65.0\%$) (Figure 2, Table 3).

Regarding secondary outcomes, BMI was significantly elevated when compared to the baseline (SMD: 0.24 kg/m² [95% CI: 0.11-0.38] $P = \langle 0.01, I^2 = 0.0\% \rangle$. However, no significant relationship between SBP (SMD: -0.09 mm Hg [95% CI: -0.61 to 0.42] P = 0.72, $I^2 = 89.4\%$) and DBP (SMD: -0.27 mm Hg [95% CI: -0.76 to 0.21] P = 0.27, $I^2 = 88.9\%$) was studied (Supplemental S2, **Table 3**).

SUBGROUP ANALYSIS. We further performed subgroup analysis to account for follow-up duration as it varied in various studies. Based on subgroup analysis for TM individuals, HDL levels showed significant reduction at up to 1 year, 1 to 3 years, and 3 to 5 years follow-up. However, a nonsignificant reduction was found in 5 to 10 years follow-up. In the case of LDL, significant elevation was seen in up to 1 year and 3 to 5 years follow-up but nonsignificant elevation in 1 to 3 years and 5 to 10 years follow-up. In the case of TG, significant elevation was seen in up to 1 year, 1 to 3 years, and 5 to 10 years follow-up but nonsignificant

TABLE 1 Contin	ued					
Mean BMI (kg/m²)	Mean Systolic Blood Pressure (mm Hg)	Mean Diastolic Blood Pressure (mm Hg)	Mean TG Levels (mg/dL)	Mean LDL Levels (mg/dL)	Mean TC Levels (mg/dL)	Mean HDL Levels (mg/dL)
25	-	-	88.3 ± 32.8	101.2 ± 25.1	175 ± 42.37	50.1 ± 10.9
-	-	-	93 ± 31	109.82 ± 28.23	184.45 ± 186	54.52 ± 10.44
$\textbf{23.49} \pm \textbf{4.55}$	-	-	$\textbf{77.95} \pm \textbf{41.49}$	106.52 ± 30.39	$\textbf{77.95} \pm \textbf{41.49}$	53.1 ± 13.9
25.6 ± 2.9	-	-	149.73 ± 147.96	116.1 ± 48.37	186.76 ± 42.57	$\textbf{42.57} \pm \textbf{12.77}$
$\textbf{27.5} \pm \textbf{5.2}$	-	-	92 ± 72	113 ± 22	184 ± 26	52 ± 11
25.06 ± 5.73	116.05 ± 13.62	73.33 ± 10.25	59.16 ± 43.05	102.32 ± 27.42	171.73 ± 30.4	$\textbf{57.57} \pm \textbf{14.29}$
29.2 ± 2.8	120 ± 5.75	72 ± 4	75 ± 14	93 ± 8.25	177 ± 9.5	58 ± 5.5
$\textbf{20.8} \pm \textbf{2.6}$	126.9 ± 10.2	70.1 ± 8.5	$\textbf{77.5} \pm \textbf{12.27}$	113.3 ± 34.03	170.15 ± 38.67	40.99 ± 8.507
$\textbf{22.8} \pm \textbf{4.53}$	126.62 ± 13.14	$\textbf{79.80} \pm \textbf{8.00}$	61.95 ± 9.56	105.2 ± 33.3	176.72 ± 33.64	54.5 ± 16.6
-	-	-	-	140.5 ± 47	215.8 ± 58.5	51.7 ± 10.8
$\textbf{28.3} \pm \textbf{2.8}$	-	-	88 ± 14	139 ± 48	218 ± 47	50 ± 11
21.6	120	67	70.87	81.2	150.81	58
23.6 ± 4.5	-	-	$\textbf{86.4} \pm \textbf{44.4}$	131.7 ± 36.8	$\textbf{207.4} \pm \textbf{40.8}$	$\textbf{57.2} \pm \textbf{13.1}$
-	-	-	$\textbf{85.7} \pm \textbf{49.1}$	$\textbf{95.2} \pm \textbf{27.4}$	170.8 ± 32.4	$\textbf{58.7} \pm \textbf{14.2}$
20.6 ± 0.4	122.5 ± 2.7	$\textbf{74.1} \pm \textbf{1.7}$	$\textbf{85.4} \pm \textbf{7.7}$	104.2 ± 3.2	$\textbf{165.1} \pm \textbf{4.8}$	$\textbf{63.9} \pm \textbf{2.6}$
$\textbf{24.47} \pm \textbf{4.19}$	-	-	$\textbf{64.93} \pm \textbf{21.4}$	$\textbf{88.67} \pm \textbf{25.69}$	156.69 ± 23.55	$\textbf{55.5} \pm \textbf{11.05}$
$\textbf{24.1} \pm \textbf{4.5}$	129.3	81	120.5 ± 64	131.2 ± 32.4	185.8 ± 33.4	61.8 ± 16.3
$\textbf{22.6} \pm \textbf{4.4}$	-	-	$\textbf{108.6} \pm \textbf{69.8}$	111.7 ± 34.2	187.9 ± 45.6	53.2 ± 14.4
$\textbf{22.3} \pm \textbf{4.33}$	-	-	$\textbf{57.4} \pm \textbf{34.85}$	$\textbf{92.6} \pm \textbf{27.44}$	174.4 ± 28.35	$\textbf{70.2} \pm \textbf{13.72}$
$\textbf{23.9} \pm \textbf{4.87}$	-	-	$\textbf{60.8} \pm \textbf{36.81}$	$\textbf{82} \pm \textbf{27.44}$	$\textbf{161.3} \pm \textbf{28.35}$	$\textbf{67.8} \pm \textbf{13.72}$
$\textbf{22.1} \pm \textbf{4.69}$	-	-	$\textbf{72.5} \pm \textbf{33.4}$	$\textbf{83.3} \pm \textbf{28.89}$	$\textbf{161.5} \pm \textbf{28.35}$	$\textbf{62.9} \pm \textbf{18.05}$
25 ± 4.7	118.2 ± 9.1	$\textbf{75.2} \pm \textbf{8.9}$	$\textbf{70.6} \pm \textbf{30.7}$	103.8 ± 38.7	166 ± 35.1	$\textbf{52.2} \pm \textbf{12.2}$
$\textbf{27.5} \pm \textbf{5.2}$	-	-	92 ± 72	113 ± 22	184 ± 26	52 ± 11
24.8 ± 3.8	124.7 ± 14.4	81.3 ± 10.7	124.1 ± 27.8	-	$\textbf{200.8} \pm \textbf{10.1}$	-
-	111.5 ± 12.6	70.2 ± 10.5	69.8 ± 10	$\textbf{98.4} \pm \textbf{26.3}$	171.9 ± 28.1	$\textbf{56.3} \pm \textbf{12.7}$

elevation in 3 to 5 years follow-up. Regarding TC, significant elevation was seen in up to 1 year followup but nonsignificant elevation was observed in 1 to 3 years, 3 to 5 years, and 5 to 10 years follow-up. For BMI, up to 1-year follow-up showed significant elevation, however, 1 to 3 years and 3 to 5 years follow-up durations showed nonsignificant elevation. Regarding SBP and DBP, none of the subgroups showed any significant changes. These results are shown in Supplemental S4A.

TF INDIVIDUALS' PRIMARY AND SECONDARY OUTCOMES. TF individuals showed a statistically significant increase in TG levels only when compared to the baseline levels (SMD: 0.64 mg/dL [95% CI: 0.01-1.26] P = 0.05, $I^2 = 91.6\%$). There was no statistically significant change in the rest of the primary outcomes including LDL (SMD: -0.05 mg/dL [95% CI: -0.56 to 0.46] P = 0.85, $I^2 = 91.6\%$), HDL (SMD: 0.25 mg/dL [95% CI: -0.74 to 1.23] P = 0.62, $I^2 = 97.6\%$), and TC (SMD: 0.005 mg/dL [95% CI: -0.18 to 0.18] P = 0.96, $I^2 = 67.2\%$) (Figure 3, Table 4).

Regarding secondary outcomes, there was no statistically significant change observed in SBP when compared to the baseline (SMD: -0.51 mm Hg

[95% CI: -1.44 to 0.43] P = 0.29, $I^2 = 96.6\%$, DBP (SMD: -0.01 mm Hg [95% CI: -0.81 to 0.78] P = 0.97, $I^2 = 88.1\%$), and BMI (SMD: 0.38 kg/m² [95% CI: -0.13 to 0.88] P = 0.14, $I^2 = 91.9\%$) (Supplemental S3, **Table 4**).

SUBGROUP ANALYSIS. For TF individuals, the impact of follow-up duration on HDL levels did not show any significant change. LDL showed no significant changes in up to 1 year, 1 to 3 years, and 3 to 5 years follow-up, and only showed mild statistically significant reduction in 5 to 10 years follow-up. For TG, similarly up to 1 year, 1 to 3 years, and 3 to 5 years follow-up did not show any significant change, and only mild significant change was observed in 5 to 10 years follow-up. Regarding SBP, no subgroup showed any significant results. For DBP, only 1 to 3 years follow-up showed mild significant elevation. Up to 1 year follow-up showed nonsignificant elevation but 3 to 5 years and 5 to 10 year follow-up subgroups showed nonsignificant reduction. Thus, overall, the result is nonsignificant. Regarding BMI, all the subgroups showed nonsignificant elevation. The results of the subgroup analysis are shown in Supplemental S4B.

 TABLE 2
 Baseline Demographics, Treatment Regimens, and Follow-Up of Individual Transfeminine (TF) Studies Included

Patient #	First Author, Year	Follow-Up Duration (months)ª	Number of MTF Transgender Individuals	GAHT Regimen Used (Formulation)	Mean Age (y)	Mean BMI (kg/m²)
1	Auer et al, 2016 ¹⁷	12	20	Estradiol valerate (oral), cyproterone acetate (oral)	-	23.9 ± 4.34
2	Cocchetti et al, 2021 ²⁰	24	144	Estradiol valerate (oral)	$\textbf{31.84} \pm \textbf{11.46}$	$\textbf{23.46} \pm \textbf{4.48}$
3	Deutsch et al, 2015 ²¹	6	16	17-beta estradiol (oral)/estradiol valerate (oral)/spironolactone (oral)	$\textbf{29} \pm \textbf{9.4}$	14.55 ± 1.075
4	Dittrich et al, 2005 ³⁸	24	60	Ethinyl estradiol (oral)/17-β-estradiol (oral)	$\textbf{38.37} \pm \textbf{11.36}$	$\textbf{24.19} \pm \textbf{4.34}$
5	Elbers et al, 2003 ²²	12	17	Ethinyl estradiol (oral)	23 ± 5	21.7 ± 3.5
6	Klaver et al, 2020 ²⁶	84	71	17- β estradiol (oral)	14.6 ± 1.8	20.2
7	Leemaqz et al, 2023 ²⁸	57	170	Estrogen plus spironolactone (oral)	$\textbf{29.9} \pm \textbf{9.5}$	_
8	Liu et al, 2021 ²⁹	27	65	Conjugated estrogen and cyproterone acetate (oral)	$\textbf{27.9} \pm \textbf{0.7}$	$\textbf{22.6} \pm \textbf{0.3}$
9	Mueller et al, 2010 ³¹	24	84	Goserelin acetate (SQ)	$\textbf{36.3} \pm \textbf{11.3}$	$\textbf{22.3} \pm \textbf{0.42}$
10	Ott et al, 2011 ³²	60	80	17- β -estradiol/cyproterone acetate (oral)	$\textbf{26} \pm \textbf{6.3}$	$\textbf{23.7} \pm \textbf{6}$
11	Quiros et al, 2015 ³⁴	48	150	Estrogen therapy with antiandrogen activity (oral)	$\textbf{32.4} \pm \textbf{10.1}$	$\textbf{24.2} \pm \textbf{4.3}$
12	Wierckx et al, 2012 ³⁶	120	50	Cyproterone acetate, exogenous estrogen (oral)	$\textbf{43} \pm \textbf{10.4}$	$\textbf{25.3} \pm \textbf{5.4}$
13	Wierckx et al, 2014 ³⁷	12	53	Cyproterone acetate, estradiol valerate (oral)	$\textbf{30.3} \pm \textbf{14.4}$	-
		-				

Values are mean \pm SD unless otherwise indicated. ^aDuration refers to follow-up duration after initiation of GAHT.

MTF = male to female; SQ = subcutaneous; other abbreviations as in Table 1.

Continued on the next page

7

PUBLICATION BIAS. To ascertain the bias, we plotted funnel plots and then used Begg's test to assess for funnel plot asymmetry.¹¹ The plot's vertical axis uses standard error to estimate the sample size of the study, thereby, plotting larger studies at the top and smaller studies at the bottom. The horizontal spread depicts the power and effect sizes of the included studies. We did a numerical assessment of the funnel plot scatter using Begg's test that did not show any publication bias or small study effects (Supplemental S5).

GUALITY ASSESSMENT. Bias assessment of randomized controlled trials was done using the Cochrane ROB tool.¹² In all of the intervention studies, there was no blinding because of the interventional nature of GAHT and parallel single-arm designs with no intergroup comparison. This raises a concern for selection bias. In most of the studies, data regarding matching are also not available. There is minimal risk of detection bias as all the outcomes were laboratory measures and robust data regarding laboratory methods are available. The risk of reporting bias was minimal due to adequate reporting of outcomes. The overall risk of bias was high. The detailed ROB tool assessment of the intervention studies is given in **Supplemental S6**.

Quality assessment of non-randomized studies was assessed by the Newcastle-Ottawa Scale.¹⁴ In all noninterventional studies, the quality of study population selection, comparability of the selected sample with the general population, and methods of measuring the outcome were assessed as depicted in Supplemental S7. The overall risk of bias for the observational studies included in the study was low.

HETEROGENEITY. In general, the high heterogeneity observed in the outcomes studied in our analysis is likely due to several factors. Firstly, it encompasses studies utilizing diverse GAHT approaches. Secondly, most of the studies in our analysis exhibited notable selection bias, both in non-randomized observational studies and even in randomized controlled trials, contributing to a high risk of overall bias. Thirdly, such pronounced heterogeneity may be explained by sampling bias.

To further assess heterogeneity, we conducted a leave-one-out analysis. In TM individuals, the outcomes with >50% heterogeneity were HDL, LDL, TG, SBP, and DBP. For HDL, almost all studies contributed equally to heterogeneity except Liu et al.²⁹ Omitting this study resulted in an overall pooled HDL of -0.55 mg/dL (95% CI: -0.7 to -0.40; P < 0.01) compared to the baseline and a decrease in I² value to 50%. For LDL, the study contributing the most to heterogeneity was again Liu et al.²⁹ Omitting this study led to a pooled LDL increase of 0.35 mg/dL (95% CI: 0.24 to 0.49; P < 0.01) from baseline and a resultant heterogeneity of 31%. The rest of the studies contributed equally to heterogeneity. For TG, all the studies contributed to heterogeneity except Wierckx et al.³⁷ Omitting this study led to a total heterogeneity of 51% and a pooled increase in TG from a baseline of 0.389 mg/dL (95% CI: 0.24-0.53; *P* < 0.01). Regarding SBP, the study contributing to heterogeneity was again Liu et al²⁹ while all other studies contributed

TABLE 2 Continued					
Mean Systolic Blood Pressure (mm Hg)	Mean Diastolic Blood Pressure (mm Hg)	Mean TG Levels (mg/dL)	Mean LDL Levels (mg/dL)	Mean TC Levels (mg/dL)	Mean HDL Levels (mg/dL)
-	-	92.32 ± 52.66	112.99 ± 34.16	92.32 ± 52.66	53.95 ± 11.66
124.92 ± 14.91	$\textbf{76.24} \pm \textbf{11.06}$	$\textbf{97.11} \pm \textbf{89.56}$	102.83 ± 31.7	176.75 ± 39.08	54.59 ± 13.58
71 ± 2.875	49.5 ± 5.25	54.24 ± 9.375	69.5 ± 10.5	110.5 ± 12.5	$\textbf{37.25} \pm \textbf{4}$
-	-	110 ± 75.49	-	188 ± 45.81	-
121.4 ± 9.9	$\textbf{67.1} \pm \textbf{7.5}$	61.56 ± 9.72	$\textbf{99.38} \pm \textbf{33.64}$	$\textbf{162.4} \pm \textbf{34.8}$	$\textbf{47.18} \pm \textbf{12.374}$
120	65	70.8	73.47	143.07	54.13
-	-	111.8 ± 60.2	100.5 ± 33.8	173 ± 37	49.9 ± 13.1
119.9 ± 1.9	70.2 ± 1.1	$\textbf{76.7} \pm \textbf{4.7}$	124.3 ± 3.7	183.4 ± 3.8	$\textbf{57.9} \pm \textbf{2.1}$
-	-	$\textbf{112.9} \pm \textbf{8.69}$	115.8 ± 5.96	185.32 ± 6.82	$\textbf{56.75} \pm \textbf{4.58}$
-	-	$\textbf{85.5} \pm \textbf{50.6}$	107.9 ± 30.1	$\textbf{176.7} \pm \textbf{38.3}$	$\textbf{56.6} \pm \textbf{12.4}$
115.5 ± 11.9	72.9 ± 10.1	90 ± 56.6	104.3 ± 23	164.3 ± 29.1	$\textbf{45.4} \pm \textbf{12.7}$
124.8 ± 16.6	$\textbf{77.1} \pm \textbf{10.1}$	89.5 ± 18.3	-	197.8 ± 17.1	-
125.1 ± 13.8	70.2 ± 10.5	80.4 ± 15.3	$\textbf{99.4} \pm \textbf{29}$	171.5 ± 32.7	$\textbf{52.9} \pm \textbf{13.5}$

equally to heterogeneity. Omitting Liu et al²⁹ decreased heterogeneity to 68% and a change in SBP of 0.12 mm Hg (95% CI: -0.15 to 0.37; P = 0.38) from baseline. Regarding DBP, all studies contributed equally to heterogeneity except Liu et al.²⁹ Omitting this study led to a decrease in heterogeneity to 50% and a final pooled change in DBP of -0.02 mm Hg (95% CI: -0.23 to 0.19; P = 0.85) from baseline. Supplemental S8A.

In TF individuals, regarding HDL, all studies contributed equally to heterogeneity. Regarding LDL, Liu et al²⁹ contributed most to heterogeneity. Omitting it led to a decrease in heterogeneity to 72% and a pooled LDL difference of -0.18 mg/dL (95% CI: -0.43 to 0.06; P = 0.15) from baseline. Regarding TC, Cocchetti et al²⁰ and Wierckx et al³⁷ contributed the most to heterogeneity. Removing Cocchetti et al decreased heterogeneity to 51% with pooled TC of 0.06 mg/dL (95% CI: -0.11 to 0.23; P = 0.48) as compared to baseline; while removing Wierckx et al decreased heterogeneity to 54% with pooled TC of 0.07 mg/dL (95% CI: -0.09 to 0.22; P = 0.40) from baseline. Regarding TG, all studies contributed almost equally to heterogeneity. Regarding SBP, Liu et al²⁹ contributed the most to heterogeneity. Its omission led to a decreased heterogeneity to 90% with a pooled SBP difference of -0.08 mm Hg (95% CI: -0.60 to 0.44; P = 0.77) compared to baseline. For DBP, Deutsch et al²¹ contributed the most to heterogeneity. Its omission led to a decrease in I2 levels to 68% and pooled DBP changed to about 0.33 mm Hg (95% CI: 0.08-0.05; P = 0.01). Here omission of the most heterogeneous study changed the results to a statistically significant increase in DBP as compared to baseline. Deutsch et al had a short follow-up duration, which likely skewed the overall effect and contributed to the normalization of DBP. Also, medication adherence was not consistently tracked among most patients, a limitation acknowledged within the study. Regarding BMI, Mueller et al³¹ was the most heterogeneous study and its omission led to a decrease in I² value to 57% and pooled BMI differed by 0.20 kg/m² (95% CI: -0.04 to 0.43; P = 0.10) from baseline Supplemental S8B.

Compared to other studies, Liu et al²⁹ differed significantly in methodology, potentially contributing to high heterogeneity. While other studies included some patients with baseline dyslipidemia, Liu et al²⁹ opted to exclude individuals with dyslipidemia. Follow-up duration was variable in Liu et al²⁹ with some participants monitored at 3 months, others at 6 months, and some for even longer periods. Moreover, loss to follow-up was high as compared to the other studies, also contributing to high heterogeneity.

DISCUSSION

We performed a systematic review and meta-analysis to outline the effect of GAHT on lipid profile in transgender patients. Our results show a statistically significant increase in TG levels in transgender women with no significant changes in TC, LDL, HDL levels, or changes in SBP and DBP when compared to the baseline levels. On the other hand, transgender men had a statistically significant increase in TG, LDL, and TC levels and a decrease in HDL levels with no significant changes in SBP or DBP as compared to the baseline levels.

The primary class of estrogen $(17-\beta$ estradiol) and ethinyl estradiol were the most commonly used regimens given to transgender women in our selected

В

FIGURE 2 Forest Plots for Primary Outcomes Comparing Lipid Profile Pre- and Post-GAHT Use Among Transmasculine (TM) Individuals

A Study	A Total	fter Sex Mean	Steroid SD	Bei Total	fore Sex Mean	Steroid SD	Standardized Mean Difference	SMD	95%-CI	Weight (common)	Weight (random)
Ott et al 2011	80	136.00	35.4000	80	107.90	30.1000	I II	0.85	[0.53; 1.18]	7.0%	5.9%
Elbers et al 2003	17	104.02	32.8700	17	99.38	33.6400	- _	0.14	[-0.54; 0.81]	1.6%	3.3%
Chandra et al 2010	12	121.00	29.0000	12	113.00	22.0000		0.30	[-0.51; 1.11]	1.1%	2.7%
Giltay et al 2004	81	117.17	44.0800	81	105.18	33.2600		0.31	[-0.00; 0.62]	7.7%	6.1%
Asscheman et al 1994	10	122.20	30.1600	10	109.82	28.2300		0.41	[-0.48; 1.29]	0.9%	2.3%
Mueller et al 2010	45	141.40	29.0000	45	131.20	32.4000		0.33	[-0.09; 0.75]	4.3%	5.2%
Abdala et al 2018	30	112.50	43.9000	30	101.20	25.1000		0.31	[-0.20; 0.82]	2.8%	4.4%
Auer et al 2016	20	116.51	32.3200	20	106.52	30.3900		0.31	[-0.31; 0.94]	1.9%	3.6%
Bunck et al 2006	30	116.10	30.9600	30	116.10	48.3800		0.00	[-0.51; 0.51]	2.9%	4.4%
Cocchetti et al 2021	165	119.02	34.3000	165	102.32	27.4200	1 - III -	0.54	[0.32; 0.76]	15.3%	6.8%
Deutes et al 2015	31	97.00	9.5000	31	93.00	8.2500	++ :*	0.44	[-0.06; 0.95]	2.9%	4.4%
Jacobeit et al 2007	12	118.30	30.7000	12	140.50	47.0000		-0.54	[-1.36; 0.28]	1.1%	2.6%
Jacobeit et al 2009	17	119.00	46.0000	17	139.00	48.0000		-0.42	[-1.10; 0.26]	1.6%	3.3%
Klaver 2020	121	100.54		121	81.20					0.0%	0.0%
Korpaisarn et al 2021	39	157.50	32.4000	39	131.70	36.8000		0.74	[0.28; 1.20]	3.5%	4.8%
Leemagz et al 2023	196	104.70	27.5000	196	95.20	27.4000	- *	0.35	[0.15; 0.54]	18.6%	7.0%
Liu et al 2021	45	100.40	6.3000	45	104.20	3.2000		-0.75	[-1.18; -0.33]	4.0%	5.0%
Pelusi et al 2014	15	107.00	33.0400	15	92.60	27.4400		0.46	[-0.27; 1.19]	1.4%	3.0%
Pelusi et al 2014	15	84.90	33.0400	15	82.00	27.4400		0.09	[-0.62; 0.81]	1.4%	3.1%
Pelusi et al 2014	15	98.90	34,4900	15	83.30	28.8900	- <u></u>	0.48	[-0.25; 1.20]	1.4%	3.0%
Quiros et al 2015	97	112.80	30.3000	97	103.80	38.7000		0.26	[-0.02; 0.54]	9.2%	6.3%
Tangpricha et al 2010	12	121.00	29.0000	12	113.00	22.0000		0.30	[-0.51; 1.11]	1.1%	2.7%
Wierckz et al 2012	50			50						0.0%	0.0%
Wierckx et al 2014	53	116.10	28.9000	53	98.40	26.3000		0.64	[0.25; 1.03]	4.8%	5.4%
Milonis et al. 2023	33	90.72	32.0100	33	88.67	25.6900		0.07	[-0.41; 0.55]	3.2%	4.6%
Common effect model	1241			1241			•	0.34	[0.25; 0.42]	100.0%	
Random effects model								0.28	[0.11; 0.44]		100.0%
Heterogeneity: $I^2 = 61\%$, τ^2	= 0.08	872, ρ < 0	0.01				1 05 0 05 1				

Favors Before Sex Steroid Favors After Sex Steroid

	After Sex 3	Steroid	Before Sex	Steroid	Standardized Mean			Weight	Weight
Study	Total Mean	SD	Total Mean	SD	Difference	SMD	95%-CI	(common)	(random)
Ott et al 2011	80 45.20 1	12.8000	80 56.60	12.4000		-0.90	[-1.23; -0.57]	7.2%	5.8%
Elbers et al 2003	17 37.90	6.5700	17 47.18	12.3700		-0.91	[-1.63, -0.20]	1.5%	3.3%
Chandra et al 2010	12 40.00	7.0000	12 52.00	11.0000		-1.26	[-2.15; -0.37]	1.0%	2.5%
Giltay et al 2004	81 44.08 1	11.2100	81 54.52	16.6300	-#2	-0.73	[-1.05; -0.41]	7.5%	5.9%
Asscheman et al 1994	10 45.24	8.8900	10 54.52	10.4400		-0.92	[-1.85; 0.01]	0.9%	2.4%
Mueller et al 2010	45 47.30 1	13.0000	45 61.80	16.3000		-0.98	[-1.41; -0.54]	4.0%	5.0%
Abdala et al 2018	30 52.00 1	12.0000	30 50.10	10.9000	3-+	0.16	[-0.34; 0.67]	3.0%	4.5%
Auer et al 2016	20 50.16 1	10.1000	20 53.10	13.9000	- <u>+</u> + -	-0.24	[-0.86; 0.39]	2.0%	3.8%
Bunck et al 2006	30 43.34 1	10.4500	30 42.57	12.7700	ş	0.07	[-0.44; 0.57]	3.0%	4.5%
Cocchetti et al 2021	165 48.61 1	11.7300	165 57.57	14.2900		-0.68	[-0.91; -0.46]	15.4%	6.5%
Deutes et al 2015	31 56.00	7.2500	31 58.00	5.5000	- 5* 	-0.31	[-0.81; 0.19]	3.0%	4.6%
Jacobeit et al 2007	12 52.20 1	11.6000	12 51.70	10.8000		0.04	[-0.76; 0.84]	1.2%	2.9%
Jacobeit et al 2009	17 51.00 1	10.0000	17 50.00	11.0000	<u>€</u> +	0.09	[-0.58; 0.77]	1.7%	3.5%
Klaver 2020	121 50.28		121 58.00		3			0.0%	0.0%
Korpaisarn et al 2021	39 51.60	7.7000	39 57.20	13.1000		-0.52	[-0.97; -0.06]	3.7%	4.9%
Leemagz et al 2023	196 49.70 1	11.9000	196 58.70	14.2000		-0.69	[-0.89; -0.48]	18.3%	6.6%
Liu et al 2021	45 65.00	3.0000	45 63.90	2.6000	2 	0.39	[-0.03; 0.81]	4.4%	5.1%
Pelusi et al 2014	15 58.30 1	15,1600	15 70.20	13.7200		-0.80	[-1.55; -0.05]	1.4%	3.1%
Pelusi et al 2014	15 58.00 1	15.1600	15 67.80	13.7200		-0.66	[-1.40; 0.08]	1.4%	3.2%
Pelusi et al 2014	15 58.90 1	15.8900	15 62.90	18.0500		-0.23	[-0.95; 0.49]	1.5%	3.3%
Quiros et al 2015	97 45.40 1	13.8000	97 52.20	12.2000		-0.52	[-0.81; -0.23]	9.3%	6.1%
Tangpricha et al 2010	12 40.00	7.0000	12 52.00	11.0000		-1.26	[-2.15; -0.37]	1.0%	2.5%
Wierckz et al 2012	50 .		50 .		100			0.0%	0.0%
Wierckx et al 2014	53 47.80 1	10.7000	53 56.30	12.7000	- *2	-0.72	[-1.11; -0.33]	4.9%	5.3%
Milonis et al. 2023	33 53.11 1	10.2800	33 55.50	11.0500	1 1	-0.22	[-0.71; 0.26]	3.2%	4.7%
Common effect model	1241		1241		4	-0.56	[-0.64; -0.47]	100.0%	-
Random effects model					\&	0.50	[-0.67; -0.32]		100.0%
Heterogeneity: $I^2 = 65\%$, τ	² = 0.1097, p < 0	0.01				1			
			E	aware Ref	VZ VI 0 1	C Sex Sterr	Niel		

(A) Change in LDL levels pre-GAHT (baseline) and post-GAHT use. (B) Change in HDL levels pre-GAHT (baseline) and post-GAHT use. (C) Change in TG levels pre-GAHT (baseline) and post-GAHT use. (D) Change in TC levels pre-GAHT (baseline) and post-GAHT use. GAHT = gender-affirming hormone therapy; HDL = high-density lipoprotein; LDL = low-density lipoprotein; SMD = standard mean difference; TC = total cholesterol; TG = triglyceride.

9

FIGURE 2 Continued

C Study	Total	After Se Mean	x Steroid SD	Be Total	efore Se Mean	x Steroid SD	Standardized Mean Difference	SMD	95%-CI	Weight (common)	Weight (random)
Ott et al 2011	80	129.90	50.5000	80	85.50	50.6000	[- # -	0.87	[0.55; 1.20]	7.2%	6.0%
Elbers et al 2003	17	77.28	8.4400	17	61.56	9.7200	€	- 1.69	[0.89; 2.48]	1.2%	2.9%
Chandra et al 2010	12	94.00	41.0000	12	92.00	72.0000	\rightarrow	0.03	[-0.77; 0.83]	1.2%	2.9%
Giltay et al 2004	81	71.97	11.5100	81	69.75	16.6300		0.15	[-0.15; 0.46]	8.0%	6.2%
Asscheman et al 1994	10	86.80	41.6300	10	93.00	31.0000		-0.16	[-1.04; 0.72]	1.0%	2.5%
Mueller et al 2010	45	148.30	43.2000	45	120.50	64.0000	- <u>+</u>	0.50	[0.08; 0.92]	4.3%	5.3%
Abdala et al 2018	30	102.00	27.5000	30	88.30	32.8000	<u>⊢∔</u>	0.45	[-0.07; 0.96]	2.9%	4.6%
Auer et al 2016	20	102.32	61.0200	20	77.95	41.4900	++-	0.46	[-0.17; 1.09]	1.9%	3.8%
Bunck et al 2006	30	165.68	162.1400	30	149.73	147.9600	- 	0.10	[-0.40; 0.61]	3.0%	4.6%
Cocchetti et al 2021	165	76.40	46.4000	165	59.16	43.0500	*	0.38	[0.17; 0.60]	16.0%	6.9%
Deutes et al 2015	31	73.00	17.2500	31	75.00	14.0000		-0.13	[-0.62; 0.37]	3.0%	4.7%
Jacobeit et al 2007	12			12			5			0.0%	0.0%
Jacobeit et al 2009	17	87.00	15.0000	17	88.00	14.0000	-+++	-0.07	[-0.74; 0.61]	1.7%	3.5%
Klaver 2020	121	115.14		121	70.87					0.0%	0.0%
Korpaisarn et al 2021	39	123.50	41.9000	39	86.40	44.4000	}	0.85	[0.39; 1.32]	3.5%	4.9%
Leemagz et al 2023	196	117.50	73.0000	196	85.70	49.1000		0.51	[0.31; 0.71]	18.7%	7.0%
Liu et al 2021	45	89.00	7.4000	45	85.40	7.7000	- <u>÷</u> -	0.47	[0.05; 0.89]	4.3%	5.3%
Pelusi et al 2014	15	62.60	52.0000	15	57.40	34.8500	- 	0.11	[-0.60; 0.83]	1.5%	3.3%
Pelusi et al 2014	15	71.10	54.7100	15	60.80	36.8100	- -	0.21	[-0.50; 0.93]	1.5%	3.3%
Pelusi et al 2014	15	68.70	49.4700	15	72.50	33.4000		-0.09	[-0.80; 0.63]	1.5%	3.3%
Quiros et al 2015	97	102.30	68.5000	97	70.60	30.7000		0.59	[0.31; 0.88]	9.1%	6.3%
Tangpricha et al 2010	12	94.00	41.0000	12	92.00	72.0000		0.03	[-0.77; 0.83]	1.2%	2.9%
Wierckz et al 2012	50			50	124.10	27.8000	100			0.0%	0.0%
Wierckx et al 2014	53	88.00	17.1000	53	69.80	10.0000	{ 	1.29	[0.87; 1.71]	4.3%	5.3%
Milonis et al. 2023	33	72.14	32.4800	33	64.93	21.4000	- = }	0.26	[-0.23; 0.74]	3.2%	4.8%
Common effect model	1241			1241			\$	0.46	[0.38; 0.55]	100.0%	-
Random effects model								0.42	[0.25; 0.59]		100.0%
Heterogeneity: $I^2 = 63\%$, τ^2	= 0.09	177, p < 0	.01								
							-2 -1 0 1 2				
					1	Favors Befo	re Sex Steroid Favors After S	Sex Stere	bid		

D Study	A Total	fter Sex Mean	Steroid SD	Bef Total	ore Sex Mean	c Steroid SD	St	andardi Diffe	ized Mean rence	SM	ID	95%-CI	Weight (common)	Weight (random)
Ott et al 2011	80	204.10	30.1000	80	176.70	38.3000			18	- 0.7	79	[0.47; 1.11]	7.0%	6.9%
Elbers et al 2003	17	154.68	30.9400	17	162.40	34.8000	_		+	-0.2	23	[-0.90; 0.45]	1.6%	2.5%
Chandra et al 2010	12	181.00	34.0000	12	184.00	26.0000	-		+	-0.1	10	[-0.90; 0.70]	1.1%	1.9%
Giltay et al 2004	81	175.17	43.3100	81	176.72	33.6400		-	**	-0.0	04	[-0.35; 0.27]	7.7%	7.2%
Asscheman et al 1994	10	186.00	32.0900	10	184.45	30.1600	-		+;	0.0	05	[-0.83; 0.92]	0.9%	1.6%
Mueller et al 2010	45	185.80	34.0000	45	185.80	33.4000		_	+	0.0	00	[-0.41; 0.41]	4.3%	5.2%
Abdala et al 2018	30	185.00	37.0000	30	175.00	42.3800		_	+÷	0.2	25	[-0.26; 0.76]	2.8%	3.9%
Auer et al 2016	20	102.32	61.0200	20	77.95	41.4900		-	++	- 0.4	46	[-0.17; 1.09]	1.8%	2.8%
Bunck et al 2006	30	189.63	42.5700	30	186.76	42.5700		_	+÷	0.0	07	[-0.44; 0.57]	2.8%	3.9%
Cocchetti et al 2021	165	182.91	35.9900	165	171.73	30.4000				0.3	33	[0.12; 0.55]	15.4%	9.6%
Deutes et al 2015	31	178.00	10.5000	31	177.00	9.5000		_	++ <u>+</u>	0.1	10	[-0.40; 0.60]	2.9%	4.0%
Jacobeit et al 2007	12	196.70	39.6000	12	215.80	58.5000			+	-0.3	37	[-1.18; 0.44]	1.1%	1.8%
Jacobeit et al 2009	17	188.00	42.0000	17	218.00	47.0000		•	+ 8	-0.6	66	[-1.35; 0.04]	1.5%	2.4%
Klaver 2020	121	177.88		121	150.81				1.5				0.0%	0.0%
Korpaisarn et al 2021	39	221.30	33.3000	39	207.40	40.8000			<u>+</u> ;	0.3	37	[-0.08; 0.82]	3.6%	4.7%
Leemagz et al 2023	196	177.40	30.7000	196	170.80	32.4000			1 8	0.2	21	[0.01; 0.41]	18.5%	10.1%
Liu et al 2021	45	166.30	6.9000	45	165.10	4.8000		-	1.5	0.2	20	[-0.21; 0.61]	4.2%	5.2%
Pelusi et al 2014	15	178.60	36.2900	15	174.40	28.3500			+÷	0.1	13	[-0.59; 0.84]	1.4%	2.3%
Pelusi et al 2014	15	155.70	36.1300	15	161.30	28.3500	-		+;	-0.1	17	[-0.88; 0.55]	1.4%	2.3%
Pelusi et al 2014	15	172.60	36.2900	15	161.50	28.3500		_		- 0.3	33	[-0.39; 1.05]	1.4%	2.2%
Quiros et al 2015	97	175.60	38.2000	97	166.00	35.1000			- 10	0.2	26	[-0.02; 0.54]	9.1%	7.8%
Tangpricha et al 2010	12	181.00	34.0000	12	184.00	26.0000	-		+	-0.1	10	[-0.90; 0.70]	1.1%	1.9%
Wierckz et al 2012	50			50	200.80	10.1000			1				0.0%	0.0%
Wierclox et al 2014	53	178.20	30.6000	53	171.90	28.1000		-	++	0.2	21	[-0.17; 0.59]	5.0%	5.7%
Milonis et al. 2023	33	157.48	29.1300	33	156.69	23.5500			};	0.0	03	[-0.45; 0.51]	3.1%	4.2%
									11					
Common effect model	1241			1241					\$	0.3	20	[0.12; 0.29]	100.0%	
Random effects model							_			0.1	17	[0.05; 0.29]		100.0%
Heterogeneity: $I^2 = 31\%$, τ^2	= 0.02	54, $p = 0$.08							1				
							-1	-0.5	0 0.5	1				
					F	avors Bel	ore Sex	Steroid	Favors Aft	ter Sex St	erc	bid		

studies. The amount of estrogen used in transgender individuals is much higher than in women on hormone replacement therapy or oral contraceptive pills (5 mg estradiol/24 h compared to 100 µg estradiol/ 24 h) which could explain the variability of the results on lipid profiles.³⁹ For instance, in a study by Walsh et al postmenopausal women on low-dose estrogen (1.25 mg/day) have favorable outcomes in lipid profile as there was a 19% increase in HDL and an 18% reduction in LDL level, which could protect women against atherosclerosis.40 In addition to that, the mode of delivery may be another contributing factor, as transdermal 17-estradiol is the safest method of administration in terms of thromboembolic events, which might have mitigated effects on lipid profiles in comparison to the oral form.^{7,41} On the other hand, studies by New et al42 found an increased level of HDL and TC and lower LDL in transgender women compared to men who are not on treatment which correlates with our study findings.

Testosterone therapy in eugonadal cisgender men might increase TG levels and reduce TC, LDL, and HDL levels in cisgender eugonadal men. On the other hand, androgen deficiency is linked with an increase in TG, TC, LDL, and HDL levels.^{43,44} However, the effect of testosterone on lipid profile in transgender men in our meta-analysis shows a significant increase in TG, LDL, and TC levels and a decrease in HDL levels. Our results correlate with a large retrospective study performed on 89 transgender men individuals who had GAHT and reported that TGs, TC, and LDL levels were increased, while HDL was decreased.⁴⁵

GAHT can adversely affect lipid profiles, potentially increasing the risk of myocardial infarction and ischemic stroke. This risk is attributed to alterations in cholesterol levels resulting from hormone therapy. Moreover, GAHT has been associated with an increased risk of venous thromboembolism (VTE).⁴⁶⁻⁴⁸ The use of oral ethinyl estradiol in transgender women carries a significant 20-fold increased risk of spontaneous VTE.⁴⁹ Notably, all VTE cases occurred in patients using oral ethinyl estradiol, except for a single case using transdermal 17- β -estradiol in the latter study.⁴⁵ Estradiol valerate is a novel estrogen with fewer side effects than ethinyl estradiol and is now the most commonly prescribed form of estrogen in transgender women.⁵⁰

Numerous studies have explored the metabolic impacts of GAHT in transgender individuals, but findings are frequently conflicting and inconclusive. This is largely due to the observational and retrospective nature of the studies, which involve

	Standard Mean Difference (SMD)	95% CI	<i>P</i> Value	l ²
LDL (mg/dL)	0.28	0.11-0.43	<0.01	61.1%
HDL (mg/dL)	-0.50	-0.67 to -0.32	<0.01	65.0%
TG (mg/dL)	0.42	0.25-0.60	<0.01	62.8%
TC (mg/dL)	0.17	0.05-0.29	<0.01	30.5%
SBP (mm Hg)	-0.09	-0.61 to 0.42	0.72	89.4%
DBP (mm Hg)	-0.27	-0.76 to -0.21	0.27	88.9%
BMI (kg/m ²)	0.24	0.11-0.38	<0.01	0.0%

CV = cardiovascular; DBP = diastolic blood pressure; SBP = systolic blood pressure; other abbreviations as in Table 1.

populations with varied hormone regimens, often without medical supervision.⁵¹⁻⁵⁴ While our analysis suggests an association of GAHT with dyslipidemia, which could potentially indicate a higher cardiovascular mortality risk, it remains uncertain whether transgender individuals have a higher cardiovascular mortality rate compared to the general population.⁵⁵

A previous meta-analysis conducted by Elamin et al in 2010 concluded that current level of evidence is of low quality, characterized by significant imprecision and heterogeneity.⁵⁶ Similarly, previous systematic reviews suggest that the current data on GAHT in transgender patients are limited and of low quality.^{22,52,57,58}

In summary, our meta-analysis reveals statistically significant changes in lipid profiles among transgender individuals undergoing GAHT. However, the clinical implications of GAHT on lipid profiles remain unclear. Current evidence is insufficient to draw definitive conclusions about its impact. Additional research is essential to determine if these changes affect cardiovascular morbidity and mortality. Long-term studies with extended follow-up are crucial to gain a comprehensive understanding of these potential impacts.

STUDY LIMITATIONS. We did not have a long-term follow-up of data and CVD data available including myocardial infarction and major adverse cardiovascular events due to dyslipidemia in the transgender population. Individual genetic, dietary, and lifestyle factors can act as confounders and effect modifiers that can alter the results. The study includes data sets from older studies that used ethinyl estradiol as part of GAHT. Ethinyl estradiol is known to be pro-thrombotic, which is why it is no longer used in GAHT. Limited evidence from small studies with

FIGURE 3 Forest Plots for Primary Outcomes Comparing Lipid Profile Pre- and Post-GAHT Use Among Transfeminine (TF) Individuals

A Study	A Total	fter Sex Mean	Steroid SD	Be Total	fore Sex Mean	steroid SD	Standardized Me Difference	ean	SMD	95%-CI	Weight (common)	Weight (random)	
Ott et al. 2011	89	117.42	35.6200	89	111.70	34.2000]#		0.16	[-0.13; 0.46]	11.3%	10.4%	
Elbers et al. 2003	20	100.15	25.1400	20	113.30	34.0300			-0.43	[-1.06; 0.20]	2.5%	9.3%	
Dittrich et al. 2005	60			60			}				0.0%	0.0%	
Mueller et al. 2010	84	116.77	5.9400	84	115.80	5.9600			0.16	[-0.14; 0.47]	10.7%	10.4%	
Auer et al. 2016	20	103.10	28.4300	20	112.99	34.1600			-0.31	[-0.93; 0.32]	2.5%	9.3%	
Cocchetti et al. 2021	144	93.96	29.2500	144	102.83	31.7000	– 목		-0.29	[-0.52; -0.06]	18.2%	10.6%	
Deutes et al. 2015	16	55.00	5.1300	16	69.50	10.5000	<u> </u>		-1.71	[-2.53; -0.89]	1.4%	8.4%	
Klaver 2020	71	77.34		71	73.47		1				0.0%	0.0%	
Leemagz et al. 2023	170	96.50	30.8000	170	100.50	33.8000	목		-0.12	[-0.34; 0.09]	21.7%	10.6%	
Liu et al. 2021	65	131.30	3.9000	65	124.30	3.7000		. x	1.83	[1.42, 2.24]	5.8%	10.1%	
Quiros et al. 2015	150	107.40	30.3000	150	104.30	23.0000	*		0.11	[-0.11; 0.34]	19.1%	10.6%	
Wierckz et al. 2012	50	-		50							0.0%	0.0%	
Wierckx et al. 2014	53	92.30	28.9000	53	99.40	29.0000	-*		-0.24	[-0.63; 0.14]	6.7%	10.2%	
Common effect model	992			992			***0		0.02	[-0.07; 0.12]	100.0%	-	
Random effects model							-		-0.05	[-0.56; 0.46]	-	100.0%	
Heterogeneity: $I^2 = 92\%$, τ^2	= 0.61	44, p < 0	0.01					1					
							-2 -1 0 1	2					

Favors Before Sex Steroid Favors After Sex Steroid

D	After Sex Steroid	Before Sex Steroid	Standardized Mean		Weight Weight
Study	Total Mean SD	Total Mean SD	Difference	SMD 95%-	CI (common) (random)
Ottetal 2011	89 56 70 18 0100	89 53 20 14 4000	¥=	0.21 [.0.08: 0.4	511 12.4% 10.2%
Fibers et al 2003	20 50 66 11 9900	20 40 99 8 5100	E-	0.01 [0.26: 14	571 2.5% 9.8%
Dittrich et al. 2005	60	60	6.62	0.01 [0.20, 1.	0.0% 0.0%
Mueller et al. 2010	84 69 72 4 1800	84 56 75 4 5800	1 ×	294 [251:33	81 5.6% 10.0%
Auer et al 2016	20 56 84 8 5000	20 53 95 11 6600	-	0.28 [-0.35] 0.9	28% 98%
Cocchetti et al 2021	144 54 41 13 0200	144 54 59 13 5800	iii ii	-0.01 [-0.24 02	221 20.2% 10.2%
Deutes et al. 2015	16 46 00 6 3800	16 37.25 4.0000		160 [0.79 24	11 1.6% 9.6%
Klaver 2020	71 61.87	71 54.13	a 14 14		0.0% 0.0%
Leemagz et al. 2023	170 57.10 12.7000	170 49.90 13.1000	1	0.56 [0.34] 0.7	771 22.9% 10.2%
Liu et al. 2021	65 51.20 2.0000	65 57.90 2.1000	A 14 14	-3.25 1-3.78: -2.7	72] 3.9% 9.9%
Quiros et al. 2015	150 44.10 11.8000	150 45.40 12,7000		-0.11 [-0.33: 0.1	12] 21.0% 10.2%
Wierckz et al. 2012	50	50		,	0.0% 0.0%
Wierckx et al. 2014	53 45.70 9.2000	53 52.90 13.5000	*	-0.62 [-1.01; -0.2	23] 7.1% 10.1%
Common effect model	992	992		0 18 10 08 02	91 100.0%
Random effects mode	1	332	-	0.25 [-0.74; 1.2	23] 100.0%
Heterogeneity: /2 = 98%, t	² = 2.4511, ρ < 0.01	Г		• /	•
		-3	-2 -1 0 1 2 3		
		Favors Before S	ex Steroid Favors After Se	ex Steroid	

(A) Change in LDL levels pre-GAHT (baseline) and post-GAHT use. (B) Change in HDL levels pre-GAHT (baseline) and post-GAHT use. (C) Change in TG levels pre-GAHT (baseline) and post-GAHT use. (D) Change in TC levels pre-GAHT (baseline) and post-GAHT use. Abbreviations as in Figure 2.

Continued on the next page

FIGURE 3 Continued

С	After Sex Steroi	Before Sex Steroid	Standardized Mean		Weight Weight
Study	Total Mean SI) Total Mean SD	Difference	SMD 95%-CI	(common) (random)
Ott et al. 2011	89 144.90 91.000	89 108.60 69.8000	불	0.45 [0.15; 0.74]	10.4% 9.4%
Elbers et al. 2003	20 130.20 14.830	0 20 77.50 12.2700		- 3.80 [2.72; 4.87]	0.8% 7.5%
Dittrich et al. 2005	60 153.61 69.290	0 60 110.00 75.4900	18	0.60 [0.23; 0.96]	6.9% 9.3%
Mueller et al. 2010	84 120.00 4.040	0 84 112.90 8.6900	*	1.04 [0.72; 1.37]	8.9% 9.4%
Auer et al. 2016	20 81.21 27.470	0 20 92.32 52.6600		-0.26 [-0.88; 0.36]	2.4% 8.8%
Cocchetti et al. 2021	144 74.42 32.560	0 144 97.11 89.5600		-0.34 [-0.57; -0.10]	17.1% 9.5%
Deutes et al. 2015	16 79.75 16.380	0 16 54.25 9.3800		1.86 [1.02; 2.71]	1.3% 8.2%
Klaver 2020	71 99.43	. 71 70.87 .			0.0% 0.0%
Leemagz et al. 2023	170 139.50 73.000	0 170 111.80 60.2000	100 A	0.41 [0.20; 0.63]	20.0% 9.5%
Liu et al. 2021	65 77.30 4.100	0 65 76.70 4.7000	*	0.14 [-0.21; 0.48]	7.8% 9.4%
Quiros et al. 2015	150 91.40 50.600	0 150 90.00 56.6000		0.03 [-0.20; 0.25]	18.0% 9.5%
Wierckz et al. 2012	50 .	. 50 89.50 18.3000			0.0% 0.0%
Wierckx et al. 2014	53 81.10 24.000	0 53 80.40 15.3000	Ť	0.03 [-0.35; 0.42]	6.4% 9.3%
Common effect model	992	992	¢.	0.27 [0.18; 0.37]	100.0%
Random effects model			<u> </u>	0.64 [0.01; 1.26]	100.0%
Heterogeneity: I ² = 92%, τ	² = 1.0522, p < 0.01				
			-4 -2 0 2 4		
		Favors Befor	e Sex Steroid Favors After Se	ex Steroid	

D	A	fter Sex	Steroid	Bet	fore Sex	Steroid	Stand	ardized M	ean		Weight	Weight
Study	Total	Mean	SD	Total	Mean	SD		Difference	SMC	95%-CI	(common)	(random)
Ott et al. 2011	89	196.20	44.1900	89	187.90	45.6000		+=-	0.1	8 [-0.11; 0.48]	10.3%	10.6%
Elbers et al. 2003	20	174.00	30.9400	20	170.15	38.6700	_	_ [+	- 0.1	1 [-0.51; 0.73]	2.3%	5.4%
Dittrich et al. 2005	60	200.84	42.7300	60	188.00	45.8100		+ <u>x</u>	- 0.2	9 [-0.07; 0.65]	6.9%	9.3%
Mueller et al. 2010	84	187.02	6.8600	84	185.32	6.8200		1 =	- 0.2	5 [-0.06; 0.55]	9.7%	10.4%
Auer et al. 2016	20	81.21	27.4700	20	92.32	52.6600		⊷ {	-0.2	6 [-0.88; 0.36]	2.3%	5.3%
Cocchetti et al. 2021	144	163.21	35.3600	144	176.75	39.0800		- }	-0.3	6 [-0.60; -0.13]	16.4%	11.8%
Deutes et al. 2015	16	109.25	10.5000	16	110.50	12.5000			-0.1	1 [-0.80; 0.59]	1.9%	4.6%
Klaver 2020	71	158.54		71	143.07			-			0.0%	0.0%
Leemagz et al. 2023	170	180.20	35.3000	170	173.10	37.0000		-	0.2	0 [-0.02; 0.41]	19.6%	12.2%
Liu et al. 2021	65	184.10	4.7000	65	183.40	3.8000		- z	0.1	6 [-0.18; 0.51]	7.5%	9.6%
Quiros et al. 2015	150	165.10	31.3000	150	164.30	29.1000		- 11	0.0	3 [-0.20; 0.25]	17.4%	12.0%
Wierckz et al. 2012	50			50	197.80	17.1000					0.0%	0.0%
Wierckx et al. 2014	53	152.30	28.3000	53	171.50	32.7000	x	-	-0.6	2 [-1.01; -0.23]	5.8%	8.7%
Common effect model	992			992				\$	0.0	2 [-0.08; 0.11]	100.0%	-
Random effects model								<u> </u>	0.0	0 [-0.18; 0.18]	-	100.0%
Heterogeneity: $I^2 = 67\%$, τ^2	^c = 0.05	73, p < 0	.01				1 1	1 1				
							-1 -0.5	0 0.	5 1			
					F	avors Bel	iore Sex Ster	oid Favors	After Sex Ste	roid		

TABLE 4 Pooled Outcomes of CV Risk Factors After GAHT Initiation in Transfeminine Individuals									
	Standard Mean Difference (SMD)	95% CI	P Value	l ²					
LDL (mg/dL)	-0.05	-0.56 to 0.46	0.85	91.6%					
HDL (mg/dL)	0.25	-0.74 to 1.23	0.62	97.6%					
TG (mg/dL)	0.64	0.01-1.27	0.05	91.6%					
TC (mg/dL)	0.004	-0.18 to 0.18	0.96	67.2%					
SBP (mm Hg)	-0.51	-1.44 to 0.43	0.29	96.6%					
DBP (mm Hg)	-0.01	-0.81 to 0.79	0.97	88.1%					
BMI (kg/m ²)	0.38	-0.13 to 0.88	0.14	91.9%					
Abbreviations as in Tables 1 and 3									

Abbreviations as in Tables 1 and 3.

diverse hormone treatments and follow-up durations makes drawing definitive conclusions challenging.

Because of high heterogeneity, even statistically significant results do not translate into clinical significance. A similar observation was made by a metaanalysis done 14 years ago.⁵⁶ The available evidence regarding the effects of GAHT in TM and TF individuals remains low in quality with a lot of imprecisions precluding its clinical use.

CONCLUSIONS

Our meta-analysis found that the initiative of GAHT in TM individuals was associated with increases in LDL, TGs, TC, and a decrease in HDL levels. In TF individuals, GAHT was associated with an increase in TG levels only. There was no impact on blood pressure or BMI. Whether these changes in lipids after GAHT translate into unfavorable clinical outcomes is yet to be determined.

FUNDING SUPPORT AND AUTHOR DISCLOSURES

The authors have reported that they have no relationships relevant to the contents of this paper to disclose.

ADDRESS FOR CORRESPONDENCE: Dr M. Chadi Alraies, Cardiovascular Institute, DMC Heart Hospital, Detroit Medical Center, 311 Mack Avenue, Detroit, Michigan 48201, USA. E-mail: alraies@hotmail.com.

PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Our analysis encompassed data from a substantial cohort of TM and TF patients, revealing notable alterations in lipid levels following GAHT.

COMPETENCY IN PATIENT CARE: It is critical to stratify cardiovascular risk based on alterations in lipid profiles and BMI, and devising appropriate management strategies tailored to individual patient needs, to optimize cardiovascular health outcomes in transgender patients undergoing GAHT.

TRANSLATIONAL OUTLOOK: Health care providers should consider comprehensive lipid profile assessments and cardiovascular risk stratification in the management of transgender patients. Additionally, further research endeavors are imperative to elucidate the long-term clinical implications of these lipid profile changes and optimize therapeutic strategies to mitigate cardiovascular risk in this population.

REFERENCES

1. Unger CA. Hormone therapy for transgender patients. *Transl Androl Urol.* 2016;5(6):877-884. https://doi.org/10.21037/tau.2016.09.04

2. Banos G, Guarner V, Perez-Torres I. Sex steroid hormones, cardiovascular diseases and the metabolic syndrome. *Cardiovasc Hematol Agents Med Chem.* 2011;9(3):137-146.

3. Saad F, Kamischke A, Yassin A, et al. More than eight years' hands-on experience with the novel long-acting parenteral testosterone undecanoate. *Asian J Androl.* 2007;9(3):291-297. https://doi.org/10.1111/j.1745-7262.2007.00275.x

4. Whitsel EA, Boyko EJ, Matsumoto AM, Anawalt BD, Siscovick DS. Intramuscular testosterone esters and plasma lipids in hypogonadal men: a meta-analysis. *Am J Med*. 2001;111(4):261-269. https://doi.org/10.1016/s0002-9343(01)00833-6 5. Hulley SB, Grady D. The WHI estrogen-alone trial-do things look any better? JAMA. 2004;291(14):1769–1771. https://doi.org/10.1001/jama.291.14.1769

6. Berenson AB, Rahman M, Wilkinson G. Effect of injectable and oral contraceptives on serum lipids. *Obstet Gynecol.* 2009;114(4):786-794. https://doi.org/10.1097/A0G.0b013e3181b76bea

7. Moore E, Wisniewski A, Dobs A. Endocrine treatment of transsexual people: a review of treatment regimens, outcomes, and adverse effects. *J Clin Endocrinol Metab.* 2003;88(8): 3467-3473. https://doi.org/10.1210/jc.2002-021967

8. Polderman KH, Gooren LJ, Asscheman H, Bakker A, Heine RJ. Induction of insulin resistance by androgens and estrogens. J Clin Endocrinol *Metab.* 1994;79(1):265-271. https://doi.org/10. 1210/jcem.79.1.8027240

9. T'Sjoen G, Arcelus J, Gooren L, Klink DT, Tangpricha V. Endocrinology of transgender medicine. *Endocr Rev.* 2019;40(1):97-117. https:// doi.org/10.1210/er.2018-00011

 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009;6(7):e1000097. https://doi.org/10. 1371/journal.pmed.1000097

11. Lin L, Chu H. Quantifying publication bias in meta-analysis. *Biometrics*. 2018;74(3):785-794. https://doi.org/10.1111/biom.12817

12. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a

simple, graphical test. *BMJ*. 1997;315(7109):629-634. https://doi.org/10.1136/bmj.315.7109.629

13. Cumpston MS, McKenzie JE, Welch VA, Brennan SE. Strengthening systematic reviews in public health: guidance in the cochrane handbook for systematic reviews of interventions, 2nd edition. *J Public Health*. 2022;44:e588-e592. https://doi.org/10.1093/pubmed/fdac036

14. Lo CK, Mertz D, Loeb M. Newcastle-Ottawa Scale: comparing reviewers' to authors' assessments. *BMC Med Res Methodol*. 2014;14:45. https://doi.org/10.1186/1471-2288-14-45

15. Abdala R, Nagelberg A, Silveira F, Otero P, Mormandi E. Short-term safety profile of crosshormonal therapy in trans-male subjects. *Medicina* (*Argentina*). 2018;78(6):399-402.

16. Asscheman H, Gooren LJG, Megens JAJ, Nauta J, Kloosterboer HJ, Eikelboom F. Serum testosterone level is the major determinant of the male-female differences in serum levels of high density lipoprotein (HDL) cholesterol and HDL2 cholesterol. *Metab Clin Exp.* 1994;43(8):935–939. https://doi.org/10.1016/0026-0495(94)90170-8

17. Auer MK, Cecil A, Roepke Y, et al. 12-months metabolic changes among gender dysphoric individuals under cross-sex hormone treatment: a targeted metabolomics study. *Sci Rep.* 2016;6: 37005. https://doi.org/10.1038/srep37005

18. Bunck MCM, Toorians AWFT, Lips P, Gooren LJG. The effects of the aromatase inhibitor anastrozole on bone metabolism and cardiovascular risk indices in ovariectomized, androgentreated female-to-male transsexuals. *Eur J Endocrinol.* 2006;154(4):569–575. https://doi. org/10.1530/eje.1.02126

19. Chandra P, Basra SS, Chen TC, Tangpricha V. Alterations in lipids and adipocyte hormones in female-to-male transsexuals. *Internet J Endocrinol.* 2010;2010:945053. https://doi.org/10. 1155/2010/945053

20. Cocchetti C, Castellini G, Iacuaniello D, et al. Does gender-affirming hormonal treatment affect 30-year cardiovascular risk in transgender persons? A two-year prospective European study (ENIGI). *J Sex Med*. 2021;18(4):821-829. https:// doi.org/10.1016/j.jsxm.2021.01.185

21. Deutsch MB, Bhakri V, Kubicek K. Effects of crosssex hormone treatment on transgender women and men. *Obstet Gynecol*. 2015;125(3):605–610. https:// doi.org/10.1097/aog.000000000000692

22. Elbers JMH, Giltay EJ, Teerlink T, et al. Effects of sex steroids on components of the insulin resistance syndrome in transsexual subjects. *Clin Endocrinol*. 2003;58(5):562-571. https://doi.org/10.1046/j.1365-2265.2003.01753.x

23. Giltay EJ, Toorians AWFT, Sarabjitsingh AR, de Vries NA, Gooren LJG. Established risk factors for coronary heart disease are unrelated to androgen-induced baldness in female-to-male transsexuals. *J Endocrinol*. 2004;180(1):107-112. https://doi.org/10.1677/joe.0.1800107

24. Jacobeit JW, Gooren LJ, Schulte HM. Longacting intramuscular testosterone undecanoate for treatment of female-to-male transgender individuals. J Sex Med. 2007;4(5):1479-1484. https://doi.org/10.1111/j.1743-6109.2007.00556.x **25.** Jacobeit JW, Gooren LJ, Schulte HM. Safety aspects of 36 months of administration of long-acting intramuscular testosterone undecanoate for treatment of female-to-male transgender individuals. *Eur J Endocrinol.* 2009;161(5):795-798. https://doi.org/10.1530/EJE-09-0412

26. Klaver M, De Mutsert R, Van Der Loos MATC, et al. Hormonal treatment and cardiovascular risk profile in transgender adolescents. *Pediatrics*. 2020;145(3):e20190741. https://doi.org/10.1542/ peds.2019-0741

27. Korpaisam S, Chiewchalermsri D, Arunakul J, Chinthakanan O, Poomthavorn P, Sriphrapradang C. Effects of testosterone treatment on transgender males: a single-institution study. *SAGE Open Medicine*. 2021;9. https://doi.org/10.1177/20503121211051546

28. Leemaqz SY, Kyinn M, Banks K, Sarkodie E, Goldstein D, Irwig MS. Lipid profiles and hypertriglyceridemia among transgender and gender diverse adults on gender-affirming hormone therapy. J Clin Lipidol. 2023;17(1):103–111. https:// doi.org/10.1016/j.jacl.2022.11.010

29. Liu YH, Wu TH, Chu CH, Lin YC, Lin LY. Metabolic effects of cross-sex hormone therapy in transgender individuals in Taiwan. *J Chin Med Assoc.* 2021;84(3):267-272. https://doi.org/10. 1097/jcma.00000000000475

30. Milionis C, Ilias I, Venaki E, Koukkou E. The metabolic effects of hormonal treatment in transgender males: safety of the testosterone gender-affirming therapy. *Int J Risk Saf Med.* 2023;34(1): 21-28. https://doi.org/10.3233/jrs-200087

31. Mueller A, Haeberle L, Zollver H, et al. Effects of intramuscular testosterone undecanoate on body composition and bone mineral density in female-to-male transsexuals. *J Sex Med.* 2010;7(9):3190-3198. https://doi.org/10.1111/j. 1743-6109.2010.01912.x

32. Ott J, Aust S, Promberger R, Huber JC, Kaufmann U. Cross-sex hormone therapy alters the serum lipid profile: a retrospective cohort study in 169 transsexuals. *J Sex Med.* 2011;8(8): 2361-2369. https://doi.org/10.1111/j.1743-6109. 2011.02311.x

33. Pelusi C, Costantino A, Martelli V, et al. Effects of three different testosterone formulations in female-to-male transsexual persons. *J Sex Med.* 2014;11(12):3002-3011. https://doi.org/10.1111/jsm.12698

34. Quirós C, Patrascioiu I, Mora M, et al. Effect of cross-sex hormone treatment on cardiovascular risk factors in transsexual individuals. Experience in a specialized unit in Catalonia. *Endocrinol Nutr.* 2015;62(5):210-216. https://doi.org/10.1016/j. endonu.2015.02.001

35. Tangpricha V, Chandra P, Basra SS, Chen TC. Alterations in lipids and adipocyte hormones in female-to-male transsexuals. *Int J Endocrinol.* 2010;2010. https://doi.org/10.1155/2010/945053

36. Wierckx K, Mueller S, Weyers S, et al. Longterm evaluation of cross-sex hormone treatment in transsexual persons. *J Sex Med.* 2012;9(10): 2641-2651.

37. Wierckx K, Van Caenegem E, Schreiner T, et al. Cross-sex hormone therapy in trans persons is safe and effective at short-time follow-up: results from the European network for the investigation of gender incongruence. J Sex Med. 2014;11(8):1999-2011. https://doi.org/10.1111/jsm.12571

38. Dittrich R, Binder H, Cupisti S, Hoffmann I, Beckmann MW, Mueller A. Endocrine treatment of male-to-female transsexuals using gonadotropinreleasing hormone agonist. *Exp Clin Endocrinol Diabetes*. 2005;113(10):586-592. https://doi.org/ 10.1055/s-2005-865900

39. van Kesteren P, Lips P, Gooren LJ, Asscheman H, Megens J. Long-term follow-up of bone mineral density and bone metabolism in transsexuals treated with cross-sex hormones. *Clin Endocrinol.* 1998;48(3):347-354. https://doi.org/ 10.1046/j.1365-2265.1998.00396.x

40. Walsh MN. Women as leaders in cardiovascular medicine. *Clin Cardiol*. 2018;41(2):269-273. https://doi.org/10.1002/clc.22920

41. Adlercreutz H, Tenhunen R. Some aspects of the interaction between natural and synthetic female sex hormones and the liver. *Am J Med.* 1970;49:630–648. https://doi.org/10.1016/ s0002-9343(70)80130-9

42. New G, Timmins KL, Duffy SJ, et al. Long-term estrogen therapy improves vascular function in male to female transsexuals. *J Am Coll Cardiol*. 1997;29(7):1437-1444. https://doi.org/10.1016/S0735-1097(97)00080-6

43. Haddad RM, Kennedy CC, Caples SM, et al. Testosterone and cardiovascular risk in men: a systematic review and meta-analysis of randomized placebo-controlled trials. *Mayo Clin Proc.* 2007;82(1):29-39. https://doi.org/10. 4065/82.1.29

44. Traish AM, Abdou R, Kypreos KE. Androgen deficiency and atherosclerosis: the lipid link. Vascul Pharmacol. 2009;51(5-6):303-313. https://doi. org/10.1016/j.vph.2009.09.003

45. van Kesteren PJ, Asscheman H, Megens JA, Gooren LJ. Mortality and morbidity in transsexual subjects treated with cross-sex hormones. *Clin Endocrinol.* 1997;47(3):337-342. https://doi.org/ 10.1046/j.1365-2265.1997.2601068.x

46. Chan Swe N, Ahmed S, Eid M, Poretsky L, Gianos E, Cusano NE. The effects of genderaffirming hormone therapy on cardiovascular and skeletal health: a literature review. *Metabol Open*. 2022;13:100173. https://doi.org/10.1016/j.metop. 2022.100173

47. Getahun D, Nash R, Flanders WD, et al. Crosssex hormones and acute cardiovascular events in transgender persons: a cohort study. *Ann Intern Med.* 2018;169(4):205-213. https://doi.org/10. 7326/m17-2785

48. Asscheman H, Giltay EJ, Megens JA, de Ronde WP, van Trotsenburg MA, Gooren LJ. A long-term follow-up study of mortality in transsexuals receiving treatment with cross-sex hormones. *Eur J Endocrinol.* 2011;164(4):635-642. https://doi.org/10.1530/eje-10-1038

49. de Blok CJM, Wiepjes CM, Nota NM, den Heijer M. Hormone treatment of transgender people: long-term health effects and safety. *Ned Tijdschr Geneeskd*. 2020;164:D4481.

50. Morssinkhof MWL, Wiepjes CM, Bosman BW, et al. Sex hormones, insomnia, and sleep quality: subjective sleep in the first year of hormone use in

transgender persons. *Sleep Med.* 2023;107:316-326. https://doi.org/10.1016/j.sleep.2023.04.028

51. Asscheman H, T'Sjoen G, Lemaire A, et al. Venous thrombo-embolism as a complication of cross-sex hormone treatment of male-to-female transsexual subjects: a review. *Andrologia*. 2014;46(7):791-795. https://doi.org/10.1111/and.12150

52. Maraka S, Ospina NMS, Rodriguez-Gutierrez R, Davidge-Pitts CJ, Nippoldt TB, Murad MH. Effect of sex steroids on lipids, venous thromboembolism, cardiovascular disease and mortality in transgender individuals: a systematic review and meta-analysis. *Endocr. Rev.* 2016;37(2). https://doi.org/10.1210/ endo-meetings.2016.RE.15.FRI-136

53. Asscheman H, Gooren LJ, Eklund PL. Mortality and morbidity in transsexual patients with crossgender hormone treatment. *Metabolism*. 1989;38(9):869-873. https://doi.org/10.1016/ 0026-0495(89)90233-3 **54.** Maraka S, Mwangi R, McCoy RG, et al. Thyroid hormone treatment among pregnant women with subclinical hypothyroidism: US national assessment. *BMJ.* 2017;356:i6865. https://doi.org/10. 1136/bmj.i6865

55. Masumori N, Nakatsuka M. Cardiovascular risk in transgender people with gender-affirming hormone treatment. *Circ Rep.* 2023;5(4):105-113. https://doi.org/10.1253/circrep.CR-23-0021

56. Elamin MB, Garcia MZ, Murad MH, Erwin PJ, Montori VM. Effect of sex steroid use on cardiovascular risk in transsexual individuals: a systematic review and meta-analyses. *Clin Endocrinol*. 2010;72(1):1-10. https://doi.org/10.1111/j.1365-2265.2009.03632.x

57. Velho I, Fighera TM, Ziegelmann PK, Spritzer PM. Effects of testosterone therapy on BMI, blood pressure, and laboratory profile of transgender men: a systematic review. *Andrology*.

2017;5(5):881-888. https://doi.org/10.1111/andr. 12382

58. Aranda G, Mora M, Hanzu FA, Vera J, Ortega E, Halperin I. Effects of sex steroids on cardiovascular risk profile in transgender men under gender affirming hormone therapy. *Endocrinol Diabetes Nutr (Engl Ed)*. 2019;66(6):385-392. https://doi. org/10.1016/j.endinu.2018.11.004

KEY WORDS dyslipidemia, hyperlipidemia, gender-affirming hormonal therapy GAHT, lipid profile, trans feminine TF, trans masculine TM

APPENDIX For the research question, PICO, and search strategy as well as supplemental tables and figures, please see the online version of this paper.