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Introduction
Understanding RNA structure is essential to understanding its function. RNA plays an 
active role in many processes that occur within the cell, such as in transcription [1], 
translation [1, 2], splicing [3, 4], catalysis [1, 5] and regulating gene expression [1, 3, 6, 
7]. RNA’s function is mainly determined by its structure. As experimental methods are 
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largely expensive for finding these structures, computational methods have become 
indispensable tools for RNA research.

The majority of computational methods focus on secondary structures—the two 
dimensional structure of an RNA molecule. Due to similar functions, homologous RNA 
molecules conserve their common structure. Conservation takes the form of compen-
satory mutations in response to point mutations that would otherwise cause a change 
in the structure [8, 9]. Compensatory mutations leave a detectable correlation between 
positions on a multiple sequence alignment—referred to as covariation. Given enough 
sequences from a related family and an alignment of high structural consistency, com-
parative sequence analysis (CSA) has been shown to accurately predict secondary struc-
tures [10]. Despite the usefulness, circumstances for CSA are limited—homologous 
sequences and an accurate alignment are not always available especially in cases of novel 
sequences. A prevalent approach, when such information is not available, is to predict 
for a single RNA sequence a structure with the minimum free energy (MFE), as struc-
tures with minimum free energy are assumed to be the most stable [11]. These programs 
use a set of empirical parameters to calculate the energy of a structure, where every 
structural feature has been assigned a specific free energy value. These parameters are 
not always accurate or known. In addition, these methods assume that an RNA molecule 
forms a structure in isolation or with minimal interaction with other molecules. These 
simplifications may result in discrimination between predicted structures and structures 
found in nature.

Current alignment-based methods couple their covariation with another metric for 
determining structure and fall into two categories: (1) those that take an unaligned set 
of sequences and solve the structure and alignment problem concurrently through itera-
tive refinement, and (2) those that take a pre-aligned set of sequences and predict the 
structure given alignment. Examples of category (1) are algorithms such as locARNA 
[12–14], FoldAlign [15], MXSCARNA [16], and DAFS [17]. In these algorithms struc-
tures of the sequences inform the alignment which, in turn, informs the prediction of the 
structure. Given the iterative nature of these algorithms they are often more expensive 
to run than the algorithms in category (2).

Examples of category (2) are algorithms such as RNAalifold [18], Hxmatch [19], 
Cacofold [20] and Multilign [21]. RNAalifold and Multilign couple their covariation 
with thermodynamic energy minimization, Hxmatch with maximum weighted matching 
(MWM), and Cacofold with an RNA-based grammar.

Despite their coupling, these programs still heavily rely on the quality of the alignment 
to make accurate predictions. In addition, they only predict the consensus structure 
rather than the structures for all input sequences. Within alignment-based programs, 
there is an opportunity to address these shortcomings.

In this work we focus on category (2) algorithms and present KnotAli, a novel RNA 
pseudoknotted secondary structure prediction algorithm which enhances its minimum-
free-energy prediction using conserved structural information. Given a sequence align-
ment of functionally similar RNA molecules, KnotAli finds their individual structures. 
KnotAli combines two types of information into the prediction. It first uses covariation 
to find a guide structure and then uses this guide structure to guide the energy mini-
mization step for each sequence that makes up the alignment. We introduce restricted 
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unpaired bases and define them as unfavorable bases toward the final structure. We 
force these bases to be unpaired in our predicted structures.

KnotAli’s prediction accuracy was benchmarked against other existing alignment-
based prediction algorithms, two that can handle pseudoknotted structures (Hxmatch 
[19], and Cacofold [20]), as well as RNAalifold [18] that can only handle pseudoknot-free 
structures and serves as our control. We note that there are other alignment-based meth-
ods that handle pseudoknot-free structures and have similar prediction accuracy based 
on an independent benchmarking of CompaRNA [22] (see for example, CentroidAlifold 
[23] and MXSCARNA [16]). In particular, Puton et al. concluded that on average per-
formance of CentroidAlifold and RNAalifold were superior to other comparative-based 
methods, while the difference on performance of the two was not statistically significant. 
We chose RNAalifold as the benchmark as Centroidalifold was trained on some of the 
RNA families included in our dataset (whereas RNAalifold did not need any information 
in addition to a multiple sequence alignment). We find KnotAli to produce predictions 
which are more robust to alignment quality deterioration (when compared to Cacofold) 
and to perform better to a significant degree on the majority of families compared to 
other algorithms.

RNA secondary structure
We represent an RNA molecule with its sequence, S, and its length n. An RNA sequence 
is made up of four bases: Adenine (A), Cytosine (C), Guanine (G), and Uracil (U). When 
referring to an alignment of multiple RNA sequences, in addition to the four bases we 
sometimes observe a “-” (gap) which holds the position of an insertion/deletion (indel) 
in the alignment. Note that due to indels an alignment might be longer than the RNA 
sequences—we denote this length as na.

When an RNA sequence forms a structure, its complementary bases pair together 
and form hydrogen bonds. ‘A’ pairs with ‘U’ and ‘G’ pairs with either ‘C’ or ‘U’—termed 
canonical base pairs. We refer to bases by their position in S. A base pair is then defined 
as the pairing of two bases i and j where 1 ≤ i < j ≤ n . A base pairing is represented 
by a “.” (dot). We note that each base can pair with maximum one other base (i.e. no 
base triplets are allowed). In Fig.  1, we note that the sequence is comprised of 43 
bases and each arc signifies a base pairing. We say base pairs i · j and i′ · j′ are nested if 

1 10 20 30 40 43

Fig. 1  An example of a pseudoknot-free structure. We notice that the stems are non-overlapping. This figure 
was made using the VARNA software [65]
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1 ≤ i < i′ < j′ < j ≤ n , and disjoint if 1 ≤ i < j < i′ < j′ ≤ n . For example, in Fig. 1 base 
pairs 3.26, 4.25, 5.24, and 9.20 are nested and base pairs 2.27 and 30.42 are disjoint.

An RNA structure is considered pseudoknotted when at least two of its base pairs, i · j 
and i′ · j′ cross: 1 ≤ i < i′ < j < j′ ≤ n , in which case both i · j and i′ · j′ are considered 
pseudoknotted base pairs.  The example of a pseudoknotted structure shown in Fig. 2 
consists of three base pairs at 17.32, 18.31, and 19.30 crossing the larger stem. All base 
pairs are pseudoknotted within this example. In contrast, structures without crossing 
base pairs, are called pseudoknot-free structures—see Fig. 1. In a pseudoknotted struc-
ture, we define a band as the maximal chain of consecutive stacked base pairs with the 
same crossing patterns. The example pseudoknotted structure in Fig. 2 has two bands: 
the first is the set of base pairs nested in 2.27 and the second is the set of base pairs 
nested in 17.32.
Algorithms. We start with a high level definition of how the different types of algo-

rithms work and their complexities.
Alignment based algorithms such as RNAalifold [18], Hxmatch [19], and Cacofold 

[20] measure the interdependence of two columns of an alignment in cubic time. 
This interdependence measure is then used in one of two ways: 1) merged with the 
score function for the algorithm or 2) used to select base pairs to inform the later 
predictions.

Thermodynamics-based algorithms [24–29] find the structure with the minimum free 
energy for an individual sequence using dynamic programming. Every structure fea-
ture is assigned an energy value (some were experimentally determined and others were 
extrapolated from experiments), and the energy of a structure is calculated as the sum of 
the energies for each substructure. Consequently, one selects, from the set of all possible 
structures, the structure whose free energy is minimum. For pseudoknot-free structure 
prediction, the standard time and space complexity is O(n3) and O(n2).

MFE pseudoknotted secondary structure prediction is NP-hard [30, 31] and inap-
proximable [32]. Polynomial-time algorithms require limiting the class of pseudoknotted 
structures as time complexity is traded off with generality [11]. The most general ther-
modynamics-based algorithm is PKnots [26] but it comes with a prohibitively expen-
sive time and space complexity of O(n6) and O(n4) . While pseudoknot-free MFE-based 
prediction is sufficient for a subset of RNA, especially smaller molecules, the biological 
importance of pseudoknots [33, 34] gives cause to developing algorithms that can han-
dle pseudoknotted structures.

1 10 20 30 40 43

Fig. 2  An example of a pseudoknotted structure. Base pairs at 17.32, 18.31 and 19.30 cross the larger stem. 
This figure was made using the VARNA software[65]
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It has been shown that the accuracy of MFE RNA secondary structure prediction 
decreases with sequence length both for pseudoknot-free [35] and pseudoknotted struc-
tures [36]. This has motivated research on incorporating available data (e.g. chemical 
modification/probing, or alignment information) into the prediction algorithms [37, 38].

In this work we aim to address the mentioned shortcomings. Using the coupling of 
covariation and thermodynamics, KnotAli is capable of finding possibly pseudoknot-
ted structures in O(Nn3) time and O(n2) space. KnotAli handles a restricted yet biologi-
cally important types of pseudoknots, i.e. kissing hairpins [39] and H-type pseudoknots 
[40] with arbitrarily nested substructures. More information about KnotAli and class of 
structures it can handle is provided in “KnotAli algorithm” section.

Energy model
Many algorithms for the prediction of RNA secondary structures, use a set of parame-
ters to calculate the free energy of the structure. These sets of free energy parameters are 
called energy models. KnotAli uses the energy parameters of HotKnots V2.0 [41], as they 
are currently the best available energy model for prediction of pseudoknotted structures. 
The free energy of a loop is dependent on the temperature of the environment as well as 
the ion concentration. The energy parameters used in this work were derived for a tem-
perature of 37◦C and 1 M salt (NaCl) concentration. These energy parameters are listed 
in Additional file 1.

Methods
In this section we provide the description of our algorithm, KnotAli, in “KnotAli algo-
rithm” section. To capture covariation of a given sequence alignment, and detect the 
intermediary base pairs in KnotAli, we used two metrics: Mutual Information ( MI ), 
described in “Mutual information” section, and adjusted mutual information, referred to 
as MIp and explained in “Adjusted mutual information” section. As mentioned in “Intro-
duction” section the focus of our manuscript is on algorithms that take a pre-aligned 
set of sequences and predict the possibly pseudoknotted secondary structure given the 
alignment. Therefore, in our comparison we used the only two algorithms of this cat-
egory that can handle pseudoknotted structures, namely Hxmatch and Cacofold. We 
included RNAalifold as control. We provide a brief description of RNAalifold, Hxmatch 
and Cacofold, in “RNAalifold, Hxmatch and Cacofold” sections, respectively.

Mutual information

Mutual Information or MI is the reduction in uncertainty of one position given another. 
It can be thought of as a measure of mutual dependence between two columns in an 
alignment. Measured in bits, the range of MI is between 0 and 2, where 0 suggests no 
detectable dependency between the two positions and 2 suggests a high dependency. 
Due to the effect of compensatory mutations, positions with conserved base pairs have 
a higher dependency on each other than independent positions. MI is used to find these 
conserved base pairings.

Our mutual information function is adapted from the MIToolbox [42]. In a standard 
mutual information calculation, 4 bases and a gap would allow for 25 possible pairs. Only 
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6 of these pairs form valid base pairs (canonical base pairs). When calculating MI   we 
ignore non-valid pairs. Let fa,b(x, y) denote the joint frequency of bases x, y at columns 
a, b of the alignment respectively; similarly, let fa(x) denotes the frequency of base x at 
column a and fb(y) , the frequency of base y at column b. We define the mutual informa-
tion between column a and column b of an alignment, denoted MI(a, b), as follows:

Adjusted mutual information

Adjusted mutual information or MIp  is the reduction of uncertainty of one position 
given another when taking into account the effect of noise. While MI works well at find-
ing column interdependence in an alignment, it suffers from noise due to random and 
phylogenetic sources [43]. The reduction of noise has been shown to improve measures 
of covariation [44]. Average Product Correction, APC , was previously applied to remove 
background noise in protein structure prediction [43].

The average product correction for columns a and b of a given sequence alignment is 
defined as:

where

and

The adjusted mutual information, MIp , is then defined as the difference between MI and 
APC as follows:

MIp was found to be more sensitive and selective compared to MI in protein structure 
prediction [43].

To determine at what point the MIp score demonstrates enough interdependence 
to detect a base pair correctly, we performed a grid search over the threshold range of 
[−0.2, 1.5] with step size of 0.1. Table 1 illustrates the results of the grid search across 
21 different possible thresholds on the 10 RNA families as a heatmap. The value at each 
cell of the heatmap represents the average F-measure for one of the 10 RNA families at 
a specific threshold. Table 2, similarly represented the average PPV values. We note that 
the grid search was performed on base pair information obtained using MIp before the 
thermodynamic prediction, when we were blind to the final prediction results. We aimed 

(1)MI(a, b) =
∑

x,y∈{A,C ,G,U}

fa,b(x, y) · log2

(

fa,b(x, y)

fa(x) · fb(y)

)

(2)APC(a, b) =
MI(a, z̄) ·MI(b, z̄)

MIavg

(3)MI(a, z̄) =
1

n− 1

n−1
∑

z=0

{

MI(a, z) where |a− z| > 3
0 otherwise

(4)MIavg =
2

n(n− 1)

n−1
∑

w=0

n−1
∑

z=0

{

MI(w, z) where |w − z| > 3
0 otherwise

(5)MIp(a, b) = MI(a, b)− APC(a, b)
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Table 1  The heatmaps illustrate the results of a grid search across 21 different possible thresholds 
on the 10 families

The values of the heatmaps represent the mean F-measure for the family at the specific threshold using the MAFFT aligner

Table 2  The heatmaps illustrate the results of a grid search across 21 different possible thresholds 
on the 10 families

The values of the heatmaps represent the mean PPV for the family at the specific threshold using the MAFFT aligner
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to choose the highest threshold level with acceptable F-measure. This is to avoid detec-
tion of incorrect base pairs from the sequence alignment. As noted in Table 1, increasing 
the threshold results in a general decline in F-measure among all families, with a sharp 
decline at the threshold value of 0.4. In Table 2, however, we observe that increasing the 
threshold generally increases the PPV value in all families, with a considerable change 
after the threshold value of 0.4 (for more information on choice of threshold see Addi-
tional file 2). Considering both tables we chose the threshold of 0.4 for KnotAli. All pair-
ings with MIp > 0.4 are compiled into a vector. As pairings with repeated positions are 
possible, i.e. i · j and i · j′ , the pairings are sorted by score. Base pairs are chosen based 
on their scores if both bases are available to pair (i.e. they were not paired with another 
higher scoring base before). These base pairs make up the guide structure for structure 
prediction as explained in “KnotAli algorithm” section.

KnotAli algorithm

KnotAli’s algorithm incorporates base pair information obtained from conserved struc-
ture of homologous RNA sequences into an MFE-based method to predict individual 
RNA secondary structures for each RNA sequence in the input alignment. In doing so, 
we bring together three main ideas: 1) selecting a set of intermediary base pairs based 
on adjusted mutual information, 2) identifying restricted unpaired bases, and 3) relaxed 
free energy minimization based on a guide structure.

KnotAli uses the average column and alignment mutual information, MI(a, z̄ ) and 
MIavg , respectively (see Equations 3 and 4) to calculate

adjusted mutual information (see Equation 5).
Non-conflicting base pairs with high adjusted mutual information are selected as 

intermediary base pairs to guide the thermodynamics-based secondary structure pre-
diction step.

In addition, columns whose maximum mutual information is less than the mean 
mutual information for the alignment are considered as unlikely to pair with any other 
column, and are marked as restricted unpaired bases. The restricted unpaired bases are 
used to control base pairing within the free energy minimization step.

Combining intermediary base pairs and restricted unpaired bases, we create a guide 
structure for each individual sequence of the alignment to guide its free energy mini-
mization step. Figure 3 shows an example of creating guide structure based on adjusted 
mutual information. In the guide structure a ‘_’ character is used to signify a base that 
is free/available to pair with another freely available base, and ‘x’ is used to signify bases 
that cannot form a base pair. When creating the guide structure for each sequence, we 
remove bases corresponding to gaps in the sequence and the structure, as well as hairpin 
loops of size < 3 that resulted after gap removal [45, 46].

KnotAli follows a relaxed energy minimization step. Relaxed energy minimization was 
previously used to allow for minor modification of base pairs during a hierarchical fold-
ing process, in which an RNA molecule first folds into a simple secondary structure, fol-
lowed by more complex base pair formation possibly involving base pair competition 
[25]. Here, we use the relaxed energy minimization approach to allow formation of more 
stable base pairs for individual sequences of the alignment using the predicted guide 
structure.
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Figure  4 provides a breakdown of each step in KnotAli. KnotAli takes a multiple 
sequence alignment as input. Adjusted mutual information is calculated based on the 
sequence alignment and intermediary base pairs as well as restricted unpaired bases are 
predicted from adjusted mutual information. Combining the intermediary base pairs 
and restricted unpaired bases for each sequence creates a guide structure for that spe-
cific sequence of the alignment. The relaxed energy minimization step consists of 4 dif-
ferent methods, each shown with a different path. These methods are run concurrently. 
Following Path 5, The leftmost method receives the guide structure and finds the pos-
sibly pseudoknotted minimum free energy structure given the guide structure (hence 
called “restricted pseudoknotted energy minimization”). Path 6 first aims to identify 
only non-nested (i.e. crossing) base pairs given the guide structure. If found, these cross-
ing base pairs are then provided to the “restricted pseudoknotted energy minimization” 
to predict the output structure. This is to allow for formation of competing crossing 
base pairs. Following Path 7, first the MFE pseudoknot-free structure given the guide 
structure is predicted. Then relaxed stable stems (which include stable stems possibly 
interrupted by small bulges or internal loops) are identified and passed for further modi-
fication as in the second method following Path 12. This path aims to allow for forma-
tion of competing nested base pairs. Path 8 also aims to allow formation of competing 
nested base pairs, this time by first opening the loops of the guide structure from outside 
for each disjoint substructure in the guide structure. Then following the same steps as 
the third method through Path 10 (Fig. 3).

Restricted minimum free energy structure prediction follows a dynamic programming 
algorithm depicted in grammar rules represented in Fig.  5. In this grammar rule the 

1.57 .804

.900

.16

--------------------------GGACGUUAAAUAGAUAAGCUAUGCC-------------UAGUUACGGGCUGGGAAGAGAGUCGUCUU-CCA
-AAUAAGAUAG-GAUAA----GUUGAGUCUGUGAGGUUCAUACCCUC---------------------------UUGGUGUUUUUCUCUUAUUGCCA
------CAUUG-CGAAG-----CUUAGAGCGUUAACCUUUUAAGUUAA----------------AGUUAGAGACAACAAAUCUCCACAAUG--ACCA
-CACUAAGAAG---CUA-------UAUAGCACUAACCUUUUAAGUUAG----------------AGAUUGAGAGCCAUAUACUCUCCUUGGUGACCA
-CACUAUGAAG-CUCAG----------AGCGUUAACCUUUUAAGUUAAA---------------AUUGAGAGACUUCUAGUCUCCAUGGUG--ACCA

_(((((((____((_____________))__(((((_______)))))_____________________((((_________)))))))))))_xxx

Fig. 3  Creating the guide structure in KnotAli. Five sequences are shown from the full alignment of tRNA 
sequences. Arcs between columns of the alignment represent the MIp values for the two columns at the 
two ends of the arcs. Arcs extending the same column represent change of MIp with a shared column. Here, 
we only represent a subset of the MIp values. The bottom line represents the determined guide structure for 
the alignment. As shown in the guide structure, only non-conflicting base pairs with high adjusted mutual 
information are selected as the intermediary base pairs, and later included in the guide structure
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RNA sequence is represented as a line with bases as index positions. Solid arcs indicate 
base pairs, and dashed arcs enclose areas containing unconsumed structure. Red circles 
represent fixed end points of a structure and blue squares represent unpaired bases. The 
class of pseudoknotted structures that KnotAli can handle is density-2 structures [47], a 
subclass of bisecondary structures in which no vertical line drawn at an index position 
intersects more than two bands. A bisecondary structure is defined as the union of two 

Relaxed Energy Minimization

Guide structure

Input 
Alignment

Final Structure

Find disjoint
substructures

Restricted
Pseudoknot-free

energy minimization

Obtain relaxed stems

Obtain crossing base
pairs

Restricted
pseudoknot energy

minimization

Intermediary base
pairs

Restricted unpaired
bases

Adjusted Mutual
Information

Remove external
bases

1

2 3

4

13

10

11

8

7

6

5

9

12

14

Fig. 4  Flowchart of KnotAli. We illustrate the steps taken moving from the input alignment to the guide 
structure and to the final predicted structure. Note that the Relaxed Energy Minimization step is performed 
once for each sequence of the alignment. There are four methods inside the Relaxed Energy Minimization, 
that each allow for addition of more stable and possibly competing base pairs with the base pairs of the 
guide structure. The lowest free energy structure found in the Relaxed Energy Minimization step is output as 
the predicted structure of a sequence of the alignment. Given an alignment A of N sequences, S1, S2, . . . , SN 
KnotAli outputs N structures R1, R2, . . . , RN

W W

V
W W

WMB

Fig. 5  Illustration of the main recursions of restricted pseudoknotted energy minimization step KnotAli. The 
sequence is represented as a line with bases as index positions; solid arcs indicate base pairs and dashed 
arcs enclose areas containing unconsumed structure. Red circles represent fixed end points of a region. Blue 
squares are unpaired indices. We represent the base pairs of the guide structure on top to distinguish then 
from the predicted base pairs in energy minimization steps of KnotAli shown in the bottom of the line
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disjoint pseudoknot-free secondary structures [48]. Restricted energy minimization step 
in KnotAli’s algorithm receives a pseudoknot-free secondary structure (i.e. the guide 
structure), and adds a disjoint pseudoknot-free structure to minimize the energy of total 
structure given the input structure. In Restricted pseudoknot-free energy minimization 
we further restrict addition of base pairs such that the total structure is a pseudoknot-
free structure. In Restricted pseudoknotted energy minimization step, we make sure that 
the total structure is a density-2 structure. In our grammar rule representation, as seen 
in Fig. 5, we present base pairs of the guide structure on top to distinguish them from 
the predicted base pairs at the restricted energy minimization steps, shown on the bot-
tom of the line.

The energy of the MFE structure between indices i and j of sequence S is calculated 
by W(i, j) in the dynamic programming algorithm. In case of restricted pseudoknot-free 
energy minimization, W(i,  j) is decomposed into three cases: (1) W (i, j − 1) when j is 
unpaired, (2) V (i, j)+W (i + 1, j − 1) when i and j pair together to form a loop (han-
dled by V(i,  j)) and the minimum free energy between i + 1 and j − 1 is handled by 
W (i + 1, j − 1) , and (3) mini≤k<jW (i, k)+W (k + 1, j) when there are two disjoint struc-
tures available between i and j that can be handled separately.

In case of restricted pseudoknotted energy minimization step, in addition to the pre-
vious three cases W(i,  j) has a fourth case which handles pseudoknotted structures 
(handled by WMB(i,  j)), as shown in Fig. 5. WMB(i,  j) uses other pseudoknot-specific 
recurrences (as shown in Additional file 3) to calculate the energy of substructures while 
separating the guide structure from the predicted base pairs.

The Restricted pseudoknot-free energy minimization follows a dynamic programming 
algorithm with O(n3) time and O(n2) space complexity matching the time and space 
complexity of the MFE pseudoknot-free prediction algorithms. Since the Restricted 
pseudoknotted energy minimization step creates a density-2 structure by adding 
pseudoknot-free base pairs to the guide structure (also pseudoknot-free), its time and 
space complexity matches the MFE pseudoknot-free prediction as well [47]. KnotAli, 
therefore, has an O(Nn3) time and O(n2) space complexity, where N is the number of 
sequences in the input alignment.

RNAalifold

RNAalifold is a pseudoknot-free consensus structure prediction algorithm which takes 
a sequence alignment as input. There are two versions of covariation measures that 
RNAalifold uses within its algorithm.

RNAalifold’s covariation metric, γ , is defined as

where a and b are two columns of the alignment A and S is a sequence in this alignment. 
The first covariation score, default setting, uses the Hamming distance as a means of dis-
tinguishing possible base pairings. In this case we have

(6)

γ (a, b) = γ ′(a, b)+ δ
�

S∈A







0 if Sa.Sb ∈ {A.U,C.G,G.C,G.U,U.A,U.G}

0.25 if Sa and Sb are gaps

1 otherwise
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Here, B is the set of all possible base pairs, {A.U,C.G,G.C,G.U,U.A,U.G}, and the 
hamming distance is defined as

In the second covariation metric referred to as RIBOSUM score, RIBOSUM matrices 
replace the Hamming distances, as follows

where x is a scaling factor, and R is defined as:

f (i.j, i′ · j′) is the frequency of base pairs i · j and i′ · j′ being aligned, and f (i, i′) (and 
f (j, j′) ) is the frequency of aligning nucleotides at positions i and i′ (and j and j′).

In both cases RNAalifold predicts the MFE structure based on conserved base pairs 
found using each metric and the energy is adjusted based on a pseudo-energy term that 
incorporates covariation score.

Hxmatch

Hxmatch is an alignment-based consensus structure prediction algorithm that can han-
dle pseudoknotted structures. Hxmatch starts by defining a base pair scoring method 
which combines a helix score and a covariation score. The helix score, HS

i,j , considers all 
possible base pairs for sequence S in the alignment and calculates the energy of the larg-
est helix containing the base pair i.j. The Helix score for two columns a and b of the 
alignment A is defined as

The value is multiplied by −1 to make it positive and placed in a scoring matrix H. The 
covariation score at positions a and b is

where fa,b(i · j) is the frequency of base pair i · j in columns a and b of the alignment and 
Di·j,i′·j′ is 0 when i · j = i′ · j′ or either pair is an invalid pairing, equals to 1 when i differs 

(7)

γ ′(a, b) =
1

2

∑

S1, S2 ∈ A

S1 �= S2

{

h(S1a , S2a)+ h(S1b , S2b) if S1a .S1b and S2a .S2b ∈ B

0 otherwise

(8)h(i, j) =

{

1 if i �= j

0 otherwise

(9)
γ ′(a, b) =

1

2

∑

S1, S2 ∈ A

S1 �= S2

x · R(S1a .S1b , S2a .S2b)

(10)R(i · j, i′ · j′) = log

(

f (i · j, i′ · j′)

f (i, i′) · f (j, j′)

)

(11)HA
a,b =

1

N

∑

S∈A

HS
a,b

(12)Ca,b =
∑

i·j,i′·j′

fa,b(i · j) · Di·j,i′·j′ · fa,b(i
′ · j′)
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from i′ or j differs from j′ , and to 2 if both i and j differ from i′ and j′ , respectively. A pen-
alty is applied to this score based on the number of invalid base pairings at columns a, b:

where qa,b is the number of invalid base pairings and φ1 is a scaling factor (default value 
0.8) The helix and covariation scores are then combined into a matrix

with φ2 corresponding to another scaling value (default 60 kcal/mol).
A maximum weighted matching (MWM) approach uses the base pair scores found 

before and builds a set of vertices and edges where vertices are positions from 1 to n and 
the edges are all pairings with a score > 0 . This step finds the matching which maximizes 
the sum of edge weights.

Cacofold

Cacofold is an alignment-based method that can handle pseudoknotted structures. 
Cacofold uses probabilistic folding methods and positive and negative covariation 
scores to find a consensus structure. Cacofold is part of the R-scape package [20, 49, 50]. 
Cacofold uses E-value and covariation power in tandem to distinguish positive and nega-
tive base pairs.

An E-value is an expectation value signifying the expected number of false positives 
[49]. E is defined as E = N · P(score > x) where N is the number of column pairs and 
P(score > x) is the probability that the column pair would give a covariation score 
greater than the threshold x.

Covariation power is an estimate of the expected ability to detect covariations [20, 50]. 
Covariation power is used to distinguish when a lack of structure is due to low sequence 
variation rather than low covariation.

A positive base pair is a base pair which reports high covariation (a low E-value). 
In contrast, a negative base pair is a base pair which reports low covariation but high 
covariation power. Negative base pairs are forbidden to appear in the final structure.

Cacofold groups positive base pairs into nested subsets. The first subset is made up 
of the maximal number of positive pairings such that there are no crossing base pairs 
or triplets, and succeeding sets are made up of the remaining positive base pairs. The 
subsets are used as constraints for the secondary structure prediction algorithms. RNA 
basic grammar [51] is used on the first subset to find the main nested structure. Later 
subsets use a simplified grammar called G6X, an extension of the G6 model [52, 53], and 
are used to find additional helices. The structures formed from each subset are com-
bined after filtering out redundancies without covariation support.

Experiment design
In this section we provide the details of our experiment design.

(13)Ba,b = Ca,b − φ1 · qa,b

(14)πa,b = HA
a,b + φ2 · Ba,b
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Dataset

We tested all algorithms on a large dataset with 3034 (pseudoknotted and pseudoknot-
free) RNA sequences. This dataset was compiled from the dataset of [54, 55], by remov-
ing duplicate sequences. In addition, we removed all hairpins of size < 3 [45, 46]. This 
step affected the SRP family only. We provide our version of the dataset within the 
Zenodo image: http://​doi.​org/​10.​5281/​zenodo.​57947​19.

The RNA sequences in our database are from ten (pseudoknotted and pseudoknot-
free) RNA families with reference structures previously determined through comparative 
analysis [56]. The pseudoknot-free families are made up of 5s, SRP, Group II Intron, and 
tRNA while the remaining families contain at least one sequence whose reference struc-
ture is pseudoknotted. Sequences vary in length from 28 nucleotides (SRP) to 2968 nucleo-
tides (23s). Sequences in our dataset represent a wide degree of conservation ranging from 
highly conserved tRNA[57] to less conserved families such as Group I Intron, and Group II 
Intron [58, 59]. Table 3 summarizes these families.

RNA sequence aligners

To evaluate the structural similarities within differently-sized sequences, the sequences first 
have to be aligned and gaps placed such that they all have the same length. The strength of 
a sequence aligner, therefore, plays a fundamental role in the quality of the predicted align-
ments. In a previous benchmark study [60], 10 different aligners were evaluated. The study 
sought to score the alignments generated by evaluating the consistency of the secondary 
structure to the aligned reference sequences. These 10 aligners either predict solely off of 
sequence similarity or by combining the sequence similarity with structure prediction. Of 
these 10 aligners, we chose MUSCLE [61] and MAFFT [62], as they solely use sequence 
similarity.

MUSCLE tends to reduce the number of gaps within the alignment, whereas MAFFT 
tends to add an increased number of gaps, especially in instances where there is higher 
variation within the alignment. Both programs only require a FASTA file as input. No addi-
tional parameters were used.

Table 3  List of families with their sequence conservation level, corresponding number of 
sequences, and range of length

This dataset is comprised of 10 families compiled from RFAM [54–56]

Family # of sequences Sequence length Conservation

5s 1053 103–135 High [66]

16s 22 950–1995 Medium [67, 68]

23s 5 2904–2968 Medium [69]

Group I intron 89 210–736 Low [59]

Group II intron 11 619–780 Low [58]

RNaseP 410 120–486 Medium [70]

SRP 583 28–533 Medium [71]

Telomerase 37 382–559 Low [72]

tmRNA 363 102–437 Medium [73]

tRNA 461 57–93 High [57]

http://doi.org/10.5281/zenodo.5794719
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Accuracy measures

We evaluate the performance of algorithms based on three measures: sensitivity (Sen), pos-
itive predictive value (PPV), and their harmonic mean (F-measure):

where the number of true positives (TP) is defined as the number of correctly predicted 
base pairings within the structure; the number of false positives (FP), similarly, is the 
number of predicted base pairs that do not exist in the reference structure; and any base 
missed in the prediction that corresponds to a pairing in the reference structure is a false 
negative (FN).

Sen, PPV, and F-measure are unitless measures that range between 0 and 1. When the 
predicted structure is the same as the reference structure, their value is 1. In contrast, 
when PPV and/or sensitivity is 0, there are no common base pairs between the refer-
ence and predicted structure and F-measure is set to 0. High PPV describes an algorithm 
which predicts a small number of false positives.

In contrast, high sensitivity shows an algorithm’s ability to overall find base pairs from 
a sequence. Algorithms seek to maximize both. Therefore, combining both sensitivity 
and PPV helps to better describe the different strengths of algorithms.

Significance test

We consider the performance of an algorithm to be superior or inferior to another one if 
the difference in their accuracy is considered significant based on a two-sided permuta-
tion test [25, 63]. The two-sided permutation test works as follows. Consider f1 and f2 
to be the vectors of F-measures obtained by algorithms Alg1 and Alg2 , and f̄1 and f̄2 to 
be the mean of the F-measures of Alg1 and Alg2 , respectively. We term our test statistic 
ts = f̄1 − f̄2.

We take samples (with replacement) from vectors f1 and f2 creating a new f ′1 and f ′2 
with the same size as f1 and f2 . We recalculate the difference of means between f ′1 and f ′2 
(i.e. t ′s = f̄ ′1 − f̄ ′2 ) and compare it to ts . We repeat these steps 10,000 times. The p-value is 
then the proportion of t ′s ≥ ts out of the 10,000 repeats.

If the calculated p-value is less than 0.05, we reject the null hypothesis, concluding 
that the difference in performance of Alg1 and Alg2 is significant. Otherwise we conclude 
their difference in performance is due to statistical randomness, and thus, not signifi-
cant. This was accomplished using the ‘perm’ package in R.

(15)Sensitivity =
TP

TP+ FN

(16)PPV =
TP

TP+ FP

(17)Fmeasure =
2 · PPV · Sensitivity

PPV+ Sensitivity
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Configuration

The default settings of Hxmatch and Cacofold were used when testing. As mentioned in 
“RNAalifold” section, there are two options for using RNAalifold, one with Hamming 
distance as scoring model (default), and one with RIBOSUM scoring model. We assessed 
performance of RNAalifold with the two scoring models (referred to as RNAalifold for 
Hamming distance score and Riboalifold for RIBOSUM score) and presented the results 
in Table 4. In each case we present the results once for MUSCLE and MAFFT as align-
ers used. Bold font is used to show if there was a significant difference in the results. 
An asterisk is added when the significance is close enough to warrant distinction but 
not fully crossing a p-value of 0.05. As evident in Table 4 for the majority of families, 
Riboalifold shows a significant improvement in F-measure over RNAalifold with Ham-
ming distance score. We therefore use RNAalifold with RIBOSUM scoring model when 
comparing RNAalifold with other algorithms.

We note the difference in output between our algorithm and the others—namely indi-
vidual structures versus a consensus structure. For comparison, the consensus structure, 
from the other three algorithms, is applied to all individual structures. When comparing 
the results of all algorithms to the reference structure, we did not consider non-canoni-
cal base pairs as well as loops of size < 3 after the removal of gaps.

Results
Recall that KnotAli receives a multiple sequence alignment as input and predicts indi-
vidual structures for each of the sequences in the alignment.

To reduce the effect of sequence alignment on performance of KnotAli, we selected 
two of the best performing sequence aligners, MUSCLE and MAFFT, as explained in 
“RNA sequence aligners” section. Throughout this work we present KnotAli’s per-
formance with each of the two sequence aligners to provide an unbiased view of its 
performance.

Table 4  Comparison of RNAalifold with and without the use of RIBOSUM matrices as a covariation 
measure

RNAalifold refers to RNAalifold with Hamming distance (default) and Riboalifold is used to denote RNAalifold with RIBOSUM 
matrices. Results are shown across both MUSCLE and MAFFT. BOLD is used to show significant difference in the results. An * 
is added when the significance is close enough to warrant distinction but not fully crossing a p-value of .05

Family MUSCLE MAFFT

RNAalifold Riboalifold RNAalifold Riboalifold

Sen ppv F Sen ppv F Sen ppv F Sen ppv F

5s .561 .929 .698 .761 .884 .817 .419 .979 .586 .644 .843 .729
16s .323 .818 .462 .505 .748 .602 .336 .852 .481 .548 .794 .647
23s .805 .815 .81 .798 .767 .782 .807 .806 .807 .895 .771 .783

Group I intron 0 0 0 .047 .588 .087 0 0 0 .036 .719 .068
Group II intron 0 0 0 0 0 0 .105 .992 .189 .106 .773 .186

RNaseP 0 0 0 .235 .602 .334 0 0 0 .207 .759 .322
SRP .124 .897 .198 .165 .764 .241 .079 .883 .135 .078 .661 .129

Telomerase .223 .793 .348 .508 .636 .563 .225 .869 .356 .25 .361 .294

tmRNA .147 .978 .254 .255 .803 .386 .123 .955 .216 .196 .799 .313
tRNA .857 .973 .909 .931 .972 .949 .757 .93 .829 .8 .931 .855*
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MI versus MIp

KnotAli’s predictions are guided by the intermediary base pairs—base pair infor-
mation obtained from covariation in the sequence alignment. To capture covaria-
tion we used mutual information as well as adjusted mutual information as it was 
shown previously that the adjusted mutual information improved accuracy in pro-
tein structure prediction [44]. To assess adjusted mutual information ( MIp ) versus 
mutual information ( MI ), we calculated accuracy of the guide structure produced 
from MIp and MI (see Additional file 4). In majority of cases both F-measure and PPV 
of the guide structures produced using MIp were significantly higher than those of 
guide structures produced using MI . Figure  6 presents average F-measure for each 
family when KnotAli was run in four conditions: (1) MUSCLE as aligner, and MI to 
find guide structure, (2) MUSCLE as aligner, and MIp to find guide structure, (3) 
MAFFT as aligner, and MI to find guide structure, and (4) MAFFT as aligner, and MIp 
to find guide structure. We compare KnotAli’s results obtained using MIp to other 
algorithms.

Restricted unpaired bases

Our second contribution in designing KnotAli is identification of restricted unpaired 
bases from the sequence alignment. These bases are forced as unpaired in the relaxed 

5stRNA srp tmRNA RNaseP 16s 23s grp1 grp2 telomerase
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Fig. 6  We compare KnotAli’s performance using mutual information, MI , versus its performance using 
adjusted mutual information, MIp . For each family we present the average F-measure obtained when we 
used (1) MUSCLE as aligner, and MI to find conserved base pairs, presented with MI-MU as the leftmost bar 
in the figure for each family; (2) MUSCLE as aligner, and MIp to find conserved base pairs, presented with 
MIp-MU as the second bar from the left in the figure for each family; (3) MAFFT as aligner, and MI to find 
conserved base pairs, presented with MI-MA as the third bar from the left in the figure for each family; and (4) 
MAFFT as aligner, and MIp to find conserved base pairs, presented with MIp-MA as the fourth bar from the 
left in the figure for each family
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energy minimization step of the algorithm. Figure  7 presents an example showcas-
ing secondary structure predicted for an RNA sequence from the tRNA family based 
on the same intermediary base pairs; in one restricted unpaired bases are identified 
and enforced (see Fig. 7a in which restricted unpaired bases are identified with a dark 
fill on the 3’ end of the sequence) and in the second one restricted unpaired bases 
were not used (see Fig. 7b). When the 3’-end bases are left free to pair, a lower energy 
structure than the reference structure is predicted as output structure (with free 
energy of −12.4 kcal/mol vs. −11.88 kcal/mol of the reference structure). Restricting 
the 3’-end bases as unpaired (as shown in Fig. 7a) results in prediction of the refer-
ence structure for the given sequence. We compared performance of KnotAli with 
and without restricted unpaired bases, and found a significant difference in favour of 
using restricted unpaired bases (see Additional file 3). In the rest of this paper Kno-
tAli with restricted unpaired bases is compared with other algorithms.

Comparison with existing algorithms

We compared performance of KnotAli (with MIp for detection of intermediary base 
pairs, and restricted unpaired bases) with RNAalifold (with RIBOSUM scoring model) 
which serves as control (RNAalifold takes a multiple sequence alignment as input and 
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(a) Restricted bases (colored)

G U C G C A A U G G U G U A G U U G G G A G C A U G A C A G A C U G A A G A U C U G U U G G U C A U C G G U U C G A U C C C G G U U U G U G A C A C C A
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(b) No restricted bases
Fig. 7  The effect of restricted unpaired bases is shown with an example of an RNA sequence from the tRNA 
family. If the three bases on the 3’ end of the sequence are free to pair they form pseudoknotted base pairs 
(b) to lower the energy of the structure, therefore causing loss of the cloverleaf shape known within the tRNA 
family, and deviation from the reference structure. However, once the three bases are identified as restricted 
unpaired and forced as such (presented as dark filled bases at the 3’ end of part (a)) the reference structure is 
correctly predicted (a)
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predicts a pseudoknot-free consensus structure for the given alignment), as well as 
Hxmatch and Cacofold both capable of predicting pseudoknotted consensus struc-
tures from a multiple sequence alignment. All algorithms were provided with the same 
sequence alignments for all RNA families in our dataset. Performance of all algorithms 
are compared once in Table 5a in which sequences were aligned using MUSCLE, and 
again in Table 5b in which MAFFT was used as the sequence aligner. Bold values in the 
tables represent significantly superior performers in each family. We find KnotAli’s per-
formance, as measured by F-measure, superior to other algorithms on the majority of 
the families irrespective of the aligner used (particularly KnotAli performs significantly 
better than the others on 6 of the 10 families using MUSCLE and on 7 families when 
using MAFFT as aligner). The results are presented in Fig. 8 as whisker plots, in which 
black represents the results using MAFFT as aligner and red using MUSCLE.

Our dataset includes 10 RNA families with varying length, number of sequences 
in the family, as well as conservation level (see Table 3). In our benchmark, all algo-
rithms performed well on two families, 5s and tRNA both with high level of sequence 
conservation. Both families included a large number of sequences (1053 sequences in 
5s and 461 sequences in tRNA). Reference structures for all sequences in both fami-
lies are pseudoknot-free. In addition, the length of sequences in both families was 

Table 5  Comparison of KnotAli with RNAalifold, Hxmatch, and Cacofold

Each column corresponds to algorithm used and each sub-column represents a metric: F-measure, Sensitivity or PPV. 
BOLD represents the significantly highest accuracy compared to others. In the case of two algorithms whose accuracy 
outperformed the rest while not significantly better than each other, both were represented in bold. An accompanying * is 
then used to denote a p-value close to but not below .05.

Family KnotAli RNAalifold Hxmatch Cacofold

Sen ppv F Sen ppv F Sen ppv F Sen ppv F

(a) Input alignment created through MUSCLE

5s .899 .876 .887 .761 .884 .817 .424 .917 .579 .835 .859 .846

16s .494 .501 .494 .506 .748 .602 .385 .724 .502 .172 .455 .250

23s .589 .545 .566 .798 .767 .782 .552 .625 .587 .242 .341 .283

Group I intron .490 .444 .461 .047 .588 .087 .034 .529 .064 .039 .300 .068

Group II intron .177 .139 .154 0 0 0 .010 .108 .018 0 0 0

RNaseP .498 .491 .493 .235 .602 .334 .135 .699 .225 .164 .552 .251

SRP .580 .556 .564 .165 .764 .241 .166 .897 .25 .186 .496 .255

Telomerase .289 .233 .256 .508 .636 .563 .292 .711 .413 .380 .480 .423

tmRNA .491 .468 .477 .255 .803 .386 .176 .852 .291 .234 .868 .367

tRNA .950 .917 .932 .931 .972 .949 .764 .974 .854 .886 .970 .925

(b) Input alignment created through MAFFT

5s .902 .871 .885 .644 .843 .729 .385 .927 .541 .739 .852 .790

16s .548 .495 .519 .548 .794 .647 .440 .802 .567 .198 .467 .277

23s .329 .468 .361 .795 .771 .783 .563 .627 .593 .281 .336 .281

Group I intron .424 .378 .396 .036 .719 .068 .036 .719 .069 .051 .384 .090

Group II intron .382 .244 .295 .106 .773 .186 .103 .580 .175 .105 .920 .187

RNaseP .592 .583 .585 .207 .759 .322 .067 .700 .122 .301 .639 .400

SRP .420 .416 .415 .078 .661 .129 .078 .885 .134 .148 .377 .206

Telomerase .243 .186 .211 .25 .361 .294 .255 .483 .333 .442 .517 .475
tmRNA .504 .492 .495 .196 .799 .313 .047 .435 .084 .255 .650 .362

tRNA .898 .878 .886 .8 .931 .855 .642 .940 .758 .853 .925 .882*
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relatively short (103–135 in 5s and 57–93 in tRNA). In case of 5s, KnotAli’s perfor-
mance was significantly better than the rest (with both MUSCLE and MAFFT) while 
in case of tRNA no algorithm was found to be significantly superior than the others 
when MUSCLE was used as sequence aligner and KnotAli was found to be the winner 
when MAFFT was used as aligner (with Cacofold as the runner-up).

Three families in our dataset have low sequence conservation level, namely Group I 
Intron, Group II Intron and telomerase. These families included a small to moderate 
number of long RNA sequences (Group I Intron includes 89 sequences of length 210–
735, Group II Intron includes 11 sequences of length 619–780, and telomerase includes 
37 sequences of length 382–559). Prediction accuracy of all algorithms significantly 
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Fig. 8  We show the results of the four algorithms in a box and whisker plot (F-measure). Black denotes 
the results on the MAFFT alignment while red denotes MUSCLE. Algorithms’ names are shortened to Knot 
(KnotAli), RNA (RNAalifold), Hex (Hxmatch) and Cac (Cacofold)
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decreased on these families. In particular, RNAalifold and Cacofold could not find any 
of the reference structure base pairs (using MUSCLE as sequence aligner) resulting in 0 
accuracy in case of Group II Intron, while Hxmatch found few base pairs of the reference 
structure (accuracy of 0.018). KnotAli’s performance on the same test case was not ideal 
but was significantly better than the rest, improving Hxmatch’s by over 8-folds. All algo-
rithms performed better on Group II Intron when MAFFT was used as the sequence 
aligner and KnotAli stayed in the top spot. KnotAli’s performance accuracy was over 
5-folds better than the others on Group I Intron with MUSCLE and over 4-folds better 
than the rest on Group I Intron with MAFFT. On telomerase, however, RNAalifold and 
Cacofold outperformed KnotAli using MUSCLE and MAFFT respectively.

For the remaining 5 families with moderate sequence conservation level, namely 16s, 
23s, RNaseP, SRP, and tmRNA, regardless of the aligner used, RNAalifold performed sig-
nificantly better on 16s and 23s (respectively with 22 sequences of length 950–1995, and 
5 sequences of length 2904–2968) while KnotAli performed significantly better than the 
rest on RNaseP, SRP and tmRNA (respectively with 410 sequences of length 120–486, 
583 sequences of length 28–533, and 363 sequences of length 102–437). We note that 
all families in this group except SRP had at least one pseudoknotted reference struc-
ture in their family. A major difference in performance of RNAalifold and KnotAli on 
the 16s family is their PPV value (above 0.7 for RNAalifold and around 0.5 for KnotAli). 
This indicates that KnotAli identifies more base pairs that are not in the reference struc-
ture (while addition of these base pairs lowers the free energy value, what KnotAli aims 
to minimize). In case of 16s, we observe that KnotAli’s sensitivity is similar to that of 
RNAalifold but its PPV is significantly lower than that of RNAalifold, contributing to its 
lower F-measure.

Varying sequence length in alignment

We further assessed the effect of varying sequence lengths in an alignment on perfor-
mance of all algorithms. We restricted sequence lengths for two families in our dataset 
with the largest range of lengths. For SRP family with original length range of 28–533 
we only compared sequences within 200–350 lengths, and for Group I Intron with origi-
nal length range of 210–736, we only considered sequences of length between 325 and 
450 resulting in 285 and 33 sequences, respectively. The restricted subfamilies were re-
aligned using MAFFT and MUSCLE. Results were then compared to the F-measure of 

Table 6  Comparison of KnotAli with RNAalifold, Hxmatch, and Cacofold on two families with large 
variation in sequence length

Scores are compared between pre-shortened versions and post-shortened versions. Significance is shown between the 
algorithms on the pre-shortened and post-shortened results. For the significance of the post shortened results to the pre-
shortened, see Additional file 3

family Pre-shortened Post-shortened

KnotAli RNAalifold Hxmatch Cacofold KnotAli RNAalifold Hxmatch Cacofold

SRP-MAFFT .415 .129 .134 .206 .582 .315 .300 .419

Group I intron-
MAFFT

.396 .068 .069 .090 .547 .238 .339 .167

SRP-MUSCLE .564 .241 .25 .255 .491 .198 .232 .200

Group I intron-
MUSCLE

.461 .087 .064 .068 .463 .205 .138 .112
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structures from the previous prediction (when all sequences were used to create the 
alignment). As expected all algorithms saw an improvement on their accuracy of pre-
diction on both families when length range of sequences comprising the alignment was 
tighter (see Table  6). In particular, RNAalifold’s accuracy for SRP increased from .129 
to .315 and for Group I Intron from .068 to .205. Hxmatch saw an increase from .134 to 
.300 for SRP and an increase from .069 to .339 for Group I Intron in F-measure. Similarly 
Cacofold saw an increase in SRP from .206 to .419 and from .09 to .167 in Group I Intron. 
The same trend was observed in KnotAli as well: increase in accuracy was observed in 
SRP from .423 to .581 and from .396 to .546 in Group I Intron. The changes in accuracy 
for all algorithms were found to be significant when MAFFT was used as the aligner.

Alignment quality effect in KnotAli versus Cacofold

While Cacofold is similar to KnotAli in its use of APC in background noise correction 
[20, 64], we saw a distinctly different outcome when comparing Cacofold with KnotAli in 
their predictions accuracy. To test whether poor quality of the input multiple sequence 
alignment contributes to the sharp decline in prediction accuracy in Cacofold, we used 
a known spurious alignment [60] as benchmark to compare KnotAli and Cacofold. We 
used RF00177 family (bacteria small subunit ribosomal RNA) consisting of 32 sequences 
with average length of 1476. As control we compared the results with that of 16s fam-
ily (from our dataset) with 22 sequences of medium sequence conservation, and length 
range of 950–1995. We present the results in Table 7.

While KnotAli’s performance on both families is similar (F-measure of .519 for 16s 
and .486 for RF00177), we observe a sharp decline in accuracy for Cacofold (from .277 
in 16s to .093 in RF00177). We therefore, conclude that alignment quality has an observ-
able effect of the performance of both algorithms while KnotAli is less sensitive to it 
than Cacofold.

Accuracy measures

We recognize that the reference structures for the sequences within the dataset were 
determined through comparative sequence analysis [56]. We noted in “Introduction” 
section that comparative sequence analysis has been shown to accurately predict sec-
ondary structures [10]. Structures predicted are not guaranteed to contain all base pairs 
from the true structure. Within the reference structures of some families provided by 
comparative sequence analysis, there are large loops indicating a lack of determined 
structure for the segment. Prediction of stable base pairs (i.e. base pairs with nega-
tive free energy value) in some of these segments contributed to decline in PPV value 

Table 7  Comparison of KnotAli to Cacofold using a spurious alignment

Alignment was chosen based on the results of RNAconTest [60]. As control the results are compared to 16s family from our 
dataset, with similar number of sequences and length range but medium sequence conservation

Family KnotAli Cacofold

Sen ppv F Sen ppv F

16s .548 .495 .519 .198 .467 .277

RF00177 .507 .481 .486 .067 .154 .093
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translating to decline in F-measure. We have therefore, compared the accuracy of all 
algorithms once more when compatible base pairs are not considered as false positives 
in calculation of F-measure.

More specifically, we consider a predicted base pair i · j inconsistent if the reference 
structure includes either i · k or h · j and h  = i and k  = j and consider base pairs that are 
not contradicting as compatible if they are not part of the reference structure. Table 8 
summarizes the improvements observed in accuracy of all algorithms when compatible 
base pairs are not penalized. As seen in Table 8, KnotAli outperform other algorithms in 
7 families out of 10 for regardless of the aligner used. RNAalifold outperforms KnotAli 
in 2 families (23s and telomerase) when MUSCLE is used as the aligner. RNAalifold loses 
to Cacofold on telomerase when MAFFT is used but wins on RNaseP.

Comparing the results to Table 5a and b, on families with high level of sequence con-
servation level (5s and tRNA) KnotAli still outperforms the  others on 5s (using both 
MUSCLE and MAFFT), and tRNA using MAFFT. With the adjusted F-measure, its 
accuracy significantly improves over the rest of the algorithms on tRNA when using 
MUSCLE as well. However, improvement in accuracy of Hxmatch is negligible. RNAali-
fold’s improvement in accuracy is minimal using MAFFT.

For the three families with low sequence conservation level (Group I Intron, Group II 
Intron and telomerase), KnotAli performs significantly better than the others on Group 
I Intron and Group II Intron families regardless of the aligner used. While there is a 
significant improvement in accuracy of KnotAli on telomerase family compared to its 
previous F-measure, it is not yet able to beat RNAalifold or Cacofold.

In the remaining five families with medium sequence conservation (16s, 23s, RNaseP, 
SRP, and tmRNA), KnotAli outperforms the rest on RNaseP, SRP  and tmRNA regardless 
of the aligner used. It is now on par with RNAalifold on 16s family (the previous winner) 
but still underperforms on 23s when compared to RNAalifold.

Table 8  Comparison of accuracy as measured by F-measure for KnotAli with RNAalifold, Hxmatch, 
and Cacofold when compatible bases are not considered as false positive

BOLD represents the significantly highest accuracy compared to others

Each column represents the aligner used and each subcolumn represents F-measure value for one of the algorithms 
compared in this work

Family MUSCLE MAFFT

KnotAli RNAalifold Hxmatch Cacofold KnotAli RNAalifold Hxmatch Cacofold

5s .920 .840 .581 .886 .922 .765 .550 .832

16s .560 .635 .527 .267 .593 .677 .588 .297

23s .639 .851 .652 .318 .401 .851 .657 .314

Group I intron .549 .087 .065 .079 .474 .069 .068 .093

Group II intron .205 0 .018 0 .431 .189 .182 .186

RNaseP .547 .341 .225 .255 .645 .322 .123 .415

SRP .620 .250 .250 .264 .463 .135 .135 .218

Telomerase .336 .610 .430 .479 .278 .325 .361 .533
tmRNA .556 .395 .294 .372 .578 .319 .087 .373

tRNA .961 .951 .854 .926 .917 .858 .760 .885
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Conclusion
In this work we present KnotAli, a novel algorithm that given a multiple sequence align-
ment as input predicts the possibly pseudoknotted secondary structure of each RNA 
sequence within the alignment. KnotAli first identifies a set of intermediary base pairs 
utilizing a noise adjusted mutual information metric ( MIp ). Using average mutual infor-
mation in each column of the alignment, it identifies restricted unpaired bases (the ones 
that are enforced as unpaired in the guide structure). By combining intermediary base 
pairs and restricted unpaired bases, it generates a guide secondary structure for each 
RNA sequence to guide the relaxed free energy minimization step and predicts the indi-
vidual RNA secondary structure (with possibly pseudoknotted base pairs). We evaluated 
KnotAli’s performance against a control (RNAalifold) and two competing algorithms 
(Hxmatch and Cacofold). All algorithms predict their result given a multiple sequence 
alignment as input. KnotAli, Hxmatch and Cacofold are capable of predicting pseudo-
knotted secondary structure. While RNAalifold is restricted to pseudoknot-free second-
ary structures. We benchmarked all algorithms on a large dataset of sequences from 10 
families with varying number of sequences, length ranges and levels of sequence con-
servation using alignments created using MUSCLE and MAFFT. We found KnotAli’s 
performance to be superior in the majority of the cases. As expected, since all methods 
compared in this work rely on a multiple sequence alignment provided as input to detect 
conserved structures, they performed well on two families in our dataset with high 
conservation level (namely 5s and tRNA), and the accuracy of all methods decreased 
with a decrease in sequence conservation level. While RNAalifold is not capable of han-
dling pseudoknotted secondary structures, its accuracy was superior to other methods 
regardless of the aligner used on two families with pseudoknotted reference structures 
(16s and 23s).

We further compared KnotAli’s performance to Cacofold (that similar to KnotAli uti-
lizes background noise correction strategies and predicts possibly pseudoknotted struc-
tures), on a family of sequences with known spurious alignment (RF00177). We found 
KnotAli to be more resilient to changes in alignment quality compared to Cacofold. 
While both Cacofold and KnotAli use APC as a form of background correction, Cacofold 
uses a G-test covariation measure rather than mutual information (as done in KnotAli). 
In addition, Cacofold utilizes positive and negative base pairs whereas KnotAli uses 
intermediary base pairs as well as restricted unpaired bases in its guide structure.

To adjust for inaccuracy in comparative analysis-based reference structures (such as 
the ones used in this work) caused by large unstructured segments in these structures, 
we further analyzed performance of all algorithms using adjusted F-measure in which 
compatible base pairs (those that do not contradict the reference structure) are not 
penalized as false positive. We observed that KnotAli’s performance further improved 
compared to other algorithms (only performing worse on the 23s and telomerase 
families).

Overall, we find KnotAli to provide an improvement over existing methods for pre-
diction of possible pseudoknotted structures from families of functionally related 
RNAs. We showed that KnotAli performs better that the compared methods in major-
ity of RNA families in our dataset, and is less sensitive to quality of multiple sequence 
alignment when compared to Cacofold. There is, however, room for improvement. We 
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showed the positive effect of using a better scoring model in the case of RNAalifold (see 
“Configuration” section), and we plan to improve KnotAli’s scoring model, perhaps by 
implementing a pseudo-energy term to incentivize retention of intermediate base pairs. 
Another possible direction is to explore other metrics to detect conservation and covari-
ation in base pairs. These we believe will have significant effect on improving secondary 
structure prediction for possibly pseudoknotted structures.
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Additional file 1. Recurrences. We provide the recurrences which make up the thermodynamic MFE prediction 
within KnotAli.

Additional file 2. Energy Table. The table shows the free energy parameters which determine the free energy of the 
structures.

Additional file 3. P-tables. We provide all non-included tables from our paper. Section 1 gives the MI vs MIp com-
parison table and the associated p-values. Section 2 gives the Restricted vs Non-restricted table and its associated 
p-values. Section 3 gives the non-included heatmaps for MUSCLE. Section 4 gives the p-values for the comparison 
with existing algorithms tables included in the text. Section 5 gives the p-values for varying sequence length table. 
Section 6 gives the p-values for when compatible bases are not considered false positives. Section compares the 
results between the other algorithms and against themselves.

Additional file 4. Cross-validation. We provide our validation results for the heatmap-based threshold pick. Valida-
tion results were done through a 70-30 split over 1000 iterations where the threshold was picked based on the 70% 
training set and assessed on the 30% test set.

Acknowledgements
The authors thank the COBRA lab for their feedback on the manuscript.

Author contributions
MG designed, developed, and assessed the algorithm, acquired and interpreted the data, and was the primary contribu-
tor in writing the manuscript. HJ first bridged the idea. HJ and SC supervised the research and participated in interpret-
ing the data and revising the manuscript. All authors read and approved the final manuscript.

Funding
Funding was provided through NSERC Discovery grants and Microsoft AI for Health (HJ). Funding provided no role in the 
design of the study.

Availability of data and materials
The source code and datasets generated and/or analysed during the current study are available at the Zenodo image: 
https://​doi.​org/​10.​5281/​zenodo.​57947​19.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science, University of Victoria, Victoria, Canada. 2 Institute on Aging and Lifelong Health, 
University of Victoria, Victoria, Canada. 

Received: 8 July 2021   Accepted: 5 April 2022

References
	1.	 Cruz JA, Westhof E. The dynamic landscapes of RNA architecture. Cell. 2009;136:604–9. https://​doi.​org/​10.​1016/j.​cell.​

2009.​02.​003.
	2.	 Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene. 2005;361:13–37. 

https://​doi.​org/​10.​1016/j.​gene.​2005.​06.​037.

https://doi.org/10.1186/s12859-022-04673-3
https://doi.org/10.5281/zenodo.5794719
https://doi.org/10.1016/j.cell.2009.02.003
https://doi.org/10.1016/j.cell.2009.02.003
https://doi.org/10.1016/j.gene.2005.06.037


Page 26 of 28Gray et al. BMC Bioinformatics          (2022) 23:159 

	3.	 Mortimer SA, Kidwell MA, Doudna JA. Insights into RNA structure and function from genome-wide studies. Nat Rev 
Genet. 2014;15:469–79. https://​doi.​org/​10.​1038/​nrg36​81.

	4.	 Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci. 2010;35:169–78. 
https://​doi.​org/​10.​1016/j.​tibs.​2009.​10.​004.

	5.	 Wilson TJ, Lilley DMJ. RNA catalysis-is that it? RNA. 2015;21:534–7. https://​doi.​org/​10.​1261/​rna.​049874.​115.
	6.	 Holt CE, Bullock SL. Subcellular mRNA localization in animal cells and why it matters. Science. 2013;326:1212–6. 

https://​doi.​org/​10.​1126/​scien​ce.​11764​88.
	7.	 Martin KC, Ephrussi A. mRNA localization: gene expression in the spatial dimension. Cell. 2009;136:719–30. https://​

doi.​org/​10.​1016/j.​cell.​2009.​01.​044.
	8.	 Kirby DA, Muse SV, Stephan W. Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl Acad 

Sci USA. 1995;92:9047–51. https://​doi.​org/​10.​1073/​pnas.​92.​20.​9047.
	9.	 Wilke CO, Lenski RE, Adami C. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary 

structure folding. BMC Evol Biol. 2003;3:1–4. https://​doi.​org/​10.​1186/​1471-​2148-3-3.
	10.	 Gutell RR, Lee JC, Cannone JJ. The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol. 

2002;12(3):301–10. https://​doi.​org/​10.​1016/​S0959-​440X(02)​00339-1.
	11.	 Mathews DH, Turner DH. Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol. 

2006;16(3):270–8. https://​doi.​org/​10.​1016/j.​sbi.​2006.​05.​010.
	12.	 Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R. LocARNA-P: Accurate boundary prediction and improved detec-

tion of structural RNAs. RNA. 2012;18:900–14. https://​doi.​org/​10.​1261/​rna.​029041.​111.
	13.	 Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R. Inferring non-coding RNA families and classes by means of 

genome-scale structure-based clustering. PLOS Comput Biol. 2007;3:900–14. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​
00300​65.

	14.	 Raden M, Ali SM, Alkhnbashi OS, Busch A, Costa F, Davis JA, Eggenhofer F, Gelhausen R, Georg J, Heyne S, Hiller M, 
Kundu K, Kleinkauf R, Lott SC, Mohamed MM, Mattheis A, Miladi M, Richter AS, Will S, Wolff J, Wright PR, Backofen R. 
Freiburg RNA tools: a central online resource for RNA-focused research and teaching. Nucleic Acids Res. 2018;46:25–
9. https://​doi.​org/​10.​1093/​nar/​gky329.

	15.	 Sundfield D, Havgaard JH, de Melo ACMA, Gorodkin J. Foldalign 2.5: multithreaded implementation for pairwise 
structural RNA alignment. Bioinformatics. 2016;32:1238–40. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv748.

	16.	 Tabei Y, Kiryu H, kin T, Asai K. A fast structural multiple alignment method for long RNA sequences. BMC Bioinform. 
2008;9:3218–24. https://​doi.​org/​10.​1186/​1471-​2105-9-​33.

	17.	 Sato K, Kato Y, Akutsu T, Asai K, Sakakibara Y. DAFS: simultaneous aligning and folding of RNA sequences via dual 
decomposition. Bioinformatics. 2012;28:3218–24. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts612.

	18.	 Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF. RNAalifold: improved consensus structure prediction for RNA 
alignments. BMC Bioinform. 2008;9:1–13. https://​doi.​org/​10.​1186/​1471-​2105-9-​474.

	19.	 Witwer C, Hofacker IL, Stadler PF. Prediction of consensus RNA secondary structures including pseudoknots. IEEE/
ACM Trans Comput Biol Bioinf. 2004;1(2):66–77. https://​doi.​org/​10.​1109/​TCBB.​2004.​22.

	20.	 Rivas E. RNA structure prediction using positive and negative evolutionary information. PLOS Comput Biol. 
2020;16(10):1–25. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10083​87.

	21.	 Xu Z, Matthews DH. Multilign: an algorithm to predict secondary structures conserved in multiple RNA sequences. 
Bioinformatics. 2011;27:626–32. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btq726.

	22.	 Puton T, Kozlowski LP, Rother KM, Bujnicki JM. CompaRNA: a server for continuous benchmarking of automated 
methods for RNA secondary structure prediction. Nucleic Acids Res. 2013;41(7):4307–23. https://​doi.​org/​10.​1093/​
nar/​gkt101.

	23.	 Hamada M, Sato K, Asai K. Improving the accuracy of predicting secondary structure for aligned RNA sequences. 
Nucleic Acids Res. 2011;39(2):393–402. https://​doi.​org/​10.​1093/​nar/​gkq792.

	24.	 Jabbari H, Wark I, Montemagno C, Will S. Knotty: efficient and accurate prediction of complex RNA pseudoknot 
structures. Bioinformatics. 2018;34:3849–56. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty420.

	25.	 Jabbari H, Condon A. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary struc-
tures. BMC Bioinform. 2014;15:1–17. https://​doi.​org/​10.​1186/​1471-​2105-​15-​147.

	26.	 Rivas E, Eddy SR. A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol. 
1999;285:2053–68. https://​doi.​org/​10.​1006/​jmbi.​1998.​2436.

	27.	 Gruber A, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:70–4. 
https://​doi.​org/​10.​1093/​nar/​gkn188.

	28.	 Andronescu M. Algorithms for predicting the secondary structure of pairs and combinatorial sets of nucleic acid 
strands. University of British Columbia 2003; https://​doi.​org/​10.​14288/1.​00512​69.

	29.	 Reuter J, Matthews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinform. 
2010;11:1–9. https://​doi.​org/​10.​1186/​1471-​2105-​11-​129.

	30.	 Akutsu T. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discret 
Appl Math. 2000;104(1):45–62. https://​doi.​org/​10.​1016/​S0166-​218X(00)​00186-4.

	31.	 Lyngsø RB, Pedersen CN. RNA pseudoknot prediction in energy-based models. J Comput Biol. 2000;7:409–27. 
https://​doi.​org/​10.​1089/​10665​27007​50050​862.

	32.	 Sheikh S, Backofen R, Ponty Y. Impact of the energy model on the complexity of RNA folding with pseudoknots. In: 
Combinatorial Pattern Matching, pp. 321–333. Springer, Berlin, 2012. https://​doi.​org/​10.​1007/​978-3-​642-​31265-6_​26.

	33.	 Uroda T, Anastasakou E, Rossi A, Inga A, Chillón I, Marcia M. Conserved pseudoknots in lncRNA MEG3 are essential 
for stimulation of the p53 pathway. Mol Cell. 2019;75:982–95. https://​doi.​org/​10.​1016/j.​molcel.​2019.​07.​025.

	34.	 Staple DW, Butcher SE. Pseudoknots: RNA structures with diverse functions. PLOS Biol. 2005;3:213. https://​doi.​org/​10.​
1371/​journ​al.​pbio.​00302​13.

	35.	 Backofen R, Tsur D, Zakov S, Ziv-Ukelson M. Sparse RNA folding: time and space efficient algorithms. J Discrete 
Algorithms. 2011;12:12–31. https://​doi.​org/​10.​1016/j.​jda.​2010.​09.​001.

	36.	 Jabbari H, Wark I, Montemagno C. RNA secondary structure prediction with pseudoknots: contribution of algorithm 
versus energy model. PLOS ONE. 2018;13:0194583. https://​doi.​org/​10.​1371/​journ​al.​pone.​01945​83.

https://doi.org/10.1038/nrg3681
https://doi.org/10.1016/j.tibs.2009.10.004
https://doi.org/10.1261/rna.049874.115
https://doi.org/10.1126/science.1176488
https://doi.org/10.1016/j.cell.2009.01.044
https://doi.org/10.1016/j.cell.2009.01.044
https://doi.org/10.1073/pnas.92.20.9047
https://doi.org/10.1186/1471-2148-3-3
https://doi.org/10.1016/S0959-440X(02)00339-1
https://doi.org/10.1016/j.sbi.2006.05.010
https://doi.org/10.1261/rna.029041.111
https://doi.org/10.1371/journal.pcbi.0030065
https://doi.org/10.1371/journal.pcbi.0030065
https://doi.org/10.1093/nar/gky329
https://doi.org/10.1093/bioinformatics/btv748
https://doi.org/10.1186/1471-2105-9-33
https://doi.org/10.1093/bioinformatics/bts612
https://doi.org/10.1186/1471-2105-9-474
https://doi.org/10.1109/TCBB.2004.22
https://doi.org/10.1371/journal.pcbi.1008387
https://doi.org/10.1093/bioinformatics/btq726
https://doi.org/10.1093/nar/gkt101
https://doi.org/10.1093/nar/gkt101
https://doi.org/10.1093/nar/gkq792
https://doi.org/10.1093/bioinformatics/bty420
https://doi.org/10.1186/1471-2105-15-147
https://doi.org/10.1006/jmbi.1998.2436
https://doi.org/10.1093/nar/gkn188
https://doi.org/10.14288/1.0051269
https://doi.org/10.1186/1471-2105-11-129
https://doi.org/10.1016/S0166-218X(00)00186-4
https://doi.org/10.1089/106652700750050862
https://doi.org/10.1007/978-3-642-31265-6_26
https://doi.org/10.1016/j.molcel.2019.07.025
https://doi.org/10.1371/journal.pbio.0030213
https://doi.org/10.1371/journal.pbio.0030213
https://doi.org/10.1016/j.jda.2010.09.001
https://doi.org/10.1371/journal.pone.0194583


Page 27 of 28Gray et al. BMC Bioinformatics          (2022) 23:159 	

	37.	 Hajden C, Bellaousov S, Huggins W, Leonard CW, Mathews DH, Weeks KM. Accurate shape-directed RNA secondary 
structure modeling, including pseudoknots. Proc Natl Acad Sci USA. 2013;110:5498–503. https://​doi.​org/​10.​1073/​
pnas.​12199​88110.

	38.	 Matthews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. Incorporating chemical modification con-
straints into a dynamic programming algorithm for prediction of RNA secondary structure. PNAS. 2004;101:7287–92. 
https://​doi.​org/​10.​1073/​pnas.​04017​99101.

	39.	 Melchers WJ, Hoenderop JG, Slot HJB, Pleij CW, Pilipenko EV, Agol VI, Galama JM. Kissing of the two predominant 
hairpin loops in the coxsackie B virus 3’ untranslated region is the essential structural feature of the origin of replica-
tion required for negative-strand RNA synthesis. J Virol. 1997;71:686–96. https://​doi.​org/​10.​1128/​JVI.​71.1.​686-​696.​
1997.

	40.	 Alam SL, Atkins JF, Gesteland RF. Programmed ribosomal frameshifting: much ado about knotting! PNAS. 
1999;96:14177–9. https://​doi.​org/​10.​1073/​pnas.​96.​25.​14177.

	41.	 Andronescu MS, Pop C, Condon AE. Improved free energy parameters for RNA pseudoknotted secondary structure 
prediction. RNA. 2010;16:26–42. https://​doi.​org/​10.​1261/​rna.​16899​10.

	42.	 Pocock A, Brown G, Zhao M, Lujan M. Conditional likelihood maximisation: a unifying framework for information 
theoretic feature selection. J Mach Learn Res. 2012;13(1):27–66. https://​doi.​org/​10.​5555/​25033​08.​21883​87.

	43.	 Dunn SD, Wahl LM, Gloor GB. Mutual information without the influence of phylogeny or entropy dramatically 
improves residue contact prediction. BMC Bioinform. 2008;24:333–40. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
btm604.

	44.	 Lindgreen S, Gardner PP, Krogh A. Measuring covariation in RNA alignments: physical realism improves information 
measures. BMC Bioinform. 2006;22:2988–95. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btl514.

	45.	 Danaee P, Rouches M, Wiley M, Deng D, Huang L, Hendrix D. bpRNA: large-scale automated annotation and analysis 
of RNA secondary structure. Nucleic Acids Res. 2018;46:5381–94. https://​doi.​org/​10.​1093/​nar/​gky285.

	46.	 Groebe DR, Uhlenbeck OC. Characterization of RNA hairpin loop stability. Nucleic Acids Res. 1988;16:11725–35. 
https://​doi.​org/​10.​1093/​nar/​16.​24.​11725.

	47.	 Jabbari H, Condon A, Pop A, Zhao Y. HFold: RNA Pseudoknotted Secondary Structure Prediction Using Hierarchical 
Folding. In: Algorithms in Bioinformatics, pp. 323–334. Springer, Berlin, 2007. https://​doi.​org/​10.​1007/​978-3-​540-​
74126-8_​30.

	48.	 Witwer C, Hofacker I, Stadler P. Prediction of consensus RNA secondary structures including pseudoknots. IEEE/ACM 
Trans Comput Biol Bioinform. 2004;1:66–77. https://​doi.​org/​10.​1109/​TCBB.​2004.​22.

	49.	 Rivas E, Clements J, Eddy SR. A statistical test for conserved RNA structure shows lack of evidence for structure in 
lncRNAs. Nat Methods. 2017;14:45–8. https://​doi.​org/​10.​1038/​nmeth.​4066.

	50.	 Rivas E, Clements J, Eddy SR. Estimating the power of sequence covariation for detecting conserved RNA structure. 
Bioinformatics. 2020;36:3072–6. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa0​80.

	51.	 Rivas E, Lang R, Eddy SR. A range of complex probabilistic models for RNA secondary structure prediction that 
includes the nearest-neighbor model and more. RNA. 2012;18:193–212. https://​doi.​org/​10.​1261/​rna.​030049.​111.

	52.	 Knudsen B, Hein J. RNA secondary structure prediction using stochastic context-free grammars and evolutionary 
history. Bioinformatics. 1999;15:446–54. https://​doi.​org/​10.​1093/​bioin​forma​tics/​15.6.​446.

	53.	 Dowell RD, Eddy SR. Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure 
prediction. BMC Bioinform. 2004;5:1–14. https://​doi.​org/​10.​1186/​1471-​2105-5-​71.

	54.	 Sloma MF, Mathews DH. Exact calculation of loop formation probability identifies folding motifs in RNA secondary 
structures. RNA. 2016;22:1808–18. https://​doi.​org/​10.​1261/​rna.​053694.​115.

	55.	 Huang L, Zhang H, Deng D, Zhao K, Liu K, Hendrix DA, Mathews DH. Linearfold: linear-time approximate RNA fold-
ing by 5’-to-3’ dynamic programming and beam search. Bioinformatics. 2019;35:295–304. https://​doi.​org/​10.​1093/​
bioin​forma​tics/​btz375.

	56.	 Kalvari I, Nawrocki EP, Ontiveros-Palacios N, Argasinska J, Lamkiewicz K, Marz M, Griffiths-Jones S, Toffano-Nioche C, 
Gautheret D, Weinberg Z, Rivas E, Eddy SR, Finn RD, Bateman A, Petrov AI. Rfam 14: expanded coverage of metagen-
omic, viral and microRNA families. Nucleic Acids Res. 2021;49:192–200. https://​doi.​org/​10.​1093/​nar/​gkaa1​047.

	57.	 Pak D, Root-Bernstein R, Burton ZF. tRNA structure and evolution and standardization to the three nucleotide 
genetic code. Transcription. 2017;8(4):205–19. https://​doi.​org/​10.​1080/​21541​264.​2017.​13188​11.

	58.	 de Lencastre A, Pyle AM. Three essential and conserved regions of the group II intron are proximal to the 5‘-splice 
site. RNA. 2008;14:11–24. https://​doi.​org/​10.​1261/​rna.​774008.

	59.	 Nawrocki EP, Jones TA, Eddy SR. Group I introns are widespread in archaea. Nucleic Acids Res. 2018;46(15):7970–6. 
https://​doi.​org/​10.​1093/​nar/​gky414.

	60.	 Wright ES. RNAconTest: comparing tools for non-coding RNA multiple sequence alignment based on structural 
consistency. RNA. 2020;26:531–40. https://​doi.​org/​10.​1261/​rna.​073015.​119.

	61.	 Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioin-
form. 2004;5:113. https://​doi.​org/​10.​1186/​1471-​2105-5-​113.

	62.	 Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and 
usability. Mol Biol Evol. 2013;30:772–80. https://​doi.​org/​10.​1093/​molbev/​mst010.

	63.	 Hajiaghayi M, Condon A, Hoos HH. Analysis of energy-based algorithms for RNA secondary structure prediction. 
BMC Bioinform. 2012;13:1–11. https://​doi.​org/​10.​1186/​1471-​2105-​13-​22.

	64.	 Rivas E. Evolutionary conservation of RNA sequence and structure. WIREs RNA. 2021;12:1649. https://​doi.​org/​10.​
1002/​wrna.​1649.

	65.	 Darty K, Denise A, Ponty Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics. 
2009;25:1974–5. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btp250.

	66.	 Vierna J, Wehner S, zu Siederdissen CH, Martínez-Lage A, Marz M. Systematic analysis and evolution of 5S ribosomal 
DNA in metazoans. Heredity. 2013;111:410–21. https://​doi.​org/​10.​1093/​10.​1038/​hdy.​2013.​63.

	67.	 Martinez-Porchas M, Villalpando-Canchola E, Suarez LEO, Vargas-Albores F. How conserved are the conserved 
16S-rRNA regions? Heredity. 2017;5:3036. https://​doi.​org/​10.​1093/​10.​7717/​peerj.​3036.

https://doi.org/10.1073/pnas.1219988110
https://doi.org/10.1073/pnas.1219988110
https://doi.org/10.1073/pnas.0401799101
https://doi.org/10.1128/JVI.71.1.686-696.1997
https://doi.org/10.1128/JVI.71.1.686-696.1997
https://doi.org/10.1073/pnas.96.25.14177
https://doi.org/10.1261/rna.1689910
https://doi.org/10.5555/2503308.2188387
https://doi.org/10.1093/bioinformatics/btm604
https://doi.org/10.1093/bioinformatics/btm604
https://doi.org/10.1093/bioinformatics/btl514
https://doi.org/10.1093/nar/gky285
https://doi.org/10.1093/nar/16.24.11725
https://doi.org/10.1007/978-3-540-74126-8_30
https://doi.org/10.1007/978-3-540-74126-8_30
https://doi.org/10.1109/TCBB.2004.22
https://doi.org/10.1038/nmeth.4066
https://doi.org/10.1093/bioinformatics/btaa080
https://doi.org/10.1261/rna.030049.111
https://doi.org/10.1093/bioinformatics/15.6.446
https://doi.org/10.1186/1471-2105-5-71
https://doi.org/10.1261/rna.053694.115
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1093/nar/gkaa1047
https://doi.org/10.1080/21541264.2017.1318811
https://doi.org/10.1261/rna.774008
https://doi.org/10.1093/nar/gky414
https://doi.org/10.1261/rna.073015.119
https://doi.org/10.1186/1471-2105-5-113
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1186/1471-2105-13-22
https://doi.org/10.1002/wrna.1649
https://doi.org/10.1002/wrna.1649
https://doi.org/10.1093/bioinformatics/btp250
https://doi.org/10.1093/10.1038/hdy.2013.63
https://doi.org/10.1093/10.7717/peerj.3036


Page 28 of 28Gray et al. BMC Bioinformatics          (2022) 23:159 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	68.	 Peker N, Garcia-Croes S, Dijkhuizen B, Wiersma HH, van Zanten E, Wisselink G, Friedrich AW, Kooistra-Smid M, Sinha 
B, Rossen JWA, Couto N. A comparison of three different bioinformatics analyses of the 16S–23S rRNA encoding 
region for bacterial identification. Front Microbiol. 2019;10:620. https://​doi.​org/​10.​3389/​fmicb.​2019.​00620.

	69.	 Bernier CR, Petrov AS, Kovacs NA, Penev PI, Williams LD. Translation: the universal structural core of life. Mol Biol Evol. 
2018;1:2065–76. https://​doi.​org/​10.​1093/​molbev/​msy101.

	70.	 Haas ES, Brown JW. Evolutionary variation in bacterial RNase P RNAs. Nucleic Acids Res. 1998;26:4093–9. https://​doi.​
org/​10.​1146/​10.​1093/​nar/​26.​18.​4093.

	71.	 Andersen ES, Rosenblad MA, Larsen N, Westergaard JC, Burks J, Wower IK, Wower J, Gorodkin J, Samuelsson T, Zwieb 
C. The tmRDB and SRPDB resources. Nucleic Acids Res. 2006;34:163–8. https://​doi.​org/​10.​1093/​nar/​gkj142.

	72.	 Gunisova S, Elboher E, Nosek J, Gorkovoy V, Brown Y, Lucier J, Laterreur N, Wellinger RJ, Tzfati Y, Tomaska L. Identifica-
tion and comparative analysis of telomerase RNAs from Candida species reveal conservation of functional elements. 
RNA. 2009;15:546–59. https://​doi.​org/​10.​1261/​rna.​11940​09.

	73.	 Zwieb C, Wower I, Wower J. Comparative sequence analysis of tmRNA. Nucleic Acids Res. 1999;27:2063–71. https://​
doi.​org/​10.​1093/​nar/​27.​10.​2063.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3389/fmicb.2019.00620
https://doi.org/10.1093/molbev/msy101
https://doi.org/10.1146/10.1093/nar/26.18.4093
https://doi.org/10.1146/10.1093/nar/26.18.4093
https://doi.org/10.1093/nar/gkj142
https://doi.org/10.1261/rna.1194009
https://doi.org/10.1093/nar/27.10.2063
https://doi.org/10.1093/nar/27.10.2063

	KnotAli: informed energy minimization through the use of evolutionary information
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	RNA secondary structure
	Energy model
	Methods
	Mutual information
	Adjusted mutual information
	KnotAli algorithm
	RNAalifold
	Hxmatch
	Cacofold

	Experiment design
	Dataset
	RNA sequence aligners
	Accuracy measures
	Significance test
	Configuration

	Results
	 versus 
	Restricted unpaired bases
	Comparison with existing algorithms
	Varying sequence length in alignment
	Alignment quality effect in KnotAli versus Cacofold
	Accuracy measures

	Conclusion
	Acknowledgements
	References


