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Ultrasomics is the science of transforming digitally encrypted medical ultrasound images
that hold information related to tumor pathophysiology into mineable high-dimensional
data. Ultrasomics data have the potential to uncover disease characteristics that are
not found with the naked eye. The task of ultrasomics is to quantify the state of
diseases using distinctive imaging algorithms and thereby provide valuable information
for personalized medicine. Ultrasomics is a powerful tool in oncology but can also be
applied to other medical problems for which a disease is imaged. To date there is no
comprehensive review focusing on ultrasomics. Here, we describe how ultrasomics
works and its capability in diagnosing disease in different organs, including breast, liver,
and thyroid. Its pitfalls, challenges and opportunities are also discussed.
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INTRODUCTION

Ultrasomics is the science of transforming digitally encrypted medical images that hold information
related to tumor pathophysiology into mineable high-dimensional data (1, 2). The role of
ultrasomics is to quantify the diseases using distinctive imaging algorithms and thereby provide
valuable information for personalized medicine (3).

The Precision Medicine Initiative was launched in 2015 and studied the complex biological
behaviors of tumors and their interactions. This initiative uses a holistic approach to explain the
complexity of biological systems and starts with the recognition that the network that makes
up an entire organism is not just the sum of its parts (4). In situations where traditional “one-
on-one” diagnosis and treatment are unable to meet medical requirements, a multidisciplinary
comprehensive diagnosis method is needed for both doctors and patients. This approach
incorporates not only the relatively static genetic code but also the dynamic changes and
heterogeneous nature of tumors (5). Radiomics plays a key role in precision medicine. Ultrasomics
is a branch of radiomics that extracts vast arrays of quantitative features from ultrasound images
and integrates them with the clinical data of patients. It can obtain the texture, shape, intensity,
trends and wavelet features of a tumor, distinguish heterogeneity between tumors, and provide
a comprehensive quantitative tumor phenotype for doctors (6). The aim of ultrasomics is to
obtain the optimal efficacy and safety to ensure maximum quality of life and to avoid excessive
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and ineffective treatments (7). Ultrasomics does not aim to
replace existing clinical decision-making tools but to provide a
supplement to current measures by implementing a robust, low-
cost, repeatable, and highly effective approach to current clinical
practice (8).

BASIC TECHNIQUES OF ULTRASOMICS
ANALYSIS

Ultrasomics is defined as quantitative mapping, that is, extracting
medical imaging features related to predicted targets, analyzing
the information contained, and finally establishing a model. The
basic steps of ultrasomics include data acquisition, segmentation,
feature calculation, and modeling (Figure 1).

Data Acquisition
Ultrasomics usually begins with a prediction target — the event
a doctor wishes to predict. Building a successful model usually
relies on access to a large number of medical images and clinical
data to reveal correlations. Different data sources may have an
unexpected impact on the results, therefore, it is important to
use standardized imaging protocols to eliminate unnecessary
confounding variability (9).

Data, including images, may be retrospectively collected or
prospectively acquired, depending on the study design. The
greatest obstacle to the reliability and stability of ultrasomics is
the high variability of ultrasound images acquired by different
operators. Single-center data are usually best obtained by a
few radiologists with just a few machines, which guarantees
better image consistency. However, multicenter study represents
more authority and credibility as it requires a large number of
representative teams to jointly obtain relevant data sets. This
requires the participating hospitals to reach a clear agreements
and establishment of standardized operating standards, including
unifying the machine, frequency of the probe, gain of the
image, focus, depth, resolution and gray value, and unifying
whether to add blood flow, radiography, and patient posture (10).
Retrospective image acquisition currently lacks standardization,
and raw data are usually not available. Thus, reconstructed
images must be used. Conversely, when images are acquired
prospectively, an image acquisition standard suitable for
ultrasomics should be selected for analysis. Standards in this
situation are controllable and can maximize the information for
subsequent work (11).

Segmentation
Defining the region of interest (ROI) can be undertaken
by manual segmentation, semiautomatic segmentation and
automatic segmentation (12). Regardless of which method is
used, this step is time-consuming and challenging. On the one
hand, there is no gold standard for ROI segmentation, and it is
difficult to define the morphology, echogenicity and boundary
of a variable lesion. On the other hand, a consensus for image
standardization is difficult to reach for a diffuse disease or
multiple lesions.

Ultrasomics segmentation includes outlining 2-dimensional
(2D) ROIs and 3-dimensional (3D) volumes of interest (VOIs). In
most studies, experts isolate the object of interest with a manual
algorithm. Manual delineation has well-known limitations
regarding inter- and intraobserver variability and should be
performed by at least 2, and preferably more experts with
predefined protocol consensus. This process is undoubtedly
tedious, with inevitable variability. In recent years, deep learning
has given researchers automatic or semiautomatic segmentation,
which outperforms fixed thresholding, aiming to achieve higher
accuracy. The common segmentation algorithms include region-
growing, level setting, image cutting, active contour (snake)
algorithms, semiautomatic segmentation, and livewire methods.
However, since automatic segmentation techniques are in the
exploratory stage and require much debugging and revision,
their applications are still limited. Semiautomatic segmentation
is a perfect combination of manual control and intelligence.
Region-growing is one of the semiautomatic methods that was
often used to the segmentation in computer-aided system (CAD)
(13). The method is called “click and grow,” that is, putting the
seed points in the target area, then it will automatically grow
around and automatically stop at the edge of the lesions. The
seed point is generally selected in the center of the target tumor.
This segmentation method saves both time and effort, but when
the boundary of lesion appears to be unclear, the segmentation
results may not be ideal and may need to be modified by a
professional radiologist. Regardless of the segmentation method
that researchers use, the ultimate aim is based on the reliability
of the ROI result.

Feature Calculation
Ultrasomics features are automatically extracted by computer
algorithms from the sketched ROI. The characteristics mined
by different research institutes are different and have different
content. In general, the features are divided into four parts:
morphological features, first-order features, second-order
features, and higher-order features.

Morphological features include lesion volume, shape
(spherical, non-spherical, etc.), and boundary morphology
(flat, round, clear, sharp, fuzzy, amorphous, and unclear, etc.).
These features are acquired based purely on the experience of
radiologists, but despite this, they still offer many possibilities for
generating hypotheses.

The first-order features are the common statistical elements
(gray signal-strength value) obtained from the image, which
include the average pixel signal value, standard deviation,
skewness, and kurtosis. These features are represented by a single
value or frequency distribution histogram, which quantitatively
summarizes the signal intensity of the target area. Although they
have great appeal in ultrasomics due to their simplicity, these
features do not include spatial information.

Second-order features are usually described as texture
features, which include the gray intensity of adjacent pixels.
Second-order features suggest indicative information for cancer
judgment and are used to explain the internal heterogeneity
and complexity of the spatial distribution of the tumors.
Commonly used second-order statistical descriptors include
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FIGURE 1 | The workflow of ultrasomics. The workflow includes data acquisition, segmentation, feature extraction and calculation, feature transformation and
integration, modeling, and clinical application.

gray-level co-occurrence matrices (GLCMs) and gray-level run
length matrices (GLRLMs). In GLCMs, the frequencies adjacent
to (co-occurrence) pixels of the same signal strength are
provided as a matrix to describe the density of the signal
strength in a particular direction to reveal differences in regional
heterogeneity (14). In GLRLMs, the heterogeneity of signal
strength within the ROI can be determined by calculating
the frequency at which the nearest-neighbor pixels match in
intensity or the operating frequency with the same signal
strength (15).

Higher-order features include filters and higher-order
images to describe metrics. These features describe the local
spatial organization of signal-strength values by applying and
adjusting filters in multidimensional space. This represents
a quantitative approach. Higher-order feature elements are
usually obtained from gray values by the Fourier transform
(FT), which converts spatial information to the frequency
space and then reverses the conversion process back to the
spatial domain (16). Typical techniques include the discrete
orthonormal Stockwell transform (DOST), Gabor filter
banks, the wavelet transform (WT), the Riesz transform,
the Stockwell transform (ST), and the Laplacian of the
Gaussian (17).

Modeling
Model building for ultrasomics includes three main steps:
feature selection, modeling development, and validation.
Selecting the required indicators from infinite features and
avoiding overfitting should be the main focus. Ultrasomics
and non-ultrasomics features should be combined with the
prediction target to create a single dataset. This enables

the investigation of relationships between features. Feature
pruning is usually required, because computing a large
number of features from several matrices can result in
many redundant and/or highly correlated features, which
greatly increases the complexity of the problem without adding
useful information (18). Feature extraction is followed by
pruning, methods for which usually include (1) the wrapper
method, which scores features based on a performance
classification to reflect the usefulness of each feature; (2)
the filter method, which uses statistical methods to sort the
features and select the highest-ranking feature to determine
the intrinsic value of each feature; and (3) the embedded
method, which is similar to the wrapper method in some
aspects because characteristics are selected to optimize the
performance of the learning algorithm. However, unlike the
wrapper method, which uses the classification method as an
external black box to sort the features, variable selection in
the embedded method is an inherent part of the learning
algorithm itself.

Model development methods are usually based on the
skills and experience of the researcher, which has associated
limitations. When training the model, the training samples
with the corresponding clinical tags are paired with the
training model. Through a predefined loss function, the
relationships between the learning characteristics of the model
and the clinical label are found, and finally, the model with
good training results is selected for testing, this is called
supervised learning. In unsupervised learning, the training
model no longer needs clinical labeling, it divides similar
samples into a set of final generated models according
to the algorithm.
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Verification is a tool to evaluate whether a model is useful. This
research is considered successful only when both the internal and
external verification results are satisfactory.

With the application of a classifier, it is necessary to use
corresponding measures to evaluate the results as a way of
verifying the stability of the generated model. Therefore, the
measures below are considered for a confusion matrix of true
positives (TPs), true negatives (TNs), false positives (FPs), and
false negatives (FNs).

The performance of the model is evaluated by the following
formulas:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

F1−score = 2× precision ×
Sensitivity

precision + Sensitivity

Additionally, the area under the receiver operating characteristic
curve (AUROC) is commonly used to describe the overall
performance of a parameter. An AUROC value close to 1
represents an ideal value. A value less than 0.5 suggests that the
parameter does not have any classification ability.

APPLICATIONS OF ULTRASOMICS IN
PRECISION MEDICINE

The ultimate goal of ultrasomics is to assist radiologists in
diagnosing diseases. Currently, studies on ultrasomics cover
collecting imaging features, genetic features, and clinical features
for data mining analysis and performing tumor screening,
diagnosis, classification, and staging predictions. Ultrasomics
can also analyze the molecular and biological characteristics
of tumors, providing a scientific basis for targeted treatment
programs. Regarding follow-up information, ultrasomics analysis
on images before and after treatment can predict treatment
effects and patient survival, thus assisting in the development of
individualized and precise treatment plans. In this review, we
briefly introduce the applications of ultrasomics in the breast,
liver, and thyroid (Table 1).

Breast
Breast cancer is a major health problem in women. The
early detection and identification of breast tumors is of
great importance for improving quality of life. There are an
increasing number of reports on the application of ultrasomics
in breast diseases.

Screening, Diagnosis, Classification, and Staging
In traditional ultrasound diagnosis, images are purely used as
pictures for human visual interpretation. This process relies
heavily on the subjective scoring of images and the limited

sensitivity of the naked eye. It can only extract completely
macroscopic disease features and misses several pieces of
important microbiological information (19). Ultrasomics
extracts high-throughput information and performs quantitative
analysis with a CAD, which can objectively describe and explain
the features of tumors. At present, studies have combined
conventional 2D ultrasound images, shear-wave elastography
(SWE) images, strain elastography images, and contrast-
enhanced ultrasound (CEUS) images with radiomics to detect
and identify breast tumors (14, 20–22). These studies extracted
high-throughput features to quantify tumor shape, hardness,
and hardness heterogeneity to identify breast malignancies and
benign tumors. Moreover, these studies found that quantitative
ultrasound features were significantly associated with hormone
receptor status, molecular subtype and histologic grade in
breast invasive ductal carcinoma (IDC). Ultrasomics also makes
it possible to evaluate biological parameters by non-invasive
means (23–25). Moreover, in a study by Luo et al. 19 features
selected by Least absolute shrinkage and selection operator
(LASSO) were used to score the degree of malignancy of Breast
Imaging Reporting and Data System (BI-RADS) 4 and 5 breast
masses, and they obtained AUC values of 0.921 and 0.931 in
the training and validation groups, respectively (26). This study
showed the outstanding discriminative ability of ultrasomics
in grading the possibility of malignancy. Ultrasomics reflects
tissue structure and morphological features by quantitatively
analyzing the gray value of medical images and then extracting
the quantitative features with computer algorithms. This
approach can effectively avoid the subjective description of
radiologists and the large variability between observers (20,
27). Ultrasomics clarifies the correlation between the malignant
potential of masses and image features and shows good prospects
for tumor diagnosis.

Individualized Treatment and Survival Prediction
The core task of precision medicine is to identify patient
phenotypes (disease, treatment response, adverse side effects, and
survival prediction) to find individualized treatment options.
Cancer cells exhibit a high degree of heterogeneity, even in
different regions of the same tumor, different metastatic sites
in the same patient, or the same type of tumor among different
patients. This high degree of genetic variation explains the
failure of targeted therapies and allows the emergence and
proliferation of resistant clones (28). In this case, techniques
for quantifying intra- and intertumor heterogeneity are
critical because they may guide adaptive treatment (29).
Lee et al. performed ultrasomics scoring on 901 lesions
and ultimately obtained a model for distinguishing triple-
negative breast cancer (TNBC) from breast fibroadenomas
(30). Texture features were extracted using the GLCM
and GLRLM in this study, they found that both tumor
grade and receptor status had an impact on ultrasound
performance. Tumors with ER+, her 2− are associated with
irregular shapes, unbounded edges, or complex echo patterns,
and rear shadowing. This may be caused by the relatively
slow proliferation rate of cells, the long-term interaction
between a tumor and host, and hyperplasia of the fibrous
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TABLE 1 | Summary of ultrasomics studies in oncology.

Stydies Study design Cancer No. of
patients

Modality Features Feature
classifier

Type of features Statistical
analysis

Endpoint Result

Zhao et al. (37) Retrospective
Single center

Liver 177 BMUS/SWE
/SWV

2560 SRT/SVM GM/GEM/GEVM Mann–
Whitney U
test

prognosis
and
diagnosis

AUC: 0.94 (benign/malignant) AUC:
0.97 (malignant subtyping) AUC:
0.97 (PD-1 prediction) AUC: 0.94
(Ki-67 prediction) AUC: 0.98 (MVI
prediction)

Zhou et al. (20) Retrospective
Single center

Breast 205 SWE 4224 CNN — — Diagnosis Accuracy: 95.8% Sensitivity: 96.2%
Specificity: 95.7%

Li et al. (21) Retrospective
Single center

Breast 178 BMUS/SWE/
CEUS

1226 SVM Intensity/Texture/
Contourlet/Shape/Perfusion

Holdout
test

Diagnosis Accuracy: 84.12% Sensitivity:
92.86% Specificity:78.80% AUC:
0.919

Luo et al. (26) Retrospective
Single center

Breast 315 BMUS 1044 LASSO Histogram/Texture/
RLM/Form factor

Multivariate
regression
analysis

Diagnosis AUC: 0.928

Lee et al. (30) Retrospective
Single center

Breast 901 BMUS 730 LASSO Intensity/Texture/ Wavelet — Diagnosis AUC: 0.782

Zhang et al. (14) Retrospective
Single center

Breast 117 Sonoelastography364 clusters
derived

Shape/intensity/
GLCM/contourlet

Clusters
derived/SVM

Diagnosis AUC: 0.97 Accuracy: 88.0%
Sensitivity: 85.7% Specificity:
89.3%

Qiu et al. (31) Retrospective
Single center

Lymph
node

256 BMUS 843 LASSO and
ridge
regression

Shape/firstorder GLCM/gray-level size
zone matrix/gray-level distance zone
matrix/neighborhood gray-tone
difference matrix/gray-level run length
matrix

Elastic net
logistic
regression

Diagnosis AUC: 0.816

Li et al. (33) Prospective
Single center

Liver 144 BMUS/CEMF 472 Spearman’s
correlation
coefficient

Conventional radiomics/ORF/CEMF
features

— Diagnosis Mean AUC: 0.78–0.85 (the
multiparametric ultrasomics model)

Wang et al. (34) Prospective
Multicentre

Liver 654 SWE — CNN — Student’s t
test/Mann–
Whitney U
test

Prognosis AUC: 0.97 (F4) AUC: 0.98 (F3)
AUC: 0.85 (F2)

Hu et al. (38) Retrospective
Multicentre

Liver 482 CEUS 1044 LASSO — LASSO Prognosis AUC: 0.731 p = 0.015

Liang et al. (39) Retrospective
Multicentre

Thyroid 137 BMUS 1044 LASSO — Univariate
logistic
regression

Diagnosis AUC: 0.921 (training cohort) AUC:
0.931 (validation cohort)

Liu et al. (40) Retrospective
Single center

Lymph
node

1216 BMUS 614 combined
feature
selection
strategy

Echo/posterior acoustic/calcification — Prognosis AUC: 0.782

Park et al. (41) Retrospective
Single center

Thyroid 768 BMUS 730 LASSO — LASSO/Cox
regression

Prognosis C-index: 0.777; 95%[CI]: 0.735,
0.829

Liu et al. (42) Retrospective
Single center

Lymph
node

75 BMUS/SE-
US

684 SVM — Delong’s
test

Prognosis AUC: 0.90 Accuracy: 0.85
Sensitivity: 0.77 Specificity: 0.88

The design of the studies, category of tumors, number of patients, number of features, type of features, mode build method, endpoint, diagnostic modality, and results of the studies were considered. The name of
the first author and the reference number are indicated in the first column. BMUS, B-mode ultrasound; SWE, shear wave elastography; SWV, shear wave viscosity; CEUS, contrast-enhanced ultrasound; SE-US, strain
ultrasound elastography; GM, the gray-scale modality; GEM, the gray-scale and elastography modality; GEVM, gray-scale, elastography and viscosity modality; SVM, support vector machine; LASSO, least absolute
shrinkage and selection operator; RLM, gray level run-length matrix; CEMF, contrast-enhanced micro-flow; ORF, original radiofrequency; CEMF, contrast-enhanced micro-flow; and SRT, sparse representation theory.
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tissue around the lesion, which results in uneven borders,
burrs or leaves. Interstitial response and connective tissue
hyperplasia cause different acoustic impedance differences,
acoustic reflections, and echo attenuation behind the mass.
However, TNBC tends to have oval or round shapes and
circumscribed margins, reflecting a rapidly proliferating tumor
prior to significant stromal reaction. It is also more likely
to present with posterior acoustic enhancement since highly
cellular circumscribed carcinomas tend to have enhanced
through-transmission. This benign-looking might decrease
the diagnostic efficacy of ultrasound and delay treatment.
Radiomics based on texture analysis shows excellent diagnostic
performance in the differential diagnosis of fibroadenoma
and TNBC where it is indiscernible with the naked eye.
Theoretically, ultrasound images may contain hidden
information that can be difficult for radiologists to mine
(29). Ultrasomics can find heterogeneities within a region from
indistinguishable imaging data.

Sentinel lymph nodes are an important factor for the
prognosis of breast cancer patients. The precise and non-
invasive prediction of axillary lymph nodes before surgery
is of great significance for staging, treatment and prognosis.
Qiu X et al. combined ultrasomics with features of axillary
lymph nodes on B-mode ultrasound images and found that
a radiomics model with LASSO and ridge regression methods
was able to predict axillary lymph node metastasis by using
ultrasound features of primary breast tumors (31). This
strategy might be an effective alternative to early screening
for lymph node metastasis in clinically lymph node–negative
breast cancer. It also showed the great potential to serve as
an important decision support tool in clinical practice. It is
expected to reduce the axillary lymph node dissection and
sentinel lymph node biopsy and the corresponding postoperative
complications accordingly.

Liver
Screening, Diagnosis, Classification, and Staging
Hepatitis B virus (HBV) infection is a serious problem around the
world. Liver fibrosis, cirrhosis, and liver cancer are progressive
diseases of chronic hepatitis B (CHB). An accurate assessment
of liver status is essential for the prognosis, monitoring and
management of CHB patients. D Souza et al. studied the
B-mode ultrasound features of the liver in a rat model to
assess liver fibrosis (32). The computer algorithm extracted
quantitative parameters representing brightness (echo intensity
and liver and kidney index) and variance (heterogeneity) to
study the anisotropy of the liver. The echo intensity of DEN
rats increased from 37.1 ± 7.8 to 53.5 ± 5.7∼57.5 ± 6.1,
compared with an average of 34.5 ± 4.5 in the control
group. Histological analysis revealed that fibrosis fractionation
with METAVIR scores F2-F4 and specifically F0-F1 in DEN
rats increased the imaging parameters. Wang et al. and Li
et al. applied this technique in clinical practice. Li et al.
acquired ultrasound radio frequency signals and dynamic
perfusion information to construct an ultrasomics model,
and they derived an optimal algorithm for assessing liver

fibrosis in a small sample (33). Wang et al. suggested
that deep learning radiomics of elastography (DLRE) could
be successfully used to assess the liver fibrosis stage of
patients with CHB and was comparable to the current
grading criteria for cirrhosis and advanced fibrosis. The
diagnostic accuracy of the model was higher than that of
2D-SWE for overcoming the influence of inflammation on
cirrhosis assessments (34). Therefore, ultrasomics is a potential
breakthrough in image diagnosis.

Individualized Treatment and Survival Prediction
Ultrasomics applies the identification, analysis, and integration
of ultrasound images to reach a better solution for patients. The
main factors in the recurrence of liver cancer are microvascular
infiltration (MVI) and Ki-67 (35). MVI is a common predictor
of the prognosis for patients with liver cancer. MVI is highly
correlated with early recurrence and greatly influences treatment
(liver resection or orthotopic liver transplant) (36). Yao et al.
classified images by transforming them into high-throughput
features, analyzed multiple parameters in the treatment area and
used sparse representation theory (SRT), and support vector
machine (SVM) methods to mine rich texture information.
The authors found that malignant tumors had more complex
textures and structural information than benign tumors. Their
results indicated that predicting MVI (AUC = 0.98), Ki-67
(AUC = 0.94), and PD-1 (AUC = 0.97) with a non-invasive
method based on radiomics is feasible (37). This finding
showed that ultrasomics could improve the diagnostic efficiency
of ultrasound and made it possible to diagnose FLL before
operation. Additionally, ultrasomics can explain the biological
behavior of tumors and improve the diagnostic efficacy and
patient prognosis (38).

Thyroid
Screening, Diagnosis, Classification, and Staging
Thyroid disease has received widespread attention due to its high
incidence. The Thyroid Imaging-Reporting and Data System
(TI-RADS) is widely used to describe thyroid lesions and
is unavoidably subjective. In a study, Liang et al. developed
an ultrasomics model to diagnose malignant thyroid nodules.
They performed LASSO to select features and found that
ultrasomics could outperform ACR TI-RADS scoring, at least
when performed by junior radiologists (39). In addition, the
application of texture analysis and machine learning in thyroid
nodule imaging can describe thyroid nodules better and more
objectively. Liu et al. obtained predictive models though a SVM
classifier from more than 50 traits of thyroid tumors, such
as the volume, echo, margin, boundaries, posterior acoustic
pattern, and calcification features. They obtained satisfactory
results in predicting which thyroid nodules would develop
lymph node metastasis (40). Lymph node metastasis is more
likely to occur in patients with complex echoes in ultrasound
images, uniform posterior regions, large calcifications or multiple
calcifications (41). Clinically, the lymph nodes suspected
malignant are re-examined by CT, fine needle aspiration
cytology, or lymph node dissection (LND). LND has the

Frontiers in Oncology | www.frontiersin.org 6 September 2020 | Volume 10 | Article 1736

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01736 September 1, 2020 Time: 19:19 # 7

Yin et al. Ultrasomics in Precision Medicine

risk of hyperparathyroidism and nerve injury. In addition,
whether LND can improve the survival rate of PTC patients is still
controversial, so full consideration must be given before it is used
in patients. The radiomics evaluation has potential to predict LN
status non-invasively based on preoperative ultrasound thyroid
images. It made up for the shortcomings of traditional diagnosis.
The lymph node status prediction model has the potential to
promote early medical management for thyroid cancer patients
and reduce overdiagnosis.

Individualized Treatment and Survival Prediction
Recurrence and metastasis are the key points during the
treatment of cancer and are closely related to the survival time
of patients. Long-term follow-up assessments are indispensable
after tumor treatment. The most important part of this
process is to determine whether there are any recurrences or
residual lesions. Liu et al. combined the features extracted from
B-mode ultrasound and strain ultrasound elastography (SE-
US), and multimodal feature sets were obtained through image
segmentation, quantitative feature extraction, feature selection
and classification. This study used the sparse representation
coefficient-based feature selection method with 10 bootstraps
to reduce the dimensionality of the feature sets. A SVM with
leave-one-out cross-validation was used to build the model
to estimate LN status. The model had the best ability to
diagnose lymph node metastases (42). Furthermore, ultrasomics
could not only characterize the properties of thyroid nodules
but also assess the disease-free survival of thyroid nodule
patients. This is the first application of ultrasomics to predict
the prognosis of thyroid cancer. The authors used relapsed
or persistent disease-free survival as the study endpoint
rather than mortality, demonstrating the great potential of
ultrasomics (41).

CHALLENGES

First and foremost, the greatest problem with ultrasomics is the
quality and quantity of the original data. A successful ultrasomics
model needs a sufficient quantity of data to develop an effective
knowledge system to support data integration, processing, and
analysis, which is critical for research to be optimal. Currently,
ultrasomics usually use a smaller population to extract more
features, which may lead to overfitting and overoptimistic
results. There are numerous methods for extracting useful
biomarkers from separate or combined layers of ultrasomics
and clinical data, but the results are still unsatisfactory.
Second, ultrasound examinations are less reproducible than other
imaging methods. Additionally, the device and experience of
the radiologist have a great impact on the reliability of the
diagnosis (43). Therefore, the inclusion and exclusion criteria

for ultrasomics should be rigorously developed. Recently, the
image biomarker standardization initiative (IBSI) was proposed
to improve the reproducibility of high-throughput imaging
analysis, which is a valuable step in improving radiological
research. In addition, a radiomics quality score (RQS) was
proposed to help evaluate radiomics studies (44). Moreover,
most of the published ultrasomics studies are from a single
center, with different patient numbers, different ultrasound
equipment, and different study design methods. The differences
in each step of the study design pose greater challenges to the
repeatability of the study.

CONCLUSION AND PERSPECTIVES

Although many problems still need to be solved, the potential
of ultrasomics is beyond doubt, and the field is evolving
rapidly. The development of ultrasomics has occurred over
only a few decades, and some impressive results have been
achieved. This approach fills the gap in the clinical use of
information and extracts and analyzes higher-dimensional and
quantitative data to more accurately and more specifically
describe and characterize tumors. The use of ultrasomics
to improve disease diagnosis and care for patients shows
great potential (45). In the future, we hope that ultrasomics
will provide a more personalized, higher-quality, and more
cost-effective care platform for patients. The advantages of
ultrasomics, including its speed, low cost, reproducibility, and
non-invasiveness, may make it a valuable clinical decision-
making tool.
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