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Abstract:

Background:

Recent  studies  have  shown  that  there  is  an  increased  risk  of  Epithelial  Ovarian  Cancer  (EOC)  with  Organochlorine  Pesticides
(OCPs). However, the alteration in the gene expression profile has not been explored so far. The goal of the present study is to
understand the probable molecular mechanism of OCPs toxicity towards discovery of dysregulation of signaling pathway associated
with differential  gene expression and candidate transcriptomic set  of  markers  in the pathophysiology of  EOC in OCPs exposed
population.

Methods:

The  OCP levels  were  estimated  by  gas  chromatography  and  whole  genome differential  expression  study  was  carried  out  using
expression microarray and candidate genes were validated using Real time RT-PCR.

Results:

Significant  level  of  OCP  residues  such  as  β-hexachlorocyclohexane  (β-HCH),  Heptachlor,  Heptachlor  epoxide  B  (HTEB),
dichlorodiphenyldichloroethylene (p’p’-DDE) and endosulfan-I was found between healthy and EOC patients. The transcriptome
profile of several genes revealed regulation of various important cellular processes such as metabolism, inflammation, cytoskeleton
dysregulation of TGF and WNT pathway in EOC cases with high OCPs.

Conclusion:

This study provides the first evidence showing that differentially expressed genes and dysregulation of signaling pathways might be
associated  with  significant  level  of  OCPs  exposure  in  ovary  tissue  of  epithelial  ovarian  cancer  patients.  Moreover,  significant
correlation of these genes with OCPs revealed that OCPs exposure played vital role in dysregulation of related pathways in the
etiology of EOC
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1. INTRODUCTION

Ovarian cancer is the fifth most leading cause of cancer death worldwide with highest mortality rate than any other
cancer of the female reproductive system [1]. In India, ovarian cancer has been found to be the third leading cause of
cancer among women [2]. 80-90% of the ovarian cancer cases comprises of the Epithelial Ovarian Cancer (EOC) [3].
The  etiopathology of  EOC is  multifactorial,  including  environmental,  endocrinological,  dietary  factors  and  genetic
factors [4 - 9].

Many risk factors associated with Epithelial Ovarian Cancer (EOC) pathology are still not completely known. There
is evidence to suggest that Organochlorine Pesticides (OCPs) constitute one of the major environmental factors for
EOCs [10]. OCPs have been widely used in last six decades or more contributing to the state of environmental pollution
today [11]. In India, OCPs are mostly used in agricultural practice and public health program as insecticides, herbicides
and fungicides [12, 13]. More than 98% of sprayed insecticides and 95% herbicides reach air, water, bottom sediments,
food and non-target living system other than targeted species [14].

OCPs  demonstrate  endocrine  disrupting  properties  both  in  vivo  and  in  vitro  studies  [15,  16].  OCPs  are  highly
lipophilic and resistant to biotransformation in nature, they tend to accumulate in fatty tissue, adipose tissue where they
may alter  endocrine  function  by  mimicking  hormone,  blocking  the  effects  of  normal  endogenous  hormone  or  may
modify the synthesis, metabolism and transport of hormones [17]. Their long half lives in human body up to several
decades make them susceptible chronic pathogenesis such as prostate cancer, urinary bladder cancer, breast cancer and
epithelial ovarian cancer [18 - 21]

Despite  indirect  evidence  that  OCPs  may act  to  result  in  EOCs,  there  is  no  robust  report  to  suggest  how these
chemicals  may influence genomic expression in the pathogenesis  of  EOCs.  Some recent  studies indicate that  these
organochlorine pesticides may alter the expression of several transcripts across the genome, thus resulting in many
etiopathologies such as cancer [22 - 24]. Since there seems to be a rising incidence of ovarian cancer cases in North
India [25, 26] and also the rampant use of organochlorine pesticides in this region [27 - 29], it becomes imperative to
understand transcriptomic expression changes in ovarian cancer subjects in conjunction with their tissue OCP levels.
Thus,  the  present  study aims  to  explore  the  transcriptomic  expression  profile  of  the  EOC tissue  and  determine  the
association, if any, with their respective tissue OCP levels.

We report here for the first time that differential gene expression along with various cellular- molecular pathways
dysregulated  in  high  OCPs  exposed  EOC.  Based  on  present  transcriptomics  data,  we  have  hypothesized  that
dysfunctional xenobiotic metabolizing enzymes (XME)-inflammatory-cytoskeleton-TGF-WNT-RhoGTPase behaviors
may be associated with EOC in high OCPs exposure.

2. METHODS

2.1. Subjects and Tissue Samples

In  the  present  study,  Nineteen  (19)  subjects  with  confirmed  EOC  were  recruited  and  thirty  (30)  age  matched
controls were recruited with similar life style-(Supplementary Table 1). Subjects of EOC were included on the basis of
clinical examination, imaging and confirmed by cytological or histopathological examination. Women with other types
of ovarian cancers (non-epithelial in origin) or other benign reproductive disorders, diabetes, etc. were excluded from
the study. Premenopausal women admitted for uterovaginal prolapse surgery or Pan Hysterectomy was taken as control.
Ovaries of the control subjects were confirmed histologically to be non-cancerous. Women who were using talcum
powder,  tobacco  and  environmental  exposure  other  than  pesticides  were  excluded  from  the  study.  The  study  was
approved by Institutional Ethical Committee for Human Research, University College of Medical Sciences & GTB
Hospital  (reference  no  UCMS/IEC-HR/2013).  All  the  patients  had  voluntarily  agreed  to  donate  their  samples  after
understanding the purpose of the proposed study. Written informed consent was obtained from each subject prior to
their inclusion in the study as per ethics norms. The plan of the study is illustrated in Fig. (1).

2.1.1. Sample Collection

Approximately  1.5gm  of  EOC  samples  and  control  ovarian  tissue  specimens  were  collected  in  sterile  ice  cold
phosphate buffered saline (PH 7.4) immediately after surgery. 1gm of the obtained tissue was processed for pesticide
estimation and rest was processed for RNA extraction. RNA was stored at -80°C for microarray and Real time RT-PCR.
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Fig. (1). Flow diagram of the experimental design showing work plan of the present study.

2.2. Extraction of Organochlorine Pesticides

All the chemicals used in the study were of high-purity grade. The Extraction of OCP residues was done as shown
in Supplementary Fig. (1). Briefly, ovary tissue was homogenized and mixed with Hexane and Acetone in the ratio of
5:2. Then it is spin in the shaker for 4hrs and supernant was collected. The same procedure carried out twice. Cleanup
was done by the USEPA method using Florisil (Sigma) by column chromatography. Thus obtained pure extract was
evaporated and finally mixed with 1ml of Hexane and then quantified. Quantification of OCP residue levels has been
done using high resolution gas chromatography (Clarus®500, Perkin Elmer, USA) equipped with 63Ni electron capture
detector and an Elite GC DB-5 capture column of 60mm x 0.25mm I.D. capillary column (J&W scientific, folsom, CA,
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USA) was used throughout the analyses.  The standard operating procedures of GC and protocols were followed as
earlier study [30]. For quality control, five samples in triplicate were spiked with 5, and 25 ng/ml of a mixed standard of
OCPs. The average recovery of fortified samples was more than 95%. Furthermore, a quality sample check was always
run with each set of samples for pesticide analysis to maintain accuracy.

The OCPs residues that could be detected in the ovarian tissue samples were: α, β-hexachlorocyclohexane (α, β-
HCH);  1,1,1-  trichloro-2,-  (p-  chlorophenyl)-2-(o-chlorophenyl)ethane  (o’p’  DDT);  1,1-dichloro-2,2-bis(p-
chlorophenyl) ethylene (p’p’ DDE); Heptachlor epoxide B (HTEB) and Heptachlor epoxide A (HTEA), heptachlor,
dieldrin, endosulfanI, endosulfan II. Other OCPs that were detected in very few samples, have not been considered here.

2.3. Extraction of Total RNA

Total RNA was extracted from epithelial ovarian tissue samples using Trizol reagent (Invitrogen, Carlsbad, CA,
USA)  as  previously  described  elsewhere  [31].  The  yield  and  quality  of  the  extracted  RNA  was  estimated  using
Nanodrop (Thermo scientific, Waltham, MA, USA). RNA integrity as assessed by the Agilent 2100 Bio Analyzer using
the RNA 6000 Nano Lab Chip kit and Agilent 2100 Expert Soft-ware (Agilent Technologies, Santa Clara, CA, USA).
RNA used for microarray and Real time RT-PCR.

2.4. Microarray

To understand the probable molecular mechanism of OCPs toxicity and to find out differential expression pattern of
genes, eight diagnosed EOC (mean age 53.9) and seven control (mean age 48.57) ovarian tissues were selected for
Whole Human Genome Microarray experiment (Supplementary Table 2). The level of OCPs was equally distributed
within samples of EOC and within control samples as shown in supplementary Fig. (2). So randomly Eight EOC and
seven control ovary tissue samples were chosen. The samples with RIN scores >8 were subjected to whole genome
expression microarray using the Agilent Whole Human Genome 60-mer oligonucleotides probes in 4X 44 K Microarray
format by one color expression microarray based gene expression analysis [31]. Briefly, total RNA was used for the
synthesis  of  double  stranded  cDNA  by  using  High  capacity  cDNA  Reverse  Transcription  using  one  color  quick
amplification kit (Agilent Technologies, Santa Clara, CA, USA). Cy3 labeled cRNA was synthesized using one color
quick amplification kit. Cy3 labeled cRNA was purified by Qaigen’s RNeasy mini spin columns (Qiagen Inc., Valencia,
CA, USA). cRNA was fragmented and hybridized to the microarray for 17h at 65°C. The microarray 4X44K slides
washed,  and  subsequently  scanned  with  Agilent’s  G2505B  microarray  scanner  system.  The  raw  image  was  then
imported  into  feature  extraction  software  v  10.7.3.1  (Agilent  Technologies)  and  the  raw  files  were  imported  into
GeneSpring 13.1.1 software (Agilent Technologies, Santa Clara, CA, USA).

2.5. Gene Expression Data Analysis

The statistical analysis was performed using the GeneSpring 13.1.1 software. The Principal Component Analysis
(PCA)  was  performed  to  assess  the  distribution  of  samples  on  the  basis  of  gene  expression  patterns  with  their
underlying variability. The unsupervised hierarchical clustering algorithm using the Pearson correlation was then used
to group the probe sets based on their expression pattern. Differential gene expression was compared using Welch t test
with Benjamini-Hochberg corrections for false discovery rate

2.6. Post-hoc Analysis

Networks  and enrichment  analysis  were  done using differentially  expressed gene  lists  obtained from the  above
analyses with the help of the GeneSpring13.1.1 software and MetaCore platform (GeneGo, St. Joseph, MI, USA). To
enrich our pathway analysis, we selected gene sets that represented a cut-off threshold (two or more fold chain with p<
0.05). We used the “Meta Core Analysis” function to interpret the data in the context of biological processes, pathways
and  biological  networks.  Further  dysregulation  of  gene  expression  and  related  changes  in  bio-functions  under  the
subcategories of Signaling & Metabolic functions, Cellular & Molecular functions were identified. Canonical pathway
analysis identified specific functional genes significantly present within the networks.

2.7. Validation of the Genes by Real time PCR

The differential expression of 13 genes (TGF β RII, NKIRAS1, TXNRD2, CKLF, TNFRSF11A, PTPRC, IL37,
CCL23, CCR2, G3BP2, HNMT, IGFBP7, and UBE2V1) were validated in 19 EOC and 30 control ovary tissue samples
by Real time RT-PCR. These genes were chosen on the basis of known, probable or putative involvement in cancer
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(Supplementary Table 3). The primers were designed by Beacon Designer. The sets of forward and reverse primers
used for these genes are given in Supplementary Table 4.

The  reverse  transcription  reaction  was  performed  according  to  the  protocol  of  the  Verso  cDNA  synthesis  kit
(Thermofischer  Scientific)  as  per  The  MIQE Guidelines.  The  raw  florescence  data  were  analyzed  using  Bio  RAD
Manager Software. GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) and β actin were selected as endogenous
controls. The geometric mean of these two endogenous controls was used for normalizing the mRNA levels for the gene
of  interest.  The  geometric  mean  of  CT  of  endogenous  controls  was  subtracted  from  the  CT  of  the  respective  gene,

followed by subtraction of the median control group ∆CT value, giving the ∆∆CT [32].

2.8. Data Analysis

The statistical analysis was carried out by using SPSS ver 21.0. OCPs Data are expressed in the form of mean ±
standard  deviation  (SD).  Unpaired  student's  t-test  and  chi  square  test  was  applied  to  compare  socio-demographic
characteristics.  As  pesticides  are  not  normally  distributed  hence  non  parametric  Mann-Whitney  test  was  used  to
compare pesticide levels in cases and controls. Correlation analysis between the differential gene expression and OCPs
among healthy and EOC patients was done by Pearson correlation. Differential gene expression was compared using
Welch unpaired t-test. The p value of <0.05 was considered as statistically significant.

3. RESULTS

Various parameters like, age, body mass index (BMI), menstrual history which are supposed to be risk/protective
factor for EOC were taken into consideration to assess their association with OCPs exposure. BMI values were higher
in EOC patients than in healthy women (p< 0.006) which show pesticides content in individual is proportional to their
fat content as pesticides accumulate in the fatty tissue [17]. However, we did not find any significant difference in age,
menopause and other socio-demographical features between EOC patients and control (Supplementary Table 1).

3.1. Comparison of OCPs Between Control and EOC Patients

We found significant level of β-HCH (p<0.001), Heptachlor (p<0.001), HTEB (p<0.001), p,p’ DDE (p<0.001) and
endosulfan I (p<0.001) in ovarian tissue of EOC patients as compare to control (Table 1).

Table 1. Comparison of Organochlorine Pesticides (OCPs) level between epithelial ovary cancer tissue sample and control.

OCPs (ng/ml) Control (n=30)
Mean ±SD

Case (n=19)
Mean ±SD

P Value

α-HCH 2.22±1.04 2.66±1.24 0.191
β-HCH 3.33±1.03 6.21±1.31 0.001*

Heptachlor 4.53±1.58 11.19±2.12 0.001*
HTEB 2.72±1.22 4.95±1.15 0.001*
HTEA 1.42±1.03 1.63±0.96 0.479

o,p’-DDE 2.41±1.50 2.05±1.07 0.321
p,p’-DDE 1.77±1.28 4.75±1.42 0.001*

Endosulfan-I 2.15±1.00 4.09±1.60 0.001*
Endosulfan-II 2.14±1.13 2.72±1.12 0.087

Dieldrin 2.26±0.89 2.65±0.88 0.135
Asteric indicates level of significance at p<0.05.
HCH:  hexachlorocyclohexane  ;  o’p’  DDT:  1,1,1-  trichloro-2,-  (o-  chlorophenyl)-2-(p-chlorophenyl)ethane;  p’p’  DDE:  1,1-Dichloro-2,2-bis(p-
chlorophenyl) ethylene; HTEB: Heptachlor epoxide B and HTEA: Heptachlor epoxide A.

3.2. Global View of Changes in Gene Expression between EOC and Control Group

Principal Component Analysis revealed a distinct cluster of all 8 EOC samples separate from the control samples.
Principal  component  analysis  determined  differences  in  overall  gene  expression  between  the  two  groups  of  the
microarray data set. Fig. (2) indicates the relationships between individual samples of these two groups categorized into
2 distinct  areas showing distribution of  8 EOC samples represented by red dot  in one circle  and 4 control  samples
represented in sky blue and rest of the samples distributed separately. Hierarchic clustering depicted clustering nature of
individual samples in these two groups (Fig. 3)
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Fig. (2). PCA of 8 EOC and 7 control ovary tissue samples. Unsupervised PCA was applied to the samples based on variance in gene
expressions. The relative positions of individual EOC (shown in red color) and control (sky blue color) samples.

Fig. (3). Two-way representation of unsupervised hierarchical cluster analysis (HCA) of the expression levels (in logarithmic scale)
of all the target probes/genes (X-axis) in each sample (each row), EOC labeled as cancer in red and control labeled as control in sea
green color from all subjects (n = 15) and their clustering based on expressional distance (Pearson correlation coefficient) between
samples in dendrogram formation (Y-axis).  Each horizontal  line represents a single probe,  and each column represents a single
sample. Relative expression of each probe is color-coded: high (red) and low (blue), as indicated in the color legend.
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3.3. Differential Gene Expression between EOC and Control Group

Supplementary Table 5 gives the list of the up regulated and down regulated genes along with their respective fold
changes based on pairwise analysis of overall gene expression profiles between these two groups. Collectively, a total
of 159 genes were differentially regulated in which 146 genes were up regulated and 13 genes were down regulated
under FC >2.0 with p <0.01

3.4. Post Hoc Analysis

Gene set enrichment analysis was performed using GeneGO MetaCore (Thompson Reuters) and affected pathway
maps, process networks and gene ontology were determined from the input differentially regulated genes between high
OCPs exposed EOC and control ovary tissue samples.

3.4.1. Pathways

Affected  pathways  included  cytoskeletal  remodeling-TGF/WNT/  Rho  GTPases,  Development-BMP7  in  brown
adipocyte differentiation, cell cycle spindle assembly and chromosome separation, Cell adhesion_Integrin-mediated cell
adhesion and migration (Table 2). Cytoskeleton remodeling occurred through more than one pathway such as TGF β,
WNT and also by Rho GTPase suggesting the importance of this process in cancer.

Table 2. Over represented pathways1 among genes dysregulated in the EOC.

Metacore Pathway Maps Genes in Network p value
Cytoskeleton remodeling MELC, MRLC, MyHC, DOCK1, SMAD3, Rac1, VEGF-A,

Tcf(Lef), eIF4G2, SOS, PI3K cat class IA, LIMK2,
TGFβR II, Collagen IV, Nucleolin, EK3(MAP2K3), p38,

MAPK, PTEN, Actin cytoskeletal, MLCP (cat)

3.699E-07

Cytoskeleton remodeling
by TGF and WNT

MELC, MRLC, DOCK1, SMAD3, Axin, Rac1, VEGF-A,
TCF7L2 (TCF4), Tcf(Lef), Dsh, SOS, PI3K cat class IA,

LIMK2, TGFβR II, Collagen IV, WNT, Nucleolin, MMP-7,
MEK3(MAP2K3), p38 MAPK, Actin cytoskeletal, Actin

4.728E-07

BMP 7 in brown
adipocyte differentiation

CIDE-A, COL5A1, UCP1, TrkC, PPARGC1 (PGC1-alpha),
EDNRA, Cytochrome c, DLK, BMPR1A, PPAR-gamma,

WNT10A, ELOVL3, SERPINA3 (ACT)

1.219E-06

Cytoskeleton remodeling
by Actin cytoskeletal

MELC, Myosin II, MRLC, MyHC, Rac1, LIMK2,
Actin, MLCP (cat), actin cytoskeleton by Rho GTPases

CDO1, Rac1, PP1-cat, SOS, PI3K cat class IA,

1.239E-05

Transcription by CREB
Pathway

Galpha(s)-specific amine GPCRs, LDHA, IGF-1 receptor,
G-protein alpha-s, Calmodulin, MEK3, p38 MAPK, Shc

2.056E-05

AVP in regulation of
Aquaporin 2 & renal
water reabsorption

Myosin II, cAMP-GEFI, MRLC, Non-muscle myosin IIA,
MyHC, VAMP3, G-protein alpha-s, Calmodulin,

Adenylate cyclase type VI, Adenylate cyclase type III,
Actin cytoskeletal, ACTB, V2 receptor

2.604E-05

Regulation of GSK3
β in bipolar disorder

TrkC, Axin, PP2A regulatory, PP1-cat, Dsh, DVL-1, SOS,
WNT, TrkA, IL-1 beta, Shc, Neutral sphingomyelinase

5.128E-05

Cell cycle Tubulin alpha, Tubulin (in microtubules), Aurora-A,
KNSL1, CDC20, Dynein 1, cytoplasmic, Aurora-B,

ZW10, RCC1, DCTN2

5.386E-05

Integrin mediated
cell adhesion &

migration

MELC, MRLC, MyHC, DOCK1, RASGRF1, Rac1,
p190RhoGAP, LIMK2, Collagen IV, Zyxin,

Actin cytoskeletal, MLCP (cat)

8.071E-05

Immune response by
CD28 signaling

LAT, PIP5KI, Calcineurin A (catalytic), ZAP70,
NF-AT, Rac1, PI3K cat class IA, CD86,

Calmodulin, I-kB, Bcl-XL, p38 MAPK, Lck

9.403E-05

1pathways analysis performed using MetaCore software (St. Joseph, MI, USA)

3.4.2. Gene Ontology

Over represented ontologies among genes revealed cellular metabolic process, organic substance metabolic process,
primary metabolic process, cellular component organization (Table 3).
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Table 3. Over represented ontologies1 among genes dysregulated in the EOC.

Ontology Network     Important Genes p value
Cellular metabolic process Calcineurin B1, NFIB, eIF1A, IL-11R, gp130,

IL-27R, FOXK1, Tubulin alpha, PIP5KI, IL-22
SLC35C1, CYP4F12, Calnexin, FoxE3, δ-catenin,

CYP3A5, CYP39A1, CDC14C, Cytochrome, c,
GSTM1, NKIRAS1, IGF-1R, CDC20, MMP-7,

   CD45, HOXB5, GSTA1, CDK6, p16, CYP2F1

2.701E-16

Organic substance
metabolic process

Calcineurin B1, NFIB, eIF1A, IL-11R, gp130,
  IL-27R, FOXK1, Tubulin alpha, PIP5KI, SLC35C1,

CYP39A1, SLC16A11

3.291E-16

Primary metabolic process CYP3A5, PKC, CYP39A1, CYP2A7, MMP-16, CYP19,
   SMAD3, CDC14C, Cytochrome c, VEGF-A, CDC25,

   COPS7, CDK6, CDK4, Calcineurin B1

1.509E-15

Cellular component
organization

PIP5KI, c-Abl Stathmin, CDC25, GSPT2,
   MHC class II beta chain, HDAC4CDC20,

   WNT, IGFBP7/8

1.153E-13

1Gene ontology performed using MetaCore software (St. Joseph, MI, USA)

3.4.3. Gene Networks

Functional analysis of differentially regulated genes identified top score biological networks with the shortest path
algorithm and relative saturation of networks with canonical pathways revealing 3 top score gene networks. The top
process related to network 1 was MyD88 dependent toll like receptor signaling pathway with highest score of 239.61
which includes TRAF6, MyD88, I-kB, MAP3KI4, MAP2K3 as differentially regulated genes, the top process related to
network  2  was  wnt  signaling  with  g  score  of  136.59  having  VEGF-A,  TCF7/LCF,  P21,  Dsh,  Tcf4,  Axin,  DKK3,
DKK1,DVL1, WNT as differentially regulated genes and those related to network 3 are TGF- β receptor signaling with
g score of 61.76 having ESR2, NFYA, CDC25A, SMAD3, TGFβ R II (Table 4).

Table 4. The generation of biological networks with the shortest paths algorithm and relative saturation of networks with
canonical pathways.

Network Name Processes Size Pathway P Value z Score g Score

TRAF6, MyD88, I-kB,
NIK(MAP3K14),
MEK3(MAP2K3)

MyD88-dependent toll-like receptor signaling pathway (55.8%), toll-like
receptor TLR6:TLR2 signaling pathway (53.8%), toll-like receptor

TLR1:TLR2 signaling pathway (53.8%), toll-like receptor 2 signaling
pathway (53.8%), toll-like receptor 4 signaling pathway (55.8%) 59 184 4.19e-09 9.61 239.61

TCF7L2 (TCF4), Dsh,
Tcf(Lef), Axin, WNT

Wnt signaling pathway (58.0%), regulation of Wnt signaling pathway
(58.0%), canonical Wnt signaling pathway (44.0%), regulation of canonical
Wnt signaling pathway (52.0%), positive regulation of signal transduction

(76.0%) 50 98 1.19e-14 14.09 136.59

ESR2, NFYA, CDC25A,
SMAD3, TGF-β RII

negative regulation of transforming growth factor beta receptor signaling
pathway (18.4%), N-acetylglucosamine metabolic process (12.2%), cellular

response to endogenous stimulus (42.9%), regulation of transforming
growth factor beta receptor signaling pathway (18.4%), response to

endogenous stimulus (49.0%) 50 34 3.67e-22 19.26 61.76

3.5. Quantification of Candidate Gene Transcripts

Quantification of 13 candidate gene transcripts by real time RT-PCR followed by correlation coefficient revealed
higher  degree  of  concordance  (r=0.797)  between  Microarray  and  Real  time  RT-PCR  data  in  EOC  compared  with
control ovary tissue samples (Supplementary Fig. 3).

3.6. Organochlorine Pesticides and their Association with Gene Involved in EOC

Possible toxicological effects of OCPs on differential expressed genes TGF β RII, NKIRAS1, TXNRD2, CKLF,
TNFRSF11A,  PTPRC,  IL37,  CCL23,  CCR2,  G3BP2,  HNMT,  IGFBP7  and  UBE2V1  was  evaluated.  A  highly
significant  correlation  was  observed  between  levels  of  β  HCH,  heptachlor,  HTEB,  ppDDE  and  endosulfan1  with
NKIRAS1, TXNRD2, CKLF, TNFRSF11A, PTPRC, IL37, CCL23, CCR2, G3BP2, HNMT, IGFBP7, and UBE2V1
genes.  In addition ccr2 showed significant correlation with HTEA. However IGFBP7 did not show correction with
HTEB as shown in Supplementary Table 6.



24   The Open Biochemistry Journal, 2018, Volume 12 Shah et al.

4. DISCUSSION

The North India especially Delhi region is one of the most OCPs contaminated areas due to negligence in disposal
of OCPs from farm and chemical manufacturing units to Yamuna River water and subsequently drinking water and
vegetables. It has been already noted that OCPs were found significantly concentrated in river, food and drinking water
in North India [27 - 29]. The above cited studies were already convinced by one of our earlier published work in which
it has been showed the use of ground water as drinking water source was significantly associated with the etiology of
EOC [9]. The present study is in agreement and reflect the possible route of pesticide exposure to the human population
but the significant association of ground water as drinking water source could not have been achieved which may be
due to smaller sample size.

On the basis of OCPs level, it has been observed that out of 19 cases of EOC majority of cases have high OCPs
levels (> 60% tile of total OCPs) and number of cases with low OCP levels are very few (n=1) which may be due to
incidental (Supplementary Fig. 2). So, on the basis of non-uniform distribution of samples, no significant difference was
observed between these two groups. However, one of the limitations of the study is the sample size particularly if we
consider different grade and pesticide level. Hence further study are required to take up the larger sample size which
can be further divided on the basis of different levels of pesticide with grading of EOC. Moreover, these limitations are
not  interfering  to  explain  our  present  hypothesis  that  OCPs  are  one  of  the  potential  risk  factor  for  EOC  and  may
responsible for the dysregulation of genes.

The results of the present study have shown significantly higher levels of β-HCH, heptachlor, HTEB, p'p'-DDE and
endosulfan-I in ovary tissue sample of EOC as compare to control which is in consistent with the earlier finding [9].
The presence of significant high level of these OCPs in the ovary tissue may act as endocrine disruptive pesticides
(EDP) which can lead to hormonal imbalance and initiate or promote the mitogenic pathways. As a result, the response
cascade of natural hormones can either inhibited or excessively enhanced at the wrong time, may play critical role in the
cellular & molecular changes [33].

We are reporting for the first time, the differential expression of genes such as TGF β RII, NKIRAS1, TXNRD2,
CKLF, TNFRSF11A, PTPRC, IL37, CCL23, CCR2, G3BP2, IGFBP7, and UBE2V1 involve in the etiology of EOC
(Supplementary Table 5).  CCR2 gene was found up-regulated with highest fold change. Although, CCR2 has been
implicated in range of inflammatory disease including rheumatoid arthritis, tumors, we are reporting for the first time
that high expression of CCR2 may be due to high OCPs exposure in EOC sample. Insulin-like growth factor-binding
protein 7 (IGFBP7) function as a tumor suppressor and involved in several cellular processes, including proliferation,
senescence  and apoptosis.  Loss  of  IGFBP7 expression  is  a  critical  step  in  the  development  of  human tumors  [34].
IGFBP7 gene was down regulated, which are in consistent with earlier study [35]. However, dysregulation of these
genes due to high OCPs exposure in the risk factor of EOC was not found in the previous literatures. This is the first
study indicating OCPs have major impacts in mediating toxicities with the dysregulated genes involved cellular and
molecular functions in developing EOC. Moreover, significant correlation between OCPs and the differential expressed
genes supports and strengthen the hypothesis that predisposition of OCP in human body may altered the genetic make
of an individual which may ultimately antedate the pathogenesis of EOC.

Several pathways which are characteristic of cancer were identified in this study such as cytoskeleton remodeling
pathway which acts through the subsets of TGF/WNT/Rho GTPase signaling cascade between normal ovarian surface
epithelium and epithelial ovarian cancer (Table 2) [36]. Endosulfan disrupts WNT/β catenin signaling pathway [37] and
activates Rho-GTPase proteins. This event linked to cancer cell migration/invasion during metastasis via the control of
cytoskeletal remodeling [38]. DDT and its metabolite appear to promote multiple cancer-related processes including
sustained proliferation through different pathways, such as TGF β, Wnt/β-catenin [39, 40].

Heptachlor  has  been  found  to  trigger  significant  proliferation  and  tumor  genesis  in  rat  hepatocytes  and  inhibit
apoptosis  by  activating  MAPKK signaling  pathways  [41].  This  study showed MAPK- MyD88-  dependent  toll  like
receptor  signaling pathway with significantly altered genes such as  TRAF6,  MYD88 (Table 4).  Activation TRAF6
through  MyD88,  stimulate  the  phosphorylation  of  p38  via  MAPK  pathways  leading  to  subsequent  expression  of
inflammatory genes mediates various inflammatory responses [42].

Cytochrome P 450 (CYP 450) involved in metabolic activation and/or detoxification of various pro-carcinogens like
pesticides. This study showed dysregulation of cellular metabolic process genes; CYP3A5, CYP39A1, cytochrome C,
GSTM1, GSTA1, CYP2F1, CYP2A7, and CYP19 (Table 3) which is in consistent with Downie et al. demonstrated
higher levels of various CYP450 genes [43]
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The effect of OCPs observed in the etiology of EOC, requires further validation by in vitro approach, exposing
primary epithelial ovarian cells with OCPs to study the effect of OCPs exposure on gene expression by expressional
microarray. This study is currently underway in our laboratory.

CONCLUSION

These results indicate that β-HCH, Heptachlor, Endosulfan-I and DDT metabolites found in the ovary tissue could
alter the genes involved in several pathways such as cytoskeleton remodeling/TGF-WNT/Rho GTPase and MAPK as
well as cellular metabolic process. All these events account, at least in part, for the carcinogenic potential of β-HCH,
Heptachlor β Endosulfan in ovary. Furthermore, the high risk population can be identified by estimating the exposure
levels of OCPs and accordingly it might provide safety measures to be taken up.
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