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“Trained immunity” is a term proposed by Netea to describe the ability of an organism to

develop an exacerbated immunological response to protect against a second infection

independent of the adaptative immunity. This immunological memory can last from 1

week to several months and is only described in innate immune cells such as monocytes,

macrophages, and natural killer cells. Paradoxically, the lifespan of these cells in the blood

is shorter than the duration of trained immunity. This observation suggested that trained

immunity could be carried by long lifespan cells such as stem cells and non-immune cells

like fibroblasts. It is now evident that in addition to performing their putative function in

the development and maintenance of tissue homeostasis, non-immune cells also play

an important role in the response to pathogens by producing anti-microbial factors,

with long-term inflammation suggesting that non-immune cells can be trained to confer

long-lasting immunological memory. This review provides a summary of the current

relevant knowledge about the cells which possess immunological memory and discusses

the possibility that non-immune cells may carry immunological memory and mechanisms

that might be involved.
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INTRODUCTION

Works regarding T cell and B cell-independent immune memory date back over half a century
(Box 1). A first report by Mackaness (1968) showed that mice vaccinated against tuberculosis
with the vaccine bacillus Calmette-Guérin (BCG) were effectively protected against a second
infection by mycobacteria. Further, it was shown that trained immunity lasted for weeks to
months (Cassone, 2018) and other infectious agents such as Salmonella typhimurium, Listeria
monocytogenes, Staphylococcus aureus, Candida albicans, and Schistosoma mansoni (Blanden
et al., 1969). These results were confirmed by Tribouley et al. showing the protective effect
of BCG on athymic mice against Schistosoma mansoni (Tribouley et al., 1978). In the
80–90s, Bistoni and his colleagues showed that mice infected with attenuated Candida albicans
exhibited protection against a lethal dose of Candida albicans and other pathogens such as
Staphylococcus aureus (Bistoni et al., 1986). This protection was independent of acquired
adaptative immune cells (Box 2) but depended on the innate immune cells as macrophages
and a higher production of pro-inflammatory cytokines including interleukin (IL)-1, granulocyte
macrophage colony stimulating factor (GM-CSF), tumor necrosis factor (TNF)-α and interferon
(IFN)-γ (Bistoni et al., 1986; Vecchiarelli et al., 1988). Then, several studies have shown
that in the same way as monocytes, NK-cells exhibit immunological memory. O’Leary et al.
showed that a hapten (small molecule triggering an immune response) (Erkes and Selvan,
2014) induced contact hypersensitivity in T and B cell-deficient mice during the second contact
with same hapten (O’Leary et al., 2006). This activity was shown to be carried by a liver
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Box 1 | Innate immunity.

Innate immune system is the second line of defense against microbial

infection in vertebrates and non-vertebrates. It helps containing most

infectious agents behind the first line anatomical and physiological

defenses (Turvey and Broide, 2010). The innate immune system comprises

hematopoietic cells including mast cells, macrophages, dendritic cells,

neutrophils, and eosinophils derived from myeloid lineage and natural killer

(NK) cells. When a microorganism succeeds in crossing the anatomical and

physiological barriers, the innate immune system takes over to efficiently

remove it. Innate immunity develops in several steps including recognition

of the microorganism via surface pattern recognition receptors shared by all

the innate immune cells, binding to common pathogen-associated molecular

patterns (PAMPs), uptake of the microorganism and induction of a production

of inflammatory cytokines, chemokines, and chemotractant molecules to

recrute additional immune cells. The processus of microbial clearance

continues and immature dendritic cells which uptook the microorganism

migrate to lymph nodes to initiate adaptative immunity (Zak and Aderem,

2009; Turvey and Broide, 2010).

Box 2 | Adaptative immunity.

Adaptative immunity is the third line of defense composed by hematopeitic T

cells and B cells derived from the lymphoid lineage. Dendritic cells recognize

pathogen, uptake it, process microbial antigens and migrate in the secondary

lymphoid organs to encounter naive T cells. Dendritic cells present the

antigens by the human major histocompatibility (HMC)-II molecules to naive T

cells (Th0). T-lymphocytes specific to the antigen are activated, leading to their

clonal expansion and differentiation into effector T cells such as Th1, Th2, and

Th17 cells. Functionally, effector T cells prime different types of immunity such

as cellular immunity, humoral immunity and tolerance immunity and secrete

pro-inflammatory cytokines such as IFN-γ, IL-2, IL-4, IL-6, IL-17, and TNF-

α to activate other immune cells, contributing to pathogen clearance. Some

long half-life T cells become memory T cell and have the capability to quickly

respond to subsequent exposure to the same pathogen (specific-protection;

Clark and Kupper, 2005; Pennock et al., 2013).

subpopulation of NK cells (Ly49C-I+) (O’Leary et al., 2006).
Perforin and granzyme were the factors related to the defense
mechanisms of NK-cells (Salcedo et al., 1993). The production
of these effectors are controlled by promotor of gene, regulator
sequence (enhancer–silencer) and transcription factors such
as lymphotoxin α (LTA), tumor necrosis factor α (TNFA),
lymphotoxin β (LTB) and interferon-γ (IFNG) genes which
may undergo epigenetic modifications (Cichocki et al., 2013;
Wiencke et al., 2016). It needs to be investigated how the
mechanisms of production of perforin and granzyme may
be supported by an epigenetic modification. As for mast
cells, there is no published study related to immunological
memory. Nevertheless, Monticelli hypothesized that mast cells,
like the other innate immune cells, could adopt a memory
phenotype (Monticelli and Leoni, 2017). Indeed, mast cells
play an important role in the first line defense and possess
a longer life than monocyte/macrophage and NK-cells. Also,
mast cell biology can be regulated by epigenetic modifications
as described in monocytes/macrophages and NK-cells. They
play a critical role in the establishment and maintenance of
mast cell identity, expansion, differentiation and regulation of

Box 3 | Trained immunity.

Trained immunity is a new concept designing the adaptative properties

carried by innate immune cells such as macrophages and NK-cells.

Innate immune cells including monocytes/macrophages and NK-cells are

primed by recognition of PAMP such as lipopolysaccharides, bacterial DNA,

mannans that bind to Toll-like receptors (TLRs), and Nod-like Receptors

(NLRs) (Janeway and Medzhitov, 2002; Kleinnijenhuis et al., 2012). Priming

induces a high protective inflammatory response via the release of cytokines

such as IFN-γ conferring a protection to a secondary presentation of

PAMPs carried by the same or a different pathogen than the one, which

primed trained immunity (cross-protection). Epigenetic modifications and

immunometabolism are underlying mechanisms for training immune cells to

act efficiently during a second infection (Netea et al., 2015).

mast cell response to a danger signal (Montagner et al., 2016;
Monticelli and Leoni, 2017). A recent study reports that the
DNMT3A DNA methyltransferase is important to modulate
mast cell responses to chronic stimuli (Leoni et al., 2017).
Therefore, mast cells could support an immunological memory,
which remains to be investigated. At last, dendritic cells (DCs)
possess the immunological arsenal against bacteria; have a longer
lifespan than monocytes and epigenetic mechanisms to support
trained immunity. However, there is no study reporting trained
immunity for DCs.

In Kleinnijenhuis et al. (2012) highlighted the mechanism
involved in the immune protection previously observed
by Bistoni and others. Indeed, these authors showed that
reprogramming cells and inflammatory response conferred
to monocytes/macrophages were associated with epigenetic
modification mechanisms. Briefly, naive cells have a compacted
DNA rendering it inaccessible to promoters/enhancers. After
infection, the DNA decondensates making it accessible to
the promoters/enhancers that could be mono-methylated
and mono-acetylated in a way such that the DNA will be
transcribed, allowing for the production of molecules involved
in pathogen elimination (Mehta and Jeffrey, 2015). Once the
infection is resolved, the acetylation is lost but methylation
of lysine 4 of histone 3 (H3K4 me) persists and keeps the
promoters active so that during the second stimulation the
DNA is rapidly transcribed allowing great production of genes
involved in immunity (Ostuni et al., 2013; Quintin et al.,
2014; Saeed et al., 2014). Metabolic induction is additional
mechanisms underlying trained immunity (Bekkering et al.,
2018).

Following pioneering work by Netea, the concept of “trained
immunity or innate immune memory” has been proposed (Netea
et al., 2011) (Box 3).

Recently, Cheng et al. showed a new mechanism to support
“trained immunity” focusing especially on the metabolism of
cells such as glycolysis. For example they showed that the
cholesterol synthesis pathway was highly induced in β-glucan-
trained macrophages (Cheng et al., 2014). The interplay between
metabolite production and trained immunity has been recently
shown (Arts et al., 2016a). Cholesterol synthesis pathway requires
an intermediate metabolite called mevalonate; which induces a
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FIGURE 1 | Number of publications related to the keywords “Innate immune

memory” (PubMed database).

trained immunity profile by promoting the expression of a set
of genes required in β-glucan-trained immunity phenotype like
fumarate (Arts et al., 2016a; Bekkering et al., 2018). Trained
immunity induces an aerobic glycolysis associated with an
augmentation of glucose consumption, lactate production and
elevated intracellular ratio of nicotinamide adenine dinucleotide
(NAD+/NADH) (Cheng et al., 2014).

Trained immunity draws more and more attention and
interest. A simple investigation of the number of publications
based on the key words “innate immune memory” between
1969 and 2018 shows a sharp increase in the number of papers,
reaching 142 papers in July 2018 (Figure 1).

Despite new knowledge, fundamental questions need to
be addressed about the paradoxe between the duration of
trained immunity and the short lifespan of innate immune
cells (Table 1). Until now all of the studies were performed in
monocytes/macrophages andNK cells whereas trained immunity
can last for 1 year and more.

Consequently, trained immunity is more and more
investigated in non-immune cells such as stem cells,
which possess immune characteristics (expression of TLRs,
inflammatory response, production of antimicrobial peptides)
with long life span.

Epigenetic Mechanism
Term composed by “epi”meaning “above” in Greek and “genetic”
relating to genes. Basically, it is the set of chemical modifications
occurring in the DNA and consequently modulating the
expression of genes (Box 4). The mechanism does not affect
the sequence of the DNA but is transmissible to the offspring.
Epigenetic modifications include DNA methylation, histone
methylation and acetylation (Saeed et al., 2014; Hoeksema and
de Winther, 2016). In general, DNA methylation is an epigenetic
mechanism which involves the addition of a methyl-CH3 group
on carbon predominantly to the CpG dinucleotides of the
cytosine residues of DNA 5-methylcytosine (5 mC). This process
involving three DNA methyltransferases (DNMT1, DNMT3A,
and DNMT3B) is active in the regulation and maintenance of
gene expression (Jaenisch and Bird, 2003). NK-cell memory

trained by BCG is associated with DNA methylation (Sun et al.,
2012; Schlums et al., 2015).

Immunometabolic Mechanism
Contraction of “immune” and “metabolic,” originally proposed
to explain both the cellular metabolism of innate immune cells
and the role of immune cells playing in metabolic diseases and/or
organmetabolism in global. The first study on immunometabolic
mechanism concerned the relation between immunity and
metabolic diseases, diabetes, and obesity (Ferrante, 2013). Recent
studies showed that metabolic mechanisms are also highlighted
in trained immunity (Arts et al., 2016b; Hotamisligil, 2017). In
monocytes trained by β-glucan, transcriptional and epigenetic
analysis revealed an increase in the promoters of genes encoding
enzymes involved in glycolysis (hexokinase and pyruvate kinase)
and itsmaster regulatormTOR (mammalian target of rapamycin)
(Cheng et al., 2014).

TRAINED IMMUNITY OF NON-IMMUNE
CELLS

Stem Cells
Mesenchymal Stromal/Stem Cells
Mesenchmal stem cells possess immune properties such
as immunosuppressive phenotype, inflammatory phenotype,
anti-bacterial characteristics and are equipped with Pattern
Recognition Receptors (PRRs), including Toll-Like Receptors
(TLRs) (Pevsner-Fischer et al., 2007; Liotta et al., 2008;
Coffelt et al., 2009; Krasnodembskaya et al., 2010; Machado
et al., 2013). In 2006, Guang-yang Liu and his colleagues
showed that adipose mesenchymal stem cells exhibit short-
term memory when exposed a second time to bacterial
ligand LPS or danger signal TNF-α. Precisely, mesenchymal
stem cells primed with LPS or TNF have the ability to
produce more intensely pro-inflammatory cytokines IL-8, MCP-
1, and IL-6 to the same stimulus upon a second encounter.
Additionally, they showed that primed mesenchymal stem
cells exhibited a better therapeutic effect on diabetic rat
model than unprimed MSCs (Liu et al., 2016). Moreover,
like in monocytes, this trained immunity is governed by
epigenetic mechanisms. The authors showed the involvement
of a set of microRNAs (miR146a, miR150, and miR155) and
a modification of by 5-hydroxymethylcytosine (5 hmC) (Liu
et al., 2016). This study was the first one to demonstrate
that trained immunity could be carried by non-professional
immune cells, Nevertheless, it concerns a short-term memory
only corresponding just to 7 days whereas the trained immunity
can last from 1 week to months and several years (Nguipdop-
Djomo et al., 2016). Recently, it has been shown that the
planarian Schmidtea mediterranea is exhibiting trained immunity
function (Torre et al., 2017). Planarian previously infected
with Staphylococcus aureus developed an improved immune
response with increased bacterial clearance during a second
infection. This immunological memory is due to stem cells that
support cell replacement during homeostasis and regeneration
of any missing tissue (Eisenhoffer et al., 2008; Kaufmann
et al., 2018). RNAi-based experiments revealed the signaling
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Box 4 | Molecular and metabolic mechanims involved in trained immunity.

Epigenetic events are part of the mechanisms controlling the way innate

immune cells maintain the immune response.

Smed-PGRP-2/Smed-setd8-1 methyltransferases as key factors
in instructed neoblastes (planarian stem cells) (Torre et al.,
2017). This study provided additional information to explain the
capacity of BCG to induce a long immune memory (30 days
minimum) and to persist formonths to years whereas the lifespan
of many innate immune cells in circulation is limited on the
order of hours or days (Sun et al., 2011; Kleinnijenhuis et al.,
2012; Nayar et al., 2015). Eventually, Kauffman et al. showed that
priming HSCs with intravenous BCG vaccine reaching the bone
marrow induced a protective memory against bacterial pathogen;
whereas sub-cutaneous vaccination did not primeHSCs. Priming
innate immune progenitor cells promoted myelopoiesis and
the generation of trained monocytes/macrophages enhancing
bacterial clearance. This was the first study exploring the
mechanism of long term effects of BCG on trained immunity
(Kaufmann et al., 2018).

Therefore, it is important to study the immunological memory
capacity of stem cells beyond 1 month and their ability to
transmit information to innate immune cells.

Hematopoietic Stem Cells
Kauffman and her colleagues published an important study
which brings additional information to explain how cells
transmit their immunological memory to progenitors, providing
long-lasting protection (Kaufmann et al., 2018). These authors
showed that in mice, the inoculation of bone marrow with BCG
induced protection against Mycobacterium tuberculosis during
a second infection which was not the case after subcutaneous
inoculation. Specifically, it was shown that bone marrow BCG
inoculation initially increased the amount hematopoietic stem
cells (HSCs) and myelopoiesis and trained HSCs which offspring
had the ability to develop a memory response against virulent
Mycobacterium tuberculosis. Moreover, BCG induces epigenetic
modifications of 2,483 genes in the macrophages, inducing
changes of histone H3K27ac in (BMDM) Bone-marrow-derived
macrophage produced from BCG-vaccinated mice compared
with PBS-control mice (Kaufmann et al., 2018).

Another recent study showed that trained immunity
performed at the level of bone marrow precisely increased
myelopoeisis (Mitroulis et al., 2018). A total of 1,383 differentially
expressed genes in β-glucan-injected mice compared to PBS-
treated control mice, were involved in some innate immune
functions such as production of pro-inflammatory cytokine
IL-1β, production of GM-CSF (granulocyte-macrophage colony-
stimulating factor) and immunometabolism including the
biosynthesis of cholesterol and glycolysis (Mitroulis et al., 2018).

Epithelial Stem Cells
Epithelial stem cells are progenitors of differentiated epithelial
cells. Epithelial cells and fibroblasts are forming a physical

and functional barrier against external agents (Sacco et al.,
2004). They constitute the first line of defense in innate
immunity (Ochiel et al., 2008). Like innate immune cell,
epithelial cells can act as sentinel cells by expressing TLRs,
producing immunomodulator factors and antimicrobial peptides
when exposed to danger signals like bacteria, virus, and
noxious signals (Schaefer et al., 2004; Bautista-Hernández
et al., 2017). In addition to these immune characteristics, it
was reported that skin epithelial stem cells exhibit trained
immunity. By using an imiquimod (IMQ)-induced model of
skin inflammation, the authors showed that the skin previously
exposed to one inflammatory challenge responded faster to
an unrelated secondary challenge, with faster wound healing
in primed mice than in naïve mice (Naik et al., 2017).
A recent review by Novakovic entitled “I Remember You:
Epigenetic Priming in Epithelial Stem Cells” speculated that this
memory of inflammation could be due to epigenetic mechanisms
(Novakovic and Stunnenberg, 2017). Additionally, epithelial
cell possess a long lifespan averaging 2 years (Tunn et al.,
1989).

Intestinal Stromal Cells
Intestinal stromal cells (iSCs) are part of non-professional
immune cells including mesenchymal stem cells, fibroblasts,
epithelial cells and endothelial cells that exhibit immune
properties and contribute to immunity processing. ISC express
TLRs 1–9, act as sentinel cells and produce pro-inflammatory
cytokines in response to a pathogen (Owens and Simmons,
2013; Augenlicht et al., 2016). Recently, Owens assessed
that iSCs possess the immune machinery to respond against
bacterial pathogens and suggested that iSCs could exhibit an
immunological memory (Owens, 2015). Indeed iSCs could
develop a protective response to rapidly eliminate the pathogen
or another microorganism during a second contact (Owens,
2015). ISCs produce prolonged pro-inflammatory cytokines
(inflammatory memory) to recruit immune cells to the site
of infection during a second contact (Owens and Simmons,
2013; Owens et al., 2013; Owens, 2015). Epigenetic modifications
and immunometabolic mechanisms would be implicated in
the persistence of immunological memory. Moreover, the
lifespan of iSCs is longer than professional innate immune
cells (Arts et al., 2016b; Hotamisligil, 2017; Smith et al.,
2017).

Fibroblasts
The main function of fibroblasts is to maintain the structural
integrity of the connective tissue (Wong et al., 2007).
Nevertheless, it has now been well established that fibroblasts
play an important role in the immunity. Fibroblasts are equipped
with 1 to 10 TLRs, produce pro-inflammatory and antimicrobial
peptides, cytokines, chemokines and growth factors in response
to pathogen invasion (Jordana et al., 1994; Van Linthout et al.,
2014). Further, studies reported that fibroblasts are sentinel cells
responding to pathogens and interacting with other cells via the
production of molecular signals (Kaufman et al., 2001). Recent
studies revealed that fibroblasts were involved in the persistence
of inflammation. When activated with bacterial infection or
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danger signal (cytokines), tissue repair triggers a protective
immune response by producing cytokines and interacting with
immune cells (Flavell et al., 2008; Frank-Bertoncelj et al., 2017).
The persistence of inflammation is controlled by epigenetic
mechanisms. In response to injury or infection, fibroblasts first
recruit immune cells in the site of infection to clear bacteria,
then organize tissue repair and renewal (Flavell et al., 2008).
Indeed, tissue repair and renewal are not random as fibroblasts
possess a positional memory capacity enabling regenerating
cells to recall spatial information from the uninjured tissue
(Bustos-Arriaga et al., 2011; Van Linthout et al., 2014). This
process is governed by epigenetic regulation of the homeobox
“HOX” genes also involved in regulating body formation
during development (Francis and Kingston, 2001; Coleman and
Struhl, 2017). Much remains to be investigated in the immune
functions of the fibroblasts such as the immunological memory.
Functionally fibroblasts possess the immunological arsenal as
mentioned above: the ability to produce inflammatory cytokines,
antimicrobial peptides, and possess a longer lifespan than the
cells of innate immunity such as macrophage once differentiated
(Weissman-Shomer and Fry, 1975).

Microglial Cells
Microglial cells are resident immune cells of the central nervous
system (CNS) also known as resident macrophages of CNS
(Wake and Fields, 2011). The main function of microglial cells
is to ensure the homeostasis of synapses and the communication
with the micro-environment in the CNS. Once activated by
virus or bacteria, microglial cells somal size increases while
retraction and thickening of processes are faciliting their
migration capacity; they express TLRs, produce inflammatory
cytokines and acquire phagocytic ability like macrophages
(Mariani and Kielian, 2009). After this priming, microglial cells
become susceptible to a secondary danger signal leading an
improve immune response (Perry and Holmes, 2014; Haley
et al., 2017). Several reviews suggested a process of trained
immunity in microglial cells (Haley et al., 2017; Lelios and
Greter, 2018; Wendeln et al., 2018). Haley recently speculated
the fact that microglial cells possess an innate immune memory
characterized by inflammatory pathways orchestrated with
epigenetic mechanisms (Haley et al., 2017). A study comparing
naive mice and mice primed with attenuated Salmonella
typhimurium containing its LPS indicated that the second group
exhibited increased microglial immunoreactivity in response to
a second stimulation of LPS four weeks later. Interestingly,
there was no increased immunoreactivy in microglial for the
naive mice (Püntener et al., 2012). However, the authors did
not investigate a potential epigenetic mechanism to explain the
long-term activation of microglia in this infectious model.

CONCLUSION

The established dogma that innate immunity system lacks
memory and that only the adaptive immune system is able to

recognize an infectious agent and to destroy it faster in a second
encounter has been challenged. Current published data indicate
that innate immune cells are able to build an immunological
memory. Indeed, the new concept called ≪ trained immunity
≫ represents a paradigm change in the biology of immunity,
emerging as a third way between the conventional dichotomy
“innate immunity” and “adaptative immunity.” First report
of trained immunity described an inflammatory protection of
organism against a pathogenic microorganism upon a second
encounter independent of adaptative immunity. It is initially
concerned monocytes/macrophages and NK cells. However, in
the last decade, it has been demonstrated that stem cells and
other stromal cells display immune abilities, limited compared to
professional innate immune cells, yet contributing to protective
immune responses by humoral mediation (inflammatory).
Eventually, trained immunity is also described in non-immune
cells such hematopoetic stem cells and mesenchymal stem cells.
The common mechanism of the non-immune cells in term of
trained immunity is based in the ability to respond inflammatory
stimuli. Like professional immune cells, a second challenge
activates faster the production of cytokines. Consequently,
this inflammatory ameliorates the immune response by rapid
activation and recruitment of the immune cells at the site of
infection, facilitating wound repair. Quantitative real time qRT-
PCR array revealed that epigenetic modification mechanisms are
involved in the instruction and establishment of inflammatory
memory.

Finally, in order to avoid any confusion and to harmonize the
concept of immunological memory, we propose to keep the term
“trained immunity” because an increasing number of studies
are showing that non-immune cells possess immunological
memory which is therefore not restricted to innate immune
cells.
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