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Abstract
Background.  Meningiomas are the most common primary intracranial tumor in adults. Clinical care is currently 
guided by the World Health Organization (WHO) grade assigned to meningiomas, a 3-tiered grading system based 
on histopathology features, as well as extent of surgical resection. Clinical behavior, however, often fails to con-
form to the WHO grade. Additional prognostic information is needed to optimize patient management.
Methods. We evaluated whether chromosomal copy-number data improved prediction of time-to-recurrence for patients 
with meningioma who were treated with surgery, relative to the WHO schema. The models were developed using Cox 
proportional hazards, random survival forest, and gradient boosting in a discovery cohort of 527 meningioma patients 
and validated in 2 independent cohorts of 172 meningioma patients characterized by orthogonal genomic platforms.
Results. We developed a 3-tiered grading scheme (Integrated Grades 1-3), which incorporated mitotic count and 
loss of chromosome 1p, 3p, 4, 6, 10, 14q, 18, 19, or CDKN2A. 32% of meningiomas reclassified to either a lower-
risk or higher-risk Integrated Grade compared to their assigned WHO grade. The Integrated Grade more accurately 
identified meningioma patients at risk for recurrence, relative to the WHO grade, as determined by time-dependent 
area under the curve, average precision, and the Brier score.
Conclusion. We propose a molecularly integrated grading scheme for meningiomas that significantly improves 
upon the current WHO grading system in prediction of progression-free survival. This framework can be broadly 
adopted by clinicians with relative ease using widely available genomic technologies and presents an advance in 
the care of meningioma patients.
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Key Points

•	 Aggressive meningiomas have recurrent copy-number alterations.

•	 Incorporating copy-number alterations into a grading scheme identifies high-risk 
tumors.

Meningioma is the most common primary intracranial 
tumor in the United States with approximately 35 000 new 
cases every year,1 and an estimated population prevalence 
of approximately 1 in every 100 adult persons over the age 
of 45.2 Given the large number of cases, a reliable and ac-
cessible predictor of clinical outcome after diagnosis is 
needed. At present, the World Health Organization (WHO) 
places meningioma into 1 of the 3 grades based on histo-
pathology, and is the primary measure used to predict out-
come and guide postsurgical treatment decision making.3 It 
is well recognized, however, that the behavior of a number 
of meningiomas does not conform to their assigned WHO 
grade, with some histologically benign meningiomas devel-
oping repeated recurrences despite aggressive treatment 
while other higher-grade meningiomas remain stable after 
surgical resection.

The limitations of WHO grading result in part from 
interobserver variability in histological assessment,4 the 
potential for under-sampling of a tumor type with known 
histologic and molecular heterogeneity,5–7 and the possi-
bility that malignant potential may not be uniformly re-
flected in assessment of histologic features.8 Molecular 
characterization may represent a means to overcome these 
concerns. Molecular-based approaches, including meth-
ylation profiling and DNA and RNA sequencing,9–12 have 
shown the ability to predict behavior; however, these meth-
odologies rely on platforms limited to select centers while 
the majority of meningiomas are treated outside of large, 
academic institutions.13,14 Copy-number variations (CNVs), 
previously described in higher-grade meningioma,15–18 
are an attractive option given the wide availability of the 
technology required, even in resource-limited settings. 
In an attempt to devise an improved prognostically rele-
vant grading scheme that is broadly accessible, we evalu-
ated 699 meningiomas with detailed clinical, imaging, 

histologic, and molecular annotation, to formulate a mo-
lecularly integrated grade that is simple to apply, trans-
parent, scalable, and accurate in long-term prediction of 
clinical behavior.

Methods

Patients

We examined 527 meningiomas resected from unique 
patients evaluated at the Brigham and Women’s Hospital 
(BWH) from 2003 to 2019 as the discovery cohort. An ad-
ditional 172 patients with surgically resected meningioma, 
including 117 from BWH and 55 from the University of 
Toronto, were examined as independent validation co-
horts. Of the BWH discovery cohort, 81% of cases were 
prospectively analyzed as part of standard clinical testing 
in a Clinical Laboratory Improvement Amendments (CLIA)-
certified laboratory and reported in the clinical record, 
which was initiated in 2012. This study was approved by 
the institutional review boards of BWH and University of 
Toronto.

Clinical Annotation

Clinical history, tumor location, and radiographic recur-
rence were assessed. Preoperative and postoperative 
MRIs underwent volumetric contouring to define the ex-
tent of resection, with gross total resection (GTR) defined 
by no residual enhancing nodular tumor on imaging, and 
all others classified as subtotal resection (STR), modeled 
upon the RANO meningioma response assessment im-
aging criteria.19 All follow-up MRIs were independently 

Importance of the Study

Meningiomas are among the most common brain tu-
mors. Grading based on histopathology often fails to 
predict tumor behavior. Incomplete tumor sampling, 
interobserver variability in histology assessment, and 
ambiguous histologic features all pose challenges 
and lead to uncertainty in patient management. We 
show that a grading scheme that incorporates mitotic 
index and multiple high-risk copy-number alterations 
allows for identification of patients at risk for tumor 

recurrence, despite complete tumor resection, and in 
some cases, despite benign-appearing histopathology 
(WHO grade I). A critical aspect of our approach is that 
the features are transparent, and can be assessed by 
a number of genomic platforms that have proliferated 
across medical centers. The work described here lays 
a foundation for more effective grading of meningiomas, 
genomically informed clinical trials, and improved pa-
tient management.
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reviewed by 3 authors (W.L.B., J.D., and S.T.) to evaluate 
for recurrence. This included evaluation of the MRI im-
ages, the radiology reports, and the clinical chart. When 
personal review of imaging and the radiology reports 
demonstrated discordance for progression/recurrence, 
the authors discussed these inconsistent cases to achieve 
consensus. Simpson grade of resection was not available, 
as it was not routinely recorded in the operative note or 
patient chart. Anatomic location was categorized as mid-
line skull base, lateral skull base, lateral convexity, falcine/
parasagittal, or other, which included intraventricular and 
spinal meningiomas.

Pathology

Histopathologic review of all tumors was performed by 
board-certified neuropathologists and tumor grade was 
abstracted from the pathology reports issued by the 
BWH Neuropathology division according to the WHO 
Classification of Tumors (2007 and 2016). Cases with un-
clear grading were re-reviewed and assigned a grade 
according to the criteria from the WHO Classification of 
Tumors 2016 (by S.S.).20 Cases with brain invasion were 
also assigned to WHO grade II after re-review. Atypical 
features, mitoses per 10 high-powered fields (HPF), and 
MIB-1 proliferative index were recorded. Mitotic count 
was recorded from the clinical record when available or 
performed in cases where specific information was ab-
sent. Following the WHO guidelines, we assess mitotic 
count by visual inspection of H&E stained sections with 
≥4 mitoses per/10 HPF (of 0.16 mm2) used to define atyp-
ical meningioma (WHO grade 2) and ≥20 mitoses/10 HPF 
used to define anaplastic meningioma (WHO grade 3). 
MIB-1 index was assessed using a semi-quantitative ap-
proach by quantifying MIB-1 positive labeling in ~1000 
cells. In a minority of cases where the index was reported 
as a range, we list the mid-point of the range for statistical 
analysis.

Genomic Characterization

Whole-genome microarray analysis for DNA copy-number 
profiling was available for 527 tumors from the discovery 
cohort and 83 samples from the BWH validation cohort. 
Targeted mutational profiling of 227-447 cancer-associated 
genes (OncoPanel, versions 1-3)21,22 was available for 118 
samples from the discovery cohort and all 117 of the BWH 
validation set. The external validation cohort underwent 
methylation-based copy-number profiling at the University 
of Toronto.23 Using previously described methods,24–26 we 
derived broad CNVs from the OncoPanel dataset and pub-
licly available methylation and RNAseq datasets. The frac-
tion (proportion of the length) of the genome altered was 
estimated for each sample among these datasets (addi-
tional details in the Supplementary Appendix).

Outcome

The primary outcome assessed was progression-free 
survival, defined as time from surgery until radiographic 

recurrence on follow-up imaging in cases of GTR, or time 
until tumor progression in cases of STR.

Model Design, Validation

To develop a grading score reflective only of intrinsic 
tumor factors and to exclude the potential confounding 
influence of varying treatment on subsequent recur-
rence, we first modeled recurrence in 338 patients with 
primary, previously untreated meningiomas with GTR 
in the discovery cohort. We investigated covariates that 
define the WHO grading scheme (mitotic index, the pres-
ence of atypical features, and brain invasion), as well as 
MIB-1 proliferative index and chromosome arm-level and 
CDKN2A CNVs. Each feature was individually evaluated 
for association with time-to-recurrence using the log-
rank test. Covariates were further investigated using Cox 
LASSO regularization,27 random survival forests,28 and 
gradient boosting.29 Shared high-risk features identified 
across selection methods were chosen for iterative model 
building to construct an Integrated Grade with the best 
predictive performance for tumor recurrence. Features 
were added sequentially into the model until addition 
of no more features improve model performance, as as-
sessed using the Brier score. The Integrated Grade was 
compared to WHO grade for predicting tumor recurrence 
using time-dependent receiver operator curves (ROC), 
time-dependent average precision (AP) curves, and Brier 
curves. The Integrated Grade was internally validated in the 
discovery cohort using cross-validation techniques (10 000 
bootstrap resampling and leave-one-out-cross-validation) 
and externally validated in 2 independent cohorts.

Using all of the discovery cohort, which included tumors 
with varied treatment histories (Supplementary Table S1), 
the Integrated Grade was included along with extent of re-
section, tumor size, and tumor status (primary vs recurrent) 
into a Cox proportional hazards model to generate a nomo-
gram for recurrence risk. A decision curve analysis was per-
formed to evaluate the clinical utility of the nomogram.30

Additional details of genomic characterization, model de-
sign, and assessment are described in the Supplementary 
Appendix.

Results

The discovery cohort included 527 meningiomas (326 
WHO grade I, 172 WHO grade II, 29 WHO grade III; Figure 
1). The cohort was 67% female, with a mean age of 57 
(range 9-90) years; there were 132 recurrences across a 
mean follow-up of 43  months (Supplementary Table S1). 
Broad CNVs were absent in 27% of tumors and mono-
somy 22 was present alone in 18% of tumors, followed by 
frequent loss of chromosomes 1p (36%), 14q (19%), 6p/q 
(17%), 18p/q (16%), 10p/q (10%), and gain of 20p/q (11%), 
5p/q (10%), 7p/q (6%), 17p/q (8%), and 12p/q (7%) (Figure 
2A, B). Chromosomal gains were largely restricted to 
angiomatous and microcystic meningiomas, a subset of 
which also exhibited chromosome 1p loss (Figure 2A).16 Of 
34 patients with radiation-induced meningiomas, frequent 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
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Fig. 1  Study overview and description of patient cohorts. (A) A  clinical cohort of meningiomas were evaluated for patient demographics, 
histologic and molecular features, preoperative and postoperative tumor volume, and clinical follow-up including recurrence and death. (B) 
Description of 950 meningiomas analyzed. The discovery cohort consisted of 527 tumor samples from unique patients, with 338 primary tumors 
without history of treatment or prior radiotherapy. Validation was performed on 2 independent cohorts of 117 patients and 55 patients. Copy 
number was additionally derived from a molecular cohort of publicly available methylation and RNAseq datasets.
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Fig. 2  Copy-number profile of meningiomas. (A) Distribution of copy-number alterations, histologic features, treatment factors, and demographic 
features across 527 meningiomas in the discovery cohort. Tumor subtypes were annotated as: Anaplastic (Ana), Rhabdoid (Rh), Clear Cell (CC), 
Chordoid (Ch), Atypical (Aty), Microcystic (Mic), Metaplastic (Met), Meningothelial (Men), Transitional (T), Angiomatous (Ang), Psammomatous 
(Ps), Secretory (S), and Fibroblastic (F). Mitoses were classified as <4, 4-19, or >20. (B) Frequency of copy-number gains and losses across 
each chromosomal arm among the discovery cohort. (C) Inferred copy-number alterations in high-risk chromosomes of interest among 510 
meningiomas with methylation, mutational (OncoPanel), or RNAseq data.
  



801Driver et al. A molecularly integrated grade for meningioma
N

eu
ro-

O
n

colog
y

broad CNVs were present with 71% exhibiting 1p loss 
(Supplementary Figure S2). Loss of 3p, encompassing 
BAP1 and PBRM1, was seen in 5/9 cases with rhabdoid 
histology.31,32 WHO grade III meningiomas demonstrated 
significantly greater genome disruption than WHO grade 
II meningiomas (P = .027) with a trend toward more arm-
level CNVs (8.3 vs 6.7, P = 06; Supplementary Figure S3A).31

We inferred CNVs from 509 meningiomas with DNA mu-
tation panel sequencing (OncoPanel, n = 258), methylation 
profiling (n = 95), or bulk RNAseq (n = 156) (Figure 2C). The 
broad high-risk CNVs extrapolated from OncoPanel were 
96% concordant with microarray-derived CNVs in tumors 
evaluated by both methods (n = 118, Supplementary Figure 
S3B), demonstrating the reliability of CNV inference from 
other genomic platforms.

Development of a Molecularly Based 
Integrated Grade

With the aim of developing a grading scheme that is prog-
nostically relevant and that reflects tumor-intrinsic factors, 
we devised an Integrated Grade (see Methods; Figure 3A, 
B), which accounts for mitotic count, focal hemizygous or 
homozygous loss of CDKN2A, and loss of 1p, 3p, 4p/q, 6p/q, 
10p/q, 14q, 18p/q, and 19p/q. Several high-risk chromo-
somes, including 4, 6, 10, 18, and 19, exhibited synchronous 
loss of the short and long arms when altered; therefore, 
we assigned loss of either arm of these chromosomes as 1 
point. While mitotic count and the MIB-1 proliferative index 
were both associated with recurrence, they were signifi-
cantly correlated (R = 0.76, P < .001), and mitotic count exhib-
ited less variance (Supplementary Figure S3C). We assigned 
1 point for the presence of any of the above chromosomal 
losses, as well as for CDKN2A loss and a mitotic count of 
4-19; 2 points were assigned for mitotic count >20. Tumors 
are divided into three Integrated Grades based on their 
point score: Integrated Grade 1 (0-1 pt), Integrated Grade 2 
(2-3 pts), and Integrated Grade 3 (>4 pts) (Figure 3C).

Association Between WHO Grade and 
Integrated Grade

While WHO grade was significantly associated with 
Integrated Grade (chi-squared test, P < .001), 32% of 
cases were reclassified, mostly among the WHO grade II 
meningiomas (Figure 3D). WHO grade I  tumors with or 
without 2 atypical features distributed similarly across 
Integrated Grades. Among WHO grade III tumors, rhabdoid 
meningiomas are frequently reclassified into lower-risk 
Integrated Grades, with 3/9 as Integrated Grade 1 and 4/9 
designated as Integrated Grade 2, consistent with the chal-
lenge in grading this histologic meningioma subtype33 and 
a low incidence of recurrent events such as loss of 1p. In 
contrast, 19/20 WHO grade III anaplastic meningiomas re-
mained Integrated Grade 3.

Integrated Grade and Clinical Outcome

In the subset of 338 primary non-irradiated meningiomas 
with GTR, tumors demonstrated distinct progression-free 

survival curves as stratified by either WHO grade or 
Integrated Grade (P < .001; Figure 4A, B). The application 
of Integrated Grade further differentiated recurrence within 
WHO grade I or II meningiomas (Figure 4C, D). WHO grade 
I meningiomas designated Integrated Grade 2 or 3 fared 
significantly worse than WHO grade II-III meningiomas with 
Integrated Grade 1 (P < .001; Figure 4E). Integrated Grade 
also predicted recurrence more reliably than the presence 
of brain invasion, a feature sufficient for WHO grade II des-
ignation in the current schema, as meningiomas with brain 
invasion and Integrated Grade 1 fared significantly better 
than those with brain invasion but Integrated Grade 2-3  
(P < .001; Figure 4F). Taken together, the Integrated Grading 
scheme significantly improved the ability to predict recur-
rence risk compared to the WHO grade, as evaluated by 
time-dependent (ROC) area under the curve (5-year AUC 
0.823 vs 0.632), AP (5-year AP 0.781 vs 0.405), and Brier 
score (0.098 vs 0.180) (Figure 4G–I), even when restricted 
to the prospectively collected cases alone (5-year AUC 
0.795 vs 0.624; 5-year AP 0.638 vs 0.341; Supplementary 
Figure S4A, B). Notably, the predictive capacity of the 
Integrated Grade compared to WHO grade strengthened 
with follow-up time.

Across the full discovery cohort, WHO grade and 
Integrated Grade stratified patients into differing 
progression-free outcome curves (Supplementary Figure 
S4C, D), and the Integrated Grade continued to outperform 
the WHO grade in predicting recurrence (Brier score 0.157 
vs 0.233; Figure 5A). The addition of individual molecular 
features into the grading scheme incrementally strength-
ened the predictive performance for recurrence over WHO 
grade (Figure 5A). The presence of 1p loss as a single fea-
ture conferred a significantly higher risk of recurrence 
compared to tumors with intact 1p (Figure 5B). With regard 
to CDKN2A/B, meningiomas with either homozygous or 
heterozygous loss had similar rates of recurrence (Figure 
5B). Of the 244 patients with available mutational data 
for TERTp coverage, the Integrated Grade outperformed 
the new 2021 WHO grading scheme, which incorporates 
TERTp mutations and CDKN2A/B homozygous loss into 
the definition of WHO grade 3 (Brier score: 2016 WHO 0.163 
vs 2021 WHO 0.166 vs Integrated Grade 0.151; Figure 5C).34 
We validated the performance of the Integrated Grade in 
2 independent cohorts, 1 of the 117 patients (Brier score 
0.178 vs 0.214) and another of 55 patients (Brier score 0.143 
vs 0.181) (Figure 5D, E). In each of these cohorts, we found 
that the Integrated Grade was superior to WHO grade in 
predicting recurrence, similarly to the discovery cohort, 
most notable over longer-term follow-up. In addition, the 
Integrated Grade was superior to WHO grade in assessing 
overall survival on long-term follow-up (Supplementary 
Figure S4E).

Mutations

Only a small number of mutations were observed that are 
associated with aggressive behavior, such as in SMARCB1 
(n = 7), SMARCE1 (n = 1), TERT promoter (TERTp, n = 6), and 
BAP1 (n = 2). Of the 6 cases with TERTp mutation (3 WHO 
grade I, 3 WHO grade II), 3 recurred; the 3 TERTp-mutated 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab213#supplementary-data
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Fig. 3  Development of a molecularly Integrated Grade. (A) Univariate Cox proportional hazards analysis evaluating tumor-intrinsic, histologic, 
and molecular features and their associated hazard risk for tumor recurrence across 338 patients with primary meningiomas who underwent GTR 
without prior radiation. Specific hazard ratios are listed with error bars representing 95% CI. Features are ranked in order from top-down as most 
significant to least significant, with those with P < .05 denoted by red confidence interval bars. (B) Features most significantly associated with 
meningioma recurrence, as identified by LASSO, random survival forest, and gradient boosting methods. (C) Integrated Grading scheme: points 
are assigned for the presence of listed molecular features or elevated mitoses, with the resultant sum categorizing tumors into 1 of the 3 Grades 
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tumors that did not recur were Integrated Grade 1, while 
the 3 TERTp-mutated tumors that recurred were Integrated 
Grade 2-3 (Supplementary Figure S4F).

Impact of Treatment

The treatment received significantly influences the clin-
ical course of meningiomas, with surgery playing a central 
role. GTR decreased recurrence risk for Integrated Grade 1 
and Integrated Grade 2 meningiomas (P < .001); however, 
GTR did not significantly delay recurrence in Integrated 
Grade 3 tumors (P = .38) (Figure 6A–C). In de novo higher-
grade meningiomas, either by Integrated or WHO grading, 
receipt of adjuvant radiation did not prolong progression-
free survival (Supplementary Figure S5A–D). Recurrent 
tumors had a much higher likelihood of subsequent recur-
rence than primary tumors (P < .001; Figure 6D).

Multivariate Risk Model

The Integrated Grade, primary vs recurrent status, tumor 
volume >25  mL, and extent of resection were all sig-
nificantly associated with hazard of recurrence, but the 
Integrated Grade had the greatest impact (Figure 6E) 
and most predictive power (Supplementary Figure S6A). 
Previously described risk factors, such as age, male 
sex, and tumor location, were not independently asso-
ciated with recurrence after accounting for Integrated 
Grade (Supplementary Figure S6B).18 Additionally, the 
receipt of early adjuvant radiation after surgery was did 
not influence recurrence rate after accounting for the 
Integrated Grade in this cohort (Supplementary Figure 
S6C). We constructed a nomogram based on the multi-
variate model which can be applied to individual patient 
scenarios (Figure 6F). Decision curve analysis was per-
formed to assess the clinical utility of this model, with the 
multivariate model rendering a net benefit exceeding null 
models among a wide range of threshold probabilities 
(Supplementary Figure S6D).30

Discussion

Since the publication of the seminal monograph 
Meningioma: Their classification, regional behavior, life 
history, and surgical end results by Harvey Cushing and 
Loise Eisenhardt in 1938, the grading of meningiomas has 
been based on histopathologic features, the interpretation 
of which may differ across pathologists and inconsistently 
reflects tumor behavior. The development of a prognosti-
cally relevant grading scheme with combined histologic 

and molecular features, as exists for other central nervous 
system tumors,35–38 remains inchoate for meningioma.

We present an alternative to the WHO grading scheme 
for meningioma with improved accuracy in predicting 
tumor behavior. We incorporated mitotic index, a proven 
reliable predictor of tumor behavior,39 as well as ge-
nomic markers significantly associated with recurrence, 
all of which have been previously observed in malignant 
meningiomas.15,18,40 Our combinatorial risk stratification 
scheme accommodates the variable genomic profiles ob-
served in aggressive meningiomas. The ability of CNVs to 
predict tumor behavior has been debated, thereby, limiting 
the use of CNVs in prognostication despite the relative 
technical ease of accessing this information.9,10,17,18 While 
the underlying biologic drivers of aggressive meningiomas 
still remain poorly understood, copy-number alterations 
appear to occur early in progression and before clinical de-
tection, and offer predictive value most notable over long-
term follow-up compared to WHO grade.16

The Integrated Grade varied from the WHO grade in a 
substantial portion of patients (ie, ~one-third), and could 
therefore provide immediate and meaningful clinical ben-
efit. For example, the administration of adjuvant radiation 
for WHO grade II and some grade I meningiomas, especially 
in the setting of STR, remains controversial and predomi-
nantly clinician-dependent.41 Given the excellent clinical 
course of Integrated Grade 1 meningiomas, independent 
of their WHO grade and brain invasiveness, deferring the 
potential long-term adverse sequelae of upfront radiation 
may be safe.42,43 Residual tumor in those meningiomas 
without copy-number alterations or with only monosomy 
22 may continue to exhibit indolent growth with observa-
tion. Conversely, the presence of multiple high-risk copy-
number alterations in the presence of grade I  or grade 
I with atypical features histology should alert clinicians to 
maintain close surveillance for tumor recurrence over long 
follow-up, even after GTR, and raise consideration for ad-
juvant radiotherapy or clinical trial enrollment. While the 
biological imprint of meningiomas plays a vital role in 
tumor behavior, it does not supplant the impact of surgery: 
a genomically stable meningioma (Integrated Grade 1) will 
have the best chance for long-term progression-free sur-
vival after complete excision. Given the high incidence of 
meningiomas globally, the framework we present would 
influence the care of thousands of meningioma patients 
worldwide.1,44

One concern for the integration of genomic data into a 
grading scheme is the feasibility of implementation in ac-
ademic and community settings. Accessibility and ease 
of interpretation are critical. Copy-number profiling is 
widely available in standard practice because of its demon-
strated utility in the diagnosis of other tumors (eg, 1p/19q 
status in gliomas).35 The observation that the summation 

(F) Progression-free survival among patients with brain invasion on histopathologic analysis, stratified by Integrated Grade 1 vs Integrated 
Grades 2-3. (G) Time-dependent area under the curve (AUC) of a ROC for Integrated Grade and WHO grade (Integrated Grade: 5-year AUC 0.823, 
95% CI 0.724-0.91 vs WHO grade: 5-year AUC 0.632, 95% CI 0.521-0.737). (H) Time-dependent average precision for Integrated Grade and WHO 
grade (Integrated Grade: 5-year AP 0.781, 95% CI 0.485-1.0; vs WHO grade: 5-year AP 0.405, 95% CI 0.258-0.586). (I) Brier prediction curve for 
progression-free survival comparing Integrated Grade to WHO grade in the 338 patients (Brier score: 0.098 vs 0.180). Abbreviation: GTR, gross 
total resection.
  

Fig. 4, continued
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of high-risk molecular features incrementally strength-
ened the ability to predict recurrence allows for selec-
tive application of available genomic resources, ranging 
from targeted fluorescence in situ hybridization (FISH) to 
whole-genome assays. Furthermore, the accurate infer-
ence of broad chromosomal loss or gain from a number 
of genomic platforms, independent of proprietary tech-
nologies, increases the appeal.11,45 The binary read-out of 

copy-number alterations and the transparency offered by a 
point-based risk stratification system further enhances the 
ease of interpretation.

This analysis harbors several limitations. Mutational 
coverage in this study was incomplete, including those 
associated with prognosis such as in TERTp, BAP1, and 
SMARCE1.31,46–50 While these mutations are relatively rare, 
the Integrated Grade was able to stratify outcome amongst 
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TERT promoter-mutated cases. Additionally, there was a 
sparsity of certain WHO high-grade histologic subtypes 
(clear cell, chondroid, rhabdoid, and papillary). It is pos-
sible these subtypes may have other important genomic 
features driving aggressive tumor behavior not captured 
by our Integrated Grading scheme, such as SMARCE1 
mutations in clear cell meningiomas. Simpson grade, the 
most precise measure for extent of tumor resection, was 
unavailable. Hence, we adopted volumetric measurements 
based on quantitative imaging analysis as an indicator of 
tumor resection to accommodate for subjectivity and inter-
surgeon variability in reporting,51 acknowledging that the 
failure to remove tumor-involved bone and dura remains 
an important consideration for evaluating recurrence risk. 
Additionally, methylation signatures were not available 
for our institutional cohort, limiting comparison to previ-
ously described methylation classification schemes.9,10,12 
Broad access to copy-number-based profiling, made avail-
able by divergent genomic platforms that have proliferated 
across medical centers and commercial labs, will expand 
the number of patients who may benefit from molecular 
characterization beyond WHO grade at institutions without 
ready access to methylation platforms. Copy-number pro-
filing has been integrated into the workflow at our institu-
tion, and the largely prospective collection of these cases 
strengthens the validity of our findings. Despite the need 
for assessment of larger cohorts of meningioma with rare 
mutations and of uncommon histologic subtypes, we 
show that mitotic index and copy-number profile can alone 
appraise tumor behavior with satisfactory results and sig-
nificantly improve upon existing methods.

Taken together, the modular nature of the proposed risk-
stratified integrated grading scheme lends itself to future 
refinement with incorporation of additional axes of ge-
nomic data as scientific discovery advances and has imme-
diate relevance to management of meningioma patients. 
We envision that the Integrated Grade can enhance the 
clinical care of meningioma patients and aid in the design 
of future prospective clinical trial
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TERT promoter-mutated cases. Additionally, there was a 
sparsity of certain WHO high-grade histologic subtypes 
(clear cell, chondroid, rhabdoid, and papillary). It is pos-
sible these subtypes may have other important genomic 
features driving aggressive tumor behavior not captured 
by our Integrated Grading scheme, such as SMARCE1 
mutations in clear cell meningiomas. Simpson grade, the 
most precise measure for extent of tumor resection, was 
unavailable. Hence, we adopted volumetric measurements 
based on quantitative imaging analysis as an indicator of 
tumor resection to accommodate for subjectivity and inter-
surgeon variability in reporting,51 acknowledging that the 
failure to remove tumor-involved bone and dura remains 
an important consideration for evaluating recurrence risk. 
Additionally, methylation signatures were not available 
for our institutional cohort, limiting comparison to previ-
ously described methylation classification schemes.9,10,12 
Broad access to copy-number-based profiling, made avail-
able by divergent genomic platforms that have proliferated 
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the number of patients who may benefit from molecular 
characterization beyond WHO grade at institutions without 
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filing has been integrated into the workflow at our institu-
tion, and the largely prospective collection of these cases 
strengthens the validity of our findings. Despite the need 
for assessment of larger cohorts of meningioma with rare 
mutations and of uncommon histologic subtypes, we 
show that mitotic index and copy-number profile can alone 
appraise tumor behavior with satisfactory results and sig-
nificantly improve upon existing methods.

Taken together, the modular nature of the proposed risk-
stratified integrated grading scheme lends itself to future 
refinement with incorporation of additional axes of ge-
nomic data as scientific discovery advances and has imme-
diate relevance to management of meningioma patients. 
We envision that the Integrated Grade can enhance the 
clinical care of meningioma patients and aid in the design 
of future prospective clinical trial
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