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Irisin is a PGC-1α-dependent myokine that causes increased energy expenditure by

driving the development of white adipose tissue into brown fat-like tissue. Exercise can

improve irisin levels and lead to its release into the blood. In ischemic stroke, neurons

are always sensitive to energy supply; after a series of pathophysiological processes,

reactive oxygen species that are detrimental to cell survival via mitochondrial dysfunction

are generated in large quantities. As a protein associated with exercise, irisin can alleviate

brain injury in the pathogenesis of ischemic stroke. It is thought that irisin can upregulate

the levels of brain-derived neurotrophic factor (BDNF), which protects nerve cells from

injury during ischemic stroke. Furthermore, the release of irisin into the blood via exercise

influences the mitochondrial dynamics crucial to maintaining the normal function of

nerve cells. Consequently, we intended to summarize the known effects of irisin during

ischemic stroke.
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INTRODUCTION

The incidence of stroke has increased rapidly over the past few decades, causing it to become
one of the main causes of death and long-term disability worldwide (Huang et al., 2012; Katan
and Luft, 2018). Especially in low- and middle-income countries, the incidence of stroke-related
mortality is increasing, resulting in a high economic burden for both the patients and society
(Karimi-Khouzani et al., 2017). Ischemic stroke accounts for ∼80% of stroke cases (Lapchak and
Zhang, 2017). Among all types of ischemic stroke, focal ischemic stroke is the most common. Focal
ischemic stroke is caused by middle cerebral artery occlusion (MCAO) (permanent or transient),
resulting in a lack of blood flow through the MCA. Defective blood supply can cause a shortage of
glucose and oxygen in nerve cells, thus increasing reactive oxygen species (ROS) production and
disrupting cell homeostasis. These complications lead to pathophysiological processes including
excitotoxicity, oxidative stress, inflammation, apoptosis, and cell death (Khoshnam et al., 2017).

Mitochondria play a pivotal role in the pathophysiology of cerebral ischemic reperfusion. As
highly dynamic organelles, mitochondria undergo morphological transformation through fission
and fusion. In ischemic stroke, fission and fusion play critical roles in maintaining mitochondrial
homeostasis when nerve cells lose blood supply. When mitochondria are damaged, fusion exerts
a protective effect, allowing functional mitochondria to complement dysfunctional mitochondria
through combining components between organelles. Fission is needed to create newmitochondria.
However, excessive fission results in mitochondrial dysfunction (Li and Liu, 2018; Wang et al.,
2020). In ischemic stroke, mitochondria are the main source of ROS. As a source of stress,
excessive ROS damages the normal morphology of mitochondria, disrupting brain cells (Li and
Liu, 2018). Therefore, maintaining mitochondrial integrity can serve as an alternative candidate for
the development of neuroprotective tactics for treating cerebral ischemic injury.
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Physical exercise can reportedly alleviate some of these
pathophysiological processes. In addition, in the rehabilitation
stage of stroke, exercise can also effectively improve sequelae
symptoms (Li et al., 2017; Ryan et al., 2017). In 2013, studies
reported that brain-derived neurotrophic factor (BDNF) is a
possible mediator of the neurological benefits of exercise (Mang
et al., 2013). BDNF is an abundant growth factor that is
correlated with activity-induced neuroplasticity (Mang et al.,
2013), and is upregulated by exercise in the animal brain
(Berchtold et al., 2005; Rasmussen et al., 2009; Quirié et al., 2012).
In a chronic stroke, treadmill high-intensity interval training
elicited a significantly acute increase in BDNF (Boyne et al.,
2019). Vascular endothelial growth factor (VEGF) is another
neurotrophin that accumulates in human blood during exercise
(Wahl et al., 2014). Peripheral increases in VEGF expression
promotes perilesional angiogenesis and neurologic recovery in
animal models of post-acute stroke (Zhang et al., 2000; Yang
et al., 2010). Furthermore, several studies are substantiating the
benefits of an exercise intervention on induced brain injury in
animal stroke models (Ding et al., 2005; Matsuda et al., 2011;
Sakakima et al., 2012; Otsuka et al., 2016). A recent study
also demonstrated that the exercise-induced hormone irisin
contributes to the neuroprotective effect of physical exercise
against cerebral ischemia (Li et al., 2017).

The previously unknown hormone irisin was discovered by
Boström et al. (2012). Irisin is released into the blood through
the enzymatic hydrolysis of PGC-1α after exercise, which could
stimulate the transformation from mouse and human white
fat cells into brown fat cells (Figure 1) (Boström et al., 2012).
Since then, several studies have confirmed that irisin plays a
protective role in the pathogenesis of many diseases, including
neurodegenerative diseases, such as Alzheimer’s disease, and
cardiovascular diseases (Jin et al., 2018; Kim et al., 2018; Clark
and Vissel, 2019; Conti et al., 2019; Young et al., 2019; Zhao
et al., 2019). However, as research on the role of irisin in
ischemic stroke is still limited, it is necessary to further elucidate
its activity.

This review intends to summarize the structure and
distribution of irisin in different tissues, the neuroprotective
effect of irisin generation via exercise in ischemic stroke, and the
correlation of exercise and irisin onmitochondrial dynamics.We,
therefore, aim to provide a new research direction for exploring
new treatment methods for ischemic stroke.

STRUCTURE AND DISTRIBUTION OF
IRISIN

Irisin was originally reported as a new hormone secreted from
muscle cells upon exercise. It is encoded by PGC-1α, which
is involved in many pathways related to energy metabolism
(Boström et al., 2012). PGC-1α can stimulate skeletal muscle
cells to express FNDC5 (a signal peptide with 29 amino acid
residues), type III fibronectin assembly with 112 amino acid
residues, and a C-terminal transmembrane domain with 65
amino acid residues. After the discovery of FNDC5 glycosylation
by proteolytic enzymes, a new protein was identified. Irisin

FIGURE 1 | PGC1-α expression in muscle stimulates an increase in the

expression of FNDC5, a membrane protein that is cleaved and secreted as the

newly-identified hormone irisin. Irisin acts on white adipose cells in culture and

in vivo to stimulate UCP1 expression and a broad process of brown fat-like

development.

consists of 112 amino acid residues and a fibronectin III domain
(Boström et al., 2012; Erickson, 2013). Previous research has
revealed preliminary evidence that irisin is not only expressed in
mammalian organs and tissues such as the heart, skeletal muscle,
and brain (Aydin et al., 2014) but also in the thyroid, ovary, liver,
lung, testis, esophagus, fat, and other tissues (Wrann et al., 2013).
The distribution of irisin can also be detected in different brain
regions and cell groups such as in Purkinje cells in the cerebellum
(Varela-Rodríguez et al., 2016), astrocytes in the hippocampus
(Piya et al., 2014), neurons in the brain (Wang et al., 2018),
the hypothalamus (Dun et al., 2013), and even cerebrospinal
fluid (CSF) (Aydin et al., 2013). Importantly, irisin has been
demonstrated to have pivotal roles in attenuating inflammation,
reducing oxidative stress, and alleviating apoptosis, as well
as ameliorating mitochondrial dysfunction (Tu et al., 2020).
Consequently, the discovery and distribution of irisin has
provided a theoretical basis for exploring its effects in many
diseases, especially in ischemic stroke.

THE ROLE OF IRISIN IN STROKE

Skeletal muscle is a crucial organ in humans, accounting for
∼40% of the human body weight. As the most energy-consuming
organ, skeletal muscle accelerates the synthesis and secretion
of muscle factors with active ingredients during exercise. These
factors can act on other organs (such as the adipose tissue
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and the brain) in various ways by regulating sugar, lipid, and
protein metabolism (Febbraio and Pedersen, 2005; Lee et al.,
2015). Hence, the regulation of irisin/FNDC5 has obvious
motor involvement.

The role of FNDC5/irisin in learning andmemory is mediated
by BDNF expression, which plays an important role in neural
remodeling in conditions such as Alzheimer’s disease (Wrann
et al., 2013). A large number of studies have investigated the
effect of exercise on irisin secretion. Exercise can upregulate
BDNF levels in the hippocampus via PGC-1α activation and
FNDC5 expression (Wrann et al., 2013; Xu, 2013; Yau et al.,
2015). Experts have reached a consensus that BDNF may exert
a neuroprotective role via irisin expression. For example, Islam
et al. (2017) demonstrated that long-term exercise could increase
BDNF expression in the brain through the PGC-1α-FNDC5 axis.
It has also been shown that BDNF can enhance neuronal survival
and migration (Raefsky and Mattson, 2017). Further research
based on these studies demonstrated that BDNF expression was
regulated by the application of irisin to a rodent stroke model
during cerebral ischemia-reperfusion (Asadi et al., 2018). This
study elucidated that BDNF is a crucial regulator of the beneficial
effects conferred by irisin in ischemic stroke. As a protein that
leads to irisin expression, the peripheral delivery of FNDC5 to the
liver via adenoviral vectors could increase the level of BDNF and
other neuroprotective genes in the hippocampus (Boström et al.,
2012). This implies that irisin, or other factors induced by irisin,
can cross the blood-brain barrier to affect gene expression in the
brain. This discovery provides a theoretical basis for exploring
the effects of irisin in ischemic stroke.

A recent study has reported that irisin protects the blood-
brain barrier from ischemic injury by decreasing the expression
of MMP-9 (Guo et al., 2019). Some research has demonstrated
that exercise-induced irisin protects neurons from ischemia-
reperfusion injury by reducing the volume of cerebral infarction,
brain edema, and weight loss via Akt activation, which then
leads to the activation of BDNF (Croll et al., 1999) and the
ERK1/2 pathways (Li et al., 2017). Consistently, a recent study
has indicated that brain edema and neurological function are
alleviated by irisin during cerebral ischemia-reperfusion in mice
and inflammation factors such as IL-1β and TNF-α are decreased
and that apoptosis is reduced in the hippocampal neurons as a
result of irisin treatment via activation of the Notch signaling
pathway (Jin et al., 2019). Furthermore, irisin exerts a beneficial
role in vivo (Peng et al., 2017) and in vitro (Yu et al., 2020)
during ischemic stroke by suppressing the ROS/NLRP3 and
TLR4/MYD88 signaling pathways, respectively. Together, these
results suggest that irisin may exert a neuroprotective role during
an ischemic stroke (Figure 2).

Notably, although Li et al. (2017) have found that in MCAO
mice, irisin expression in the plasma is negatively associated
with the concentration of pro-inflammatory cytokines IL-6
and IL-α, the transition of white adipose into brown adipose
tissue may take some time, which is usually not available.
Consequently, exogenous irisin treatment may be necessary
during an ischemic stroke (Peng et al., 2017; Jin et al., 2019;
Yu et al., 2020). Moreover, the patterns of exercise are very
important for the generation of irisin. The forms of exercise

FIGURE 2 | Irisin can exert a neuroprotective role by upregulating the ERK1/2

signaling pathway and Notch signaling pathway, and suppressing the

TLR4/MYD88 pathway and ROS/NLRP3 pathway, respectively. The results

reduce brain edema, infarct size, oxidative stress, and inflammatory response.

include endurance and resistance exercise training; the former is
an aerobic and cardiovascular form of exercise, while the latter
focuses more on muscle strength and hypertrophy (Cornelissen
and Smart, 2013; Ryan et al., 2017). At present, evidence
suggests that irisin is involved in endurance exercise. This
is to be expected as resistance training activates the PGC-1α
isoform PGC-1α4, while endurance exercise regulates PGC-1α1,
an upstream transcriptional regulator of FNDC5 (Ruas et al.,
2012). Consistently, a study has also demonstrated that there is no
difference in serum irisin levels between the control subjects and
those who performed exercise, after the high-intensity interval
and resistance training (He et al., 2018).

IRISIN AND MITOCHONDRIAL DYNAMICS

As previously described, the discovery of irisin provides
an alternative direction for studying the potential treatment
methods for ischemic stroke. In 2017, Lidongjie et al. found that
irisin synthesis reduces the infarct volume and the degree of brain
edema and improves the neurobehavioral score in an oxygen-
glucose deprivation model (Li et al., 2017). During physiological
processes, the exercise-induced actin irisin can participate in
energy metabolism by affecting mitochondrial function. Some
studies have confirmed that when the regulation of energy
metabolism is impaired, mitochondrial function is damaged,
which further aggravates tissue damage in ischemia-reperfusion
models (Chen et al., 2015; Flippo et al., 2018; Guo et al., 2018;
Kim et al., 2018; Zabala et al., 2019; Zhang et al., 2019; Zhao
et al., 2019). Exercise and irisin pretreatment exert a protective
role by affecting the mitochondrial dynamics in tissues (Zhang
et al., 2014; Chen et al., 2017; Bi et al., 2019). In addition, in the
presence of ROS, exercise can maintain the normal morphology
of mitochondria by activating AMPK (Trewin et al., 2018).
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MITOCHONDRIAL DYNAMICS AND
STROKE

Mitochondrial dynamics mainly consist of fission and fusion.
Fission is mediated by the proteins Drp1, Fis1, and MFF.
Drp1 is recruited from the cytosol to the outer membrane of
mitochondria and interacts with its receptor proteins MFF and
Fis1 to create the fission complex. Drp1 is then oligomerized
into filaments that wrap around mitochondria, leading to
mitochondrial constriction and sequential separation of the inner
and outer membrane. Drp1 reportedly has a crucial role in
ischemic stroke; brain edema, the infarct area, and other neuronal
injuries are alleviated following Drp1 downregulation (Anzell
et al., 2018; Kameoka et al., 2018).

Three different GTPases mediate fusion, including Opa1
and Mfn1/2. Mfn1/2 are anchored to the outer membrane of
mitochondria, while inner membrane fusion is mediated by
Opa1. A lack of mitofusins prevents fusion of both the outer
and inner membrane of the mitochondria, while the loss of Opa1
only blocks fusion of the inner membrane. Mitochondrial fusion
proteins are less studied in ischemic stroke. Mfn2 is reported to
exert an anti-apoptotic effect, and its expression decreases in the
presence of ROS. Opa1 can attenuate infarct volume in ischemic
stroke, and its expression is increased after exercise (Anzell et al.,
2018; Kameoka et al., 2018; Wei et al., 2019; Lai et al., 2020).

In ischemic stroke, cell survival and pathobiology are
involved inmitochondrial dynamics. As mitochondrial dynamics
processes, fission and fusion are crucial to mitochondrial
function. Fusion is presumed to be beneficial to cell survival,
but studies show that fission facilitates cell death (Li and
Liu, 2018; Wang et al., 2020). Studies report that irisin can
inhibit excessive Drp1-related mitochondrial fission and ROS,
which exerts a protective role in ischemic disease (Bi et al.,
2019; Tan et al., 2019). Furthermore, exercise can improve
mitochondrial function in the brain by increasing the activity of
the mitochondrial complex and Drp1 expression (Gusdon et al.,
2017). Consequently, mitochondrial dynamics may have a key
exercise-related role following ischemic stroke.

AMPK AND MITOCHONDRIAL DYNAMICS

It is reported that mitochondrial homeostasis is closely related
to AMPK upregulation associated with altered cell energy
metabolism (Siteneski et al., 2018). Animal studies show that
irisin activates AMPK to inhibit liver cholesterol synthesis (Tang
et al., 2016). Therefore, it is speculated that irisin may influence
mitochondria by regulating AMPK expression.

AMPK is a heterotrimer including an α-subunit and two
regulatory subunits, β and γ. The α-subunit is the main catalytic
part of AMPK, containing a kinase domain and the key residue
Thr172. When the ratio of ATP-AMP decreases, the AMPK
complex is activated by phosphorylation on Thr172 in the α-
subunit. The activated AMPK affects themitochondrial dynamics
by activating downstream substrates. When stresses, such as
ischemia or hypoxia, are applied, the phosphorylated AMPK
directly phosphorylates MFF. MFF then recruits Drp1 to the

mitochondrial membrane, selectively causing fission of the
damaged mitochondria and protecting normal mitochondrial
function (Wang and Youle, 2016; Herzig and Shaw, 2018).

It has been reported that exercise is a potential activator of
AMPK, demonstrating the possibility that AMPK can affect
mitochondrial dynamics via exercise (Trewin et al., 2018).
Moreover, irisin is necessary for mediating AMPK activity
(Fan et al., 2020). Notably, AMPK reactivation can attenuate
hyperglycemia-mediated mitochondrial injury. In heart
ischemia, irisin can improve the expression of mitochondrial
fusion proteins Opa1 and Mfn1 by activating the AMPK
signaling pathway; blocking the AMPK pathway inhibits the
regulatory activity of irisin on mitochondrial homeostasis (Fan
et al., 2020). Irisin also activates the AMPK/UCP2 signaling
pathway, which exerts a protective role on ischemia/reperfusion-
induced renal injury (Zhang et al., 2020). Together, these studies
imply that irisin may play an important role by influencing
AMPK expression during ischemic stroke. However, considering
that the literature related to the neuroprotective effect of irisin
and mitochondrial dynamics in stroke is limited, further research
is required to confirm this role.

DISCUSSION

Although treatment strategies for stroke have been explored
over several decades, intravenous thrombolysis remains the
primary and most effective method (Keizman et al., 2011).
However, due to the limitation presented by the short window
for treating stroke, many patients are not treated in time (Diop-
Frimpong et al., 2011). According to a recent clinical study,
the word “neuroprotection” should be replaced with “brain
cytoprotection” because stroke affects the entire neurovascular
unit and the underlying white matter (Savitz et al., 2019).
Therefore, developing brain cytoprotectants in the context
of thrombolysis along with pre-hospital/in-hospital/post-
thrombolysis tactics is necessary. Alternative treatment strategies
such as in-hospital pre-thrombectomy cytoprotection, as well
as drugs targeting the ischemic cascade within neurons and the
entire neurovascular unit to limit and prevent the expansion of
the ischemic core still need to be explored (Savitz et al., 2019).

Irisin is reportedly induced by physical exercise to augment
energy expenditure, according to the initial report (Boström
et al., 2012). A large number of clinical and experimental
investigations have subsequently confirmed that acute exercise
induces the release of irisin into the blood. It should be
noted that although there is still some conflicting evidence
(Raschke et al., 2013; Albrecht et al., 2015), it is widely believed
that irisin plays substantial roles in the pathophysiology of
metabolic diseases. Moreover, irisin is not only a myokine
but also an adipokine (Roca-Rivada et al., 2013). Thus, irisin
may be a promising therapeutic bioactive hormone for the
treatment of metabolic diseases. Recent studies have uncovered
some important biological functions of irisin in other systems.
For example, irisin regulates depression-like behavior (Wang
and Pan, 2016). Due to the crosstalk between metabolic
dysfunction and cardio-cerebrovascular diseases, the role of irisin
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in the cardio-cerebrovascular system is also a deeply studied
research direction.

Irisin protects against endothelial injury and ameliorates
atherosclerosis in Apo-E knockout mice (Lu et al., 2015). In the
field of myocardial ischemia-reperfusion, the protective role of
irisin via the regulation of the SOD2 and AMPK pathways has
been demonstrated (Wang et al., 2018; Xin et al., 2020). Notably,
AMPK, as the main transcription factor, is very important for the
crosstalk betweenmetabolic and cardio-cerebrovascular diseases.
Consequently, irisin may exert a brain cytoprotective role by
influencing the expression of AMPK.

Many scholars have also suggested that irisin is an exercise-
induced muscle factor, with exercise promoting its large-scale
expression in skeletal muscles, the heart, and the brain. These
brain regions include Purkinje cells in the cerebellum (Varela-
Rodríguez et al., 2016), astrocytes in the hippocampus (Piya
et al., 2014), neurons in the brain (Wang et al., 2018), the
hypothalamus (Dun et al., 2013), and even the CSF (Aydin et al.,
2013). Irisin is therefore suggested to have a positive impact on
the nervous system. In 2017, Li et al. first provided evidence that
irisin is a neuroprotective hormone in cerebral ischemia, with
its expression underlying the neuroprotective effects of physical
exercise against cerebral ischemia. This finding provided strong
evidence that irisin may exert a brain cytoprotective role during
ischemic stroke.

Evidence suggests that irisin levels are affected by a large
number of stressors. It is well-established that acute exercise
increases the levels of blood irisin (Jedrychowski et al., 2015;

Löffler et al., 2015; Samy et al., 2015). Two independent studies
have demonstrated that serum irisin levels decrease between 1
and 24 h after heart ischemia in a mouse model (Bashar et al.,
2018; Zhao et al., 2019). Another study has found that plasma
irisin also decreases after ischemic stroke (Li et al., 2017), which
suggests that the release of irisin from muscles into the blood is
inhibited after ischemic stroke. Consistent with this perspective,
levels of FNDC5, the precursor of irisin, are also decreased
in skeletal muscles during cerebral ischemia. However, there is
no literature exploring how ischemia affects FNDC5 expression
and irisin secretion from skeletal muscles, and studies are just
beginning to explore the potential mechanisms involved. Because
of the limited literature about the role of irisin in ischemic stroke,
further studies must be conducted in the future to elucidate the
potential mechanism by which irisin confers its protective effect
in stroke.
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