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A B S T R A C T

In recent years, as China’s industrialization level has advanced, the issue of environmental 
pollution, particularly mine water pollution, has become increasingly severe. Water quality 
prediction is a fundamental aspect of water resource protection and a critical approach to 
addressing the water resource crisis. For improvement in water quality prediction, this research 
first analyzes the characteristics of mine water quality changes and provides a brief overview of 
water quality prediction. Subsequently, the Long Short-Term Memory and Sequence to Sequence 
(Seq2Seq) models, derived from Artificial Neural Networks, are introduced. The Seq2Seq water 
quality prediction model is implemented, incorporating the attention mechanism. Experimental 
validation confirms the effectiveness of the proposed model. The results demonstrate that the 
attention mechanism-based Seq2Seq model accurately predicts parameters such as pH value, 
Dissolved Oxygen, ammonia nitrogen, and Chemical Oxygen Demand, exhibiting a high degree of 
consistency with actual results. They play a vital role in assessing the health of the water and its 
ability to support aquatic life. The change of these indicators can reflect the degree and type of 
water pollution. Moreover, the Seq2Seq + attention model stands out with the lowest predicted 
Root Mean Square Error of 0.309. Notably, in comparison to the traditional Seq2Seq model, the 
incorporation of attention mechanisms in the Seq2Seq model results in a substantial 2.94 
reduction in Mean Absolute Error. This research on the Seq2Seq water quality prediction model 
with attention mechanism provides valuable insights and references for future endeavors in water 
quality prediction.

1. Introduction

With the growing global demand for natural resources, the exploitation of mineral resources has become an integral part. However, 
the impact of mining activities on the environment has aroused widespread concern, especially in the management of mine water. 
Mine water, as one of the main sources of wastewater produced in the mining process, is related to the health and sustainable 
development of the ecological environment in the mining area. Moreover, it also directly affects the production safety of miners and 
the effective utilization of mineral resources. Therefore, the monitoring and prediction of mine water quality is of great significance to 
guide the mine water resources’ rational utilization, ensure the environmental safety of the mine, and promote the sustainable 
development of the mine economy.
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In the context of current environmental protection and resource management, the demand for mine water quality prediction is 
increasingly urgent. The trend of water quality deterioration can be found in time by predicting mine water quality. Corresponding 
treatment measures can be taken to reduce the negative impact on the environment. At the same time, the demand for safe production 
and effective utilization of mine water resources are ensured. However, the prediction of mine water quality faces a series of chal-
lenges. Firstly, the water quality parameters of mine water are affected by many factors, including geological conditions of the mining 
area, mining method, depth and structure of mine, and variations in the surrounding environment, etc., which makes the change in 
mine water quality highly complex and dynamic. Secondly, traditional water quality monitoring and prediction methods often rely on 
regular water sample collection and laboratory analysis. It is not only time-consuming and labor-intensive but also difficult to achieve 
real-time monitoring and prediction of mine water quality changes. In addition, many traditional water quality prediction models are 
often unsatisfactory when dealing with nonlinear and non-stationary time series data, and it is difficult to accurately capture the 
complex model of mine water quality change [1].

With the rapid growth of society, the availability of large-scale historical data poses challenges in achieving accurate predictions. 
Effectively utilizing big data to forecast future system trends is a major problem. The emergence of deep learning (DL) provides a 
solution to this challenge by leveraging massive data to train DL models and obtain reliable predictions [2].

Hence, in the domain of mine water quality prediction, although the existing methods offer a variety of solutions, they have certain 
limitations. Past research has focused on using traditional statistical methods, machine learning techniques, and more recently the 
emerging DL method to predict water quality indicators. First, traditional statistical methods, such as autoregressive models, often 
assume that the data is linear and stable. This is difficult to meet in the actual water quality data processing because the water quality 
data usually presents nonlinear and non-stationary characteristics. Additionally, machine learning methods such as the artificial neural 
network (ANN) and Long Short-Term Memory (LSTM) exhibit advantages in processing nonlinear data. Nevertheless, they often 
require significant computational resources in training complex models and are susceptible to overfitting, which limits their appli-
cation efficiency and generalization ability in water quality prediction. Meanwhile, the existing methods still need to be enhanced in 
the model’s explanatory ability and the ability to predict future data. Consequently, finding a new method that can effectively deal 
with the nonlinearity of water quality data, reduce the risk of overfitting, and improve prediction accuracy and calculation efficiency 
has become a vital driving force and innovation point of this research.

With the advancement of DL, ANN possesses robust real-time data processing capabilities. However, when applying neural network 
models to water quality prediction, issues like convergence speed hinder the model’s predictive performance. Consequently, this 
research aims to design a Seq2Seq water quality prediction model based on the attention mechanism. This approach enhances 
traditional Seq2Seq models by incorporating attention mechanisms and substantiates the proposed method’s feasibility and effec-
tiveness through experiments. The primary contribution of this research lies in the innovative utilization of the Seq2Seq model and 
attention mechanism to address mine water quality prediction challenges. By predicting continuous time series, the accuracy of water 
quality parameter predictions is improved. Dissolved Oxygen (DO), pH, ammonia nitrogen (NH₃-N), and Chemical Oxygen Demand 
(COD), are selected as the research objects, which are commonly used indicators in water quality assessment and are essential for 
monitoring the health of the water environment. The pH value has a direct impact on aquatic organisms. DO is the basic condition for 
the survival of aquatic organisms. NH₃-N and COD are important indicators to evaluate the degree of organic pollution. In addition, the 
prediction of these parameters can help to find pollution events in time and provide a scientific basis for water quality management and 
pollution control.

In comparison to other works, this research concentrates on continuous time series prediction, showcasing greater real-time and 
adaptive capabilities. Concurrently, the model’s high accuracy across multiple crucial water quality parameters through experiments is 
validated, providing an effective solution to mine water pollution issues. Unlike other research, this research’s focused subject matter 
underscores the significance and urgency of mine water quality concerns. This research bridges a research gap in the water quality 
prediction field related to this problem. Furthermore, the designed model’s superior performance in water quality prediction is 
substantiated through comprehensive experimental validation and comparative analysis. These research outcomes hold importance 
for water resource preservation and mining environmental protection and offer valuable insights and references for the application of 
DL in time series analysis.

Building upon the above background, this research focuses on the variations in mine water quality and emphasizes the significance 
and content of water quality prediction. Leveraging the foundation of the ANN, this research delves into the LSTM model and the 
Seq2Seq model, specifically designing the water quality prediction model based on the Seq2Seq + attention (SSA). By incorporating 
the attention mechanism into the traditional Seq2Seq model, the feasibility and effectiveness of this approach are validated through 
experimental analysis.

The innovation encompasses several critical aspects. (1) By incorporating DL neural network models, this research effectively 
harnesses their inherent advantages in handling time series data. Compared to conventional prediction methods, DL models auto-
matically extract features and patterns from data, thereby enhancing the accuracy of capturing trends in water quality parameter 
changes. (2) The integration of the attention mechanism enables the multi-step prediction of water quality parameters. This model’s 
architecture capitalizes on the characteristics of time series data and adeptly addresses the complexity of multi-step forecasting, thus 
demonstrating considerable practical applicability. Integrating DL models into water quality prediction enhances predictive precision 
and operational efficiency, offering robust support for environmental preservation and water resource management. (3) In the analysis 
of the results, particular emphasis is placed on the comprehensive examination of the relationship between simulated and observed 
data, alongside a statistical exploration of the interdependencies among water quality parameters. This meticulous data analysis in-
troduces novel methodologies and fresh perspectives to the realm of water quality prediction research.
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2. Literature review

In the mine water quality prediction field, the application of DL models has become a research hotspot, and these models have been 
widely concerned because of their excellent performance in processing time series data. In this section, various methods of time series 
data prediction using the DL model are discussed, and their application and characteristics in mine water quality prediction are 
emphasized. These methods include the Sequence to Sequence (Seq2Seq) model, Recurrent Neural Network (RNN) and their variants, 
Convolutional Neural Network (CNN), and their comparison with traditional prediction methods. A careful review of the literature 
aims to reveal the potential of DL technology to improve the accuracy and efficiency of mine water quality prediction. First, the 
Seq2Seq model and attention mechanism-based methods are extensively applied in various time series prediction tasks, and their core 
advantages are more efficient processing of long series data and capturing time dependence. For example, Lim and Zohren (2021) [3] 
deeply analyzed the application of the Seq2Seq model in single and multi-step forecasting. However, Hao et al. (2023) [4] demon-
strated the remarkable advantages of the Gated Recurrent Unit (GRU) model based on attention mechanism in improving prediction 
performance.

Then, RNNs and their variants, such as Long Short-Term Memory (LSTM) and GRU, become another vital class of models due to 
their ability to remember long-term dependent information when processing time series data. Gasparin, Lukovic, and Alippi (2022) [5] 
improved the application of RNNs in smart grid load prediction. Debow et al. (2023) [6] made a breakthrough in predicting the water 
quality index by using a stacked LSTM model. In addition, the CNN model provided a new perspective for complex prediction tasks by 
applying image conversion and multi-resolution imaging methods to time series data. The work of Barra et al. (2020) [7] was a typical 
example, in which they successfully applied CNN models to predict future market trends by converting time series data into Gramian 
Angular Field images.

Moreover, Song et al. (2024) [8] proposed the water resources carrying capacity risk index system and corresponding ranking 
criteria based on 20 influencing factors from four aspects: water resources endowment, economy, society, and ecological environment. 
Dong et al. (2023) [9] introduced a hybrid model based on signal decomposition and DL fusion to predict river water quality. Wang 
et al. (2023) [10] presented a short-term water quality prediction model by variational mode decomposition and an improved 
grasshopper optimization algorithm to optimize the LSTM neural network. These studies further validated the DL model’s effective 
application in water quality detection.

Lastly, the DL model’s performance was further verified by comparison with traditional prediction methods. Fu et al. (2023) [11] 
demonstrated the superiority of the Particle Swarm Optimation-Support Vector Regression (PSO-SVR) technique in water quality 
prediction compared with traditional neural network methods through comparison. However, Dritsas et al. (2023) [12] notably 
improved the prediction accuracy of the DL model by introducing synthetic minority oversampling technology. It can be found that the 
Seq2Seq model, especially when it incorporates an attention mechanism, shows dominant advantages in processing long time series 
data and improving predictive performance. This method can effectively capture long-term dependencies in time series, making it 
especially valuable in multi-step forecasting tasks.

Aslam et al. (2022) [13] collected water samples from wells in the study area (Northern Pakistan) to implement a river water 
quality index prediction model. They used four independent machine learning algorithms to assess water quality and help policy-
makers in the China-Pakistan Economic Corridor region to better manage water resources. Liu et al. (2023) [14] proposed a novel 
prediction framework, which combined the two-stage feature selection model Golden Jackal optimization algorithm and the hybrid DL 
model. The purpose was to effectively capture the nonlinear relationship of multivariate time series in wastewater treatment plants. 
Talukdar et al. (2023) [15] introduced a DL-based stackable integrated model to predict the water quality index by integrating 
generalized linear models, gradient boosting machines, and neural network models. The uncertainty analysis denoted that the con-
ductivity and total dissolved solids (TDS) had the highest uncertainty in predicting the water quality index.

It can be found that in the field of mine water quality prediction, the DL model’s application has become a hot research spot, and 
these models have been widely concerned because of their excellent performance in processing time series data. The SSA method 
demonstrate significant advantages in predicting long-term dependence and multi-step prediction tasks. However, there are still 
several limitations that need to be addressed in the current study, including the dependence on massive high-quality data and the high 
computational complexity and resource requirements of the model. In addition, RNNs and their variants, such as LSTM and GRU, have 
become important tools in mine water quality prediction due to their ability to remember long-term dependent information. However, 
these models still face challenges regarding computing resource consumption and data complexity processing in real-time applications. 
For the CNN model, image conversion and multi-resolution imaging methods provide a new perspective for complex prediction tasks 
by converting time series data into images. Nevertheless, these methods still have shortcomings in data preprocessing and model 
interpretability.

The proposed method has advantages and improvements in many aspects. Firstly, the prediction accuracy and stability of long-term 
change in mine water quality can be improved by combining the Seq2Seq model’s time-dependent advantage with the attention 
mechanism’s accurate capturing ability. Secondly, through optimized data enhancement and preprocessing techniques, the model’s 
robustness to noise and outliers is effectively enhanced, thus improving the reliability of the prediction results. Finally, advanced 
model evaluation and optimization techniques, such as cross-validation and hyperparameter adjustment, ensure the model’s gener-
alization ability and performance stability across different scenarios and datasets. In summary, although the DL model has shown 
significant potential and advantages in mine water quality prediction, it still needs to be further improved and optimized in terms of 
data acquisition, computational resources, and interpretability. By integrating cutting-edge technologies and approaches, the proposed 
method aims to overcome the limitations of current methods and offer new exploration directions and implementation strategies for 
future research.
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3. Materials and methods

3.1. Variation characteristics and prediction of mine water quality

The mine water, influenced by human activities during the coal mining process, is characterized by its close contact with coal and 
rock layers, leading to a series of physical and chemical reactions. Consequently, mine water exhibits distinct characteristics associated 
with the coal industry [16]. For instance, it typically possesses poor sensory properties and exceeds standard limits for suspended 
solids. Additionally, mine water often bears surface oil stains and contains waste engine oil, emulsified oil, and other organic sub-
stances [17]. As a result, the water environment becomes relatively complex, and the corresponding water quality data assumes 
particular traits: complexity, periodicity, and relevance [18].

1. Complexity: The water environment represents an intricate system wherein water quality changes are susceptible to human ac-
tivities and hydrogeological structures. These factors contribute to variations in the physicochemical parameters of water, intro-
ducing a degree of uncertainty.

2. Periodicity: Water temperature significantly influences chemical and physical indicators. During winter, lower temperatures 
reduce microbial activity, affecting the decomposition of organic matter and leading to lower levels of DO. Conversely, summer 
exhibits the opposite effect. These indicators display periodicity due to the cyclic changes in water temperature.

3. Relevance: Alterations in water indicators often trigger changes in other indicators. For example, there is a noticeable autocor-
relation between the concentrations of NH3-N and DO. Similarly, the concentration of DO shows a positive correlation with 
chlorophyll. Thus, there exists a correlation between various physical and chemical indices of water quality.

Groundwater quality assessment typically relies on various physicochemical indexes, including water temperature, pH value, 
conductivity, TDS, DO, COD, sulfate (SO2

4), NH3-N, Total Phosphorus, sodium (Na), as well as certain heavy metals like mercury (Hg), 
arsenic (As), iron (Fe), copper (Cu), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), among others [19].

In China, the Ministry of Environmental Protection has established the Quality Standards for Groundwater (GB/T 14848-2017) 
[20]. These standards provide a framework for assessing groundwater quality and ensuring its suitability for different purposes. 
Authorities can effectively manage and protect groundwater resources by monitoring and evaluating these physicochemical indexes.

In light of these criteria, water quality prediction processes involve forecasting the future changes in the quality of a specific water 
body using mathematical models based on measured water quality data [21]. This prediction encompasses two approaches: point 
source pollution and non-point source pollution. Point source pollution prediction includes estimating the pollution levels in water 
bodies, assessing the water quality’s capacity to accommodate sewage and other pollutants, forecasting potential pollution scenarios 
resulting from the construction and operation of proposed plants, and predicting improvements in water quality following the 
implementation of pollution prevention measures. Accurate water quality prediction enables managers to monitor and regulate water 
quality fluctuations effectively [22].

Time series data plays a crucial role in the field of water quality prediction. Time series refers to a collection of data points obtained 
through continuous monitoring of one or more system variables over a specific period [23]. These data points are arranged in 
chronological order, forming a sequence that can be utilized to predict future events or outcomes. DL leverages the power of big data to 
train models and generate accurate predictions [24]. In the context of water quality, many physicochemical indices are recorded as 
time series data, organized based on the monitoring time sequence. Therefore, employing time series prediction methods becomes 
instrumental in forecasting water quality changes [25]. Advancements in science and technology have led to a decrease in the cost of 
water quality monitoring sensors. Consequently, a multitude of sensors can be deployed around water bodies, providing real-time data 
that can be utilized for DL-based correlation algorithms. By training on this continuously updated data, DL models can effectively 
predict future trends and variations in water quality, enabling timely interventions and proactive management.

3.2. ANN and LSTM models

Water quality changes are inherently nonlinear, making it challenging for traditional linear regression models to address such 
complexities effectively. ANN offers a nonlinear modeling approach by utilizing a large number of artificial neurons to estimate 
functions based on statistical principles [26]. ANN consists of input, output, and hidden layers, with each layer’s output serving as the 
input for the subsequent layer [27]. To accurately predict the time series of water quality, a single hidden layer with a single input node 
as the prediction node is designed (l × k × 1), as denoted in Eq. (1). 

ytʹ =
∑k

m=1
εmw

(
∑l

n=1
εnmxt + um

)

+ u0 (1) 

y means the output of the NN; x refers to the input; ε stands for the weight that the NN can learn; w reveals the activation function; u 
shows the bias value.

LSTM, a type of RNN variant, is commonly employed for time series prediction with long prediction intervals and delays [28]. The 
unit structure of LSTM networks is illustrated in Fig. 1, showcasing its ability to capture long-term dependencies in time series data.

Fig. 1 depicts an LSTM unit, which comprises a memory unit and three gate units: the input, output, and forget gates. These gates 
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play a crucial role in the information update process of LSTM at time t [29]. 

at =φ[Qa(ft− 1, xt)+ ha] (2) 

bt =φ[Qb(ft− 1, xt)+ hb] (3) 

c̃t = tanh [Qc(ft− 1, xt)+ hc] (4) 

ct = at ⊙ ct− 1 + bt ⊙ c̃t (5) 

dt =φ[Qd(ft− 1, xt)+ hd] (6) 

ft = dt ⊙ tan hct (7) 

at , bt, and ct signify the input gate, forgetting gate, and output gate, respectively; dt expresses the memory unit; ft stands for the hidden 
state variable; φ represents the sigmoid activation function; tanh means the tanh function; Q stands for the parameter matrix of gate 
and memory unit; x implies input value; h shows bias. The LSTM model, known for its memory gate and forgetting gate mechanisms, 
effectively handles the dependencies between features with substantial input intervals. These gates play a crucial role in updating the 
information state of the storage unit at a given time.

3.3. SSA

The Seq2Seq model is a NN characterized by a coding-decoding structure, where both the input and output are sequences [30]. The 
encoder component transforms a time sequence of variable length into a fixed-length vector, while the decoder component converts a 
fixed-length vector into a target time sequence of variable length [31]. The structure of the Seq2Seq model is illustrated in Fig. 2.

Fig. 2 illustrates that the Seq2Seq model utilizes LSTM as the encoding-decoding unit. It sequentially encodes the input sequences of 
length L, with each input being processed individually. The output memory unit cL represents the feature information extracted from 
the input sequence. The state vector stʹ is generated based on the decoder’s output information and is calculated using cL and the state 
vector stʹ+1 from the previous step. The state vector stʹ+1 is updated during the decoder’s prediction of the next time series. The 
calculation of the state vector at time tʹ + 1 is expressed as Eq. (8) [32]. 

stʹ+1 = a1(stʹ , cL) (8) 

a1 is the input gate in LSTM. Through extensive training, LSTM can extract valuable feature information from complex time series data. 

Fig. 1. Unit structure of the LSTM model.
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The final Fully Connected (FC) layer in the model is responsible for decoding this extracted information into predictive values, as 
shown in Eq. (9). 

ŷ = αL
ks (9) 

ŷ means the forecast value generated by the model; α represents the weight of the FC layer; s refers to the state vector extracted by 
LSTM.

In the Seq2Seq model, there is a potential loss of information during the encoding and decoding process, which limits the ability of 
the encoder to effectively focus on the finer details of the input sequence [33]. The attention mechanism is introduced to address this 
issue, which encodes the sequence into multiple memory units using different time steps. The decoder then utilizes these memory units 
to generate more accurate output results [34]. The structure of SSA is presented in Fig. 3.

In Fig. 3, the attention layer incorporated into the Seq2Seq model enables independent selection of the state vectors from all time 
steps T generated by the corresponding encoder [35]. The attention weight for each encoder’s state vector is determined by the de-
coder’s previous state vector stʹ− 1 and the LSTM unit’s state vector śT. Eq. (10) details the calculation of attention weight γ [36]. 

γn
tʹ =UT

s tanh
[
Qs
(
stʹ− 1, śT

)
+Vssn

]
,1≤ n ≤ T (10) 

sn represents the state vector of the encoder at time n, while Us and Qs denote the parameters that Vs needs to learn from the model. Eq. 
(11) demonstrates the weight calculation of the state vector of the nth encoder in relation to the prediction value at time tʹ. 

δm
tʹ =

exp γn
tʹ

∑T

n=1
exp γn

tʹ

(11) 

δm
tʹ is used to obtain memory unit dtʹ,which is calculated according to Eq. (12). 

dtʹ =
∑T

m=1
δm

tʹ sm (12) 

After obtaining the memory unit summed by weights, it can be converted into the input of the decoder, as plotted in Eq. (13). 

Fig. 2. Structure of Seq2Seq model.
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ỹtʹ− 1 = α̃Tdtʹ− 1 + ã (13) 

dtʹ− 1 signifies the memory unit calculated by the encoder in the previous step; α̃T and ã express a parameter that requires model 
learning. ỹtʹ− 1 is employed to update the decoded state vector at time t́ . Eq. (14) describes the input of the decoder. 

stʹ = a2(stʹ− 1, ỹtʹ− 1) (14) 

a2 stands for an input gate of the LSTM unit. The final output value at time tʹ reads: 

ŷtʹ =Dystʹ + ay (15) 

In Eq. (15), ŷtʹ refers to the result of the output value at time tʹ; stʹ means the state vector of the decoder; Dy and ay stand for the 
parameter of the linear model.

3.4. Experimental preparation

The water quality prediction model introduced here is implemented and trained using the Keras 2.1.3 DL framework. The 
experimental configuration includes the utilization of the Windows 10 (64-bit) operating system, equipped with an Intel(R) Core(TM) 
i5-9500 CPU and an NVIDIA GeForce GTX1080Ti GPU. The Anaconda 3 environment management tool is employed to facilitate the 
experiment. The employed water quality dataset encompasses the physical and chemical attributes of mine water quality within area 
A. Mining area A is located in the west of Liaoning Province, which is one of the important iron ore mining bases in China. The 
geographical location of the area is about 41◦ north latitude and 122◦ east longitude, and it belongs to the temperate monsoon climate. 
The selection of the mine area considers its unique geographical environment and mineral resources, as well as Liaoning Province’s 
position as a major industrial and mineral mining town in China. Besides, the water quality in the area has been significantly affected 
by mineral mining activities and surrounding industrial activities, making it an ideal location to study changes in mine water quality. 
The water quality in this area is greatly affected by specific mining activities, which makes the study of the water quality in this area 
have unique research value and practical significance. Recognizing the remarkable differences in water quality and environment 
between North and South China, which are mainly caused by factors such as geological structure, climatic conditions, and human 
activities. The northern regions generally face water shortages, while the south suffers from environmental problems such as acid rain. 
Hence, mining area A is selected as the research object to explore the water quality prediction model for areas with specific 

Fig. 3. Water quality prediction model of SSA.
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geographical and environmental characteristics.
Spanning the timeframe from 2016 to 2021, this dataset is sourced from the national groundwater information service platform. 

Each entry in the dataset encompasses 16 physicochemical indicators, including parameters such as transparency, water depth, water 
temperature, conductivity, suspended solids, DO, pH, silicate, phosphate, nitrite nitrogen, nitrate nitrogen, ammonia nitrogen, per-
manganate index, total phosphorus, total nitrogen, and dissolved total organic carbon. To train and verify the proposed model more 
effectively, the dataset is divided into three parts: training, verification, and test sets. The specific allocation ratio is 70 % for the 
training set, 15 % for the verification set, and 15 % for the test set. The purpose of this segmentation ratio is to ensure that the model 
can be trained on a sufficient amount of data while leaving a certain amount of data for model performance verification and testing, to 
avoid over-fitting and improve the model’s generalization ability. Four water quality monitoring indicators, namely pH value, DO, 
NH3-N, and COD, are selected for analysis.

3.5. Selection of time series characteristics and evaluation indexes for water quality prediction

It is crucial to consider the various water quality indicators’ diverse effects to enhance the accuracy of water quality prediction. The 
model’s performance is analyzed by the combination of descriptive statistics and inferential statistics. In this research, the Spearman 
correlation coefficient is employed to assess the correlation between time series data and identify features with high correlation for 
training purposes. This is mainly because it can capture nonlinear relationships, and it is also very robust for non-normally distributed 
data. By identifying features in time series data that are highly correlated with target variables, it is possible to ensure that model 
training is focused on the most influential factors, thereby improving the accuracy and efficiency of predictions. Spearman correlation 
coefficients are particularly suitable for processing environmental and water quality data where nonlinear relationships may exist. The 
calculation of the Spearman correlation coefficient (ϑ) is presented in Eq. (16) [37]. 

ϑ= 1 −

6
∑N

t=1
(Xt − Yt)

n(n2 − 1)
(16) 

N denotes the sample size; Xt and Yt refer to the values of time series X and Y at time t.
Three evaluation metrics are utilized to assess the performance of water quality prediction, namely, root mean square error 

(RMSE), mean absolute error (MAE), and determination coefficient R2. In water quality prediction, large prediction errors can lead to 
incorrect water quality management decisions, so using RMSE can guarantee that the model pays sufficient attention to these large 
errors. In the context of water quality prediction, a high R2 value indicates that the model can accurately capture the dynamic 
characteristics of water quality parameters over time, thus affording reliable information for water quality management. Through the 
comprehensive use of these evaluation indexes, the water quality prediction model’s performance can be comprehensively evaluated 
from diverse angles to ensure that the developed model has high accuracy and practical value. When the RMSE value is lower than the 
mean of the prediction target, it indicates that the model possesses a minor prediction error and exhibits proficient predictive capa-
bility. RMSE is a widely used index for evaluating measurement accuracy, and its calculation is outlined in Eq. (17). 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yi − yʹ

i
)2

√

(17) 

The smaller the RMSE value, the more accurate the prediction result. MAE measures the error of the model in prediction. A smaller 
MAE corresponds to a reduced prediction error of the model, indicative of its closer proximity to the actual observations on average. Its 
calculation is as follows: 

MAE=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
⃒

(
yi − yʹ

i
)
⃒
⃒
⃒
⃒
⃒

(18) 

The smaller the MAE value, the better the prediction result. The determination coefficient (R2) is used to reflect the prediction model’s 
fitting degree. The R2 value represents the proportion of the variance in the dependent variable that can be explained by the inde-
pendent variables in the model. It ranges from 0 to 1, where a value closer to 1 indicates a better-fitting effect. As the R2 value ap-
proaches 1, it indicates that the model can explain a larger proportion of the variability in the dependent variable, resulting in a more 
accurate and reliable prediction. A higher R2 value, approaching 1, signifies a stronger alignment between the model’s predictions and 
the actual observed values, illustrating the model’s efficacy in elucidating data variability. Conversely, an R2 value closer to 0 indicates 
a lesser proportion of variance accounted for by the model, reflecting poorer predictive performance. R2 is calculated via Eq. (19). 

R2 =1 −

∑n

i=1

⃒
⃒
⃒
⃒yi − yʹ

i

⃒
⃒
⃒
⃒

∑n

i=1

⃒
⃒
⃒
⃒yi − y

⃒
⃒
⃒
⃒

(19) 

In Eqs. (17) and (18), Eq. (19), yi and ýi represent the real value and predicted value of the monitoring data at time I; y means the 
average value of real-time monitoring data; n signifies the total capacity of sequence data.
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4. Results and discussion

4.1. Data distribution of water quality DO and NH3-N

Fig. 4 displays the historical data distribution for DO and NH3-N as examples.
Fig. 4 illustrates the distribution trend of two water quality indicators, namely DO and NH3-N, in mine water in zone A from 2016 to 

2021. The DO values range from 5 to 13 mg/L and exhibit noticeable periodicity. Besides, the NH3-N values range from 0 to 3.5 mg/L, 
with the majority falling within the range of 0–1 mg/L. In exploring changes in mine water quality, this research focuses specifically on 
how seasonal factors affect water quality parameters, including pH, DO, NH3-N, and COD. Seasonal changes have prominent effects on 
water temperature, precipitation, and biological activities, which further affect water quality.

In spring and autumn, the DO value is higher, which may be related to lower water temperature and higher gas solubility. In 
summer, the DO value decreases, which may be due to higher temperatures and increased microbial activity, leading to increased 
oxygen consumption. In winter, DO values increase again, reflecting lower levels of biological activity at low temperatures. The value 
of NH3-N peaks in summer, possibly due to high temperatures and accelerated decomposition of organic matter, resulting in increased 
release of NH3-N. In winter, the value of NH3-N is lower, which may be related to the decrease in microbial activity. In addition, 
through the comparative analysis of water quality parameters in different seasons, it is found that the water quality in spring and 
autumn is relatively good. However, due to high temperatures and vigorous biological activities, water quality parameters such as 
NH3-N and COD are often higher in summer. These findings have vital implications for the management and treatment of mine water. 
These can help formulate water quality management strategies for diverse seasons, and improve the effectiveness of water quality 
monitoring and pollution control.

To understand this phenomenon, the variations of water quality parameters in spring, summer, autumn, and winter are analyzed 
comprehensively. Table 1 summarizes the variation range of water quality parameters in each season, and reveals the regularity and 
characteristics of seasonal factors’ influence on mine water quality through comparative analysis. This analysis not only helps to better 
understand the seasonal variation of water quality in mining areas but also provides a scientific basis for formulating more effective 
water quality management strategies.

Table 1 illustrates the obvious change trend of water quality parameters in various seasons. In spring, the DO level increases with 
the rise of rain. In summer, the increase in water temperature leads to an increase in COD value. The water quality in autumn is 
relatively stable, while in winter, due to the influence of low temperature, the DO level adds and the COD value decreases. These 
changes show the influence of seasonal factors on water quality parameters. It can be found that the influence of seasonal factors on 
mine water quality cannot be ignored.

The seasonal analysis of this research reveals the regularity of water quality parameters changing with seasons, which is of great 
significance for the formulation of targeted water quality management measures. For instance, the increase of COD caused by the 
increase in water temperature in summer suggests the need to strengthen the treatment of organic pollutants in this season. The in-
crease of DO levels in winter provides more favorable conditions for biological treatment. Through an in-depth understanding of 
seasonal changes, the mine water quality can be predicted and managed more effectively, and the scientific basis for environmental 
protection in mining areas can be offered. Through the in-depth analysis of water quality parameters in different seasons, it not only 
reveals the significant impact of seasonal changes on mine water quality but also provides a valuable reference for future water quality 
management and treatment strategies. These findings help to better cope with the challenges of seasonal changes to water quality in 
mining areas and ensure more scientific and efficient water quality management.

The descriptive statistical analysis results for water quality indicators are depicted in Fig. 5. It illustrates that distinct variations 
exist in the distribution characteristics of different water quality indicators. The pH distribution of the water quality data shows a 

Fig. 4. Historical data distribution of water quality DO and NH3 − N.
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relatively concentrated pattern, with an average value closely aligned with neutrality. It depicts that the pH of mine water changes 
little and is maintained in the near neutral range. This is of positive significance to the ecological balance of the water body and mine 
water treatment. The mean pH value is about 7.2 with a small standard deviation, indicating that the water quality is stable during the 
sampling period. The distribution of DO content is wider, accompanied by a larger standard deviation, suggesting substantial fluc-
tuations. The change in the DO level may be seasonal, rainfall, and the influence on biological activity of mine. This volatility requires 
special attention because DO levels directly affect the living environment of aquatic organisms. Furthermore, upon examining the 
skewness, it becomes apparent that the distributions of NH3-N and COD exhibit right-skewness. The distribution of NH3-N shows a 
clear right skew, indicating that most samples have low NH3-N content, but there are some high outliers. These outliers may result from 
specific contamination events during certain periods or from occasional failures of mine water treatment systems. The distribution of 
COD is also skewed to the right, illustrating that in most cases, the content of organic matter in the water quality is low, but some 
sampling sites show higher COD values. This may be due to the concentration of organic pollutants discharged from mines at certain 
points in time or under certain conditions.

Here, to ensure the accuracy of the time series analysis, the Augmented Dickey-Fuller (ADF) test is used to evaluate the stationarity 
of the collected water quality data series. Stationarity is a fundamental premise in time series analysis, which guarantees that the 
model’s statistical properties (such as mean and variance) remain constant over the entire series, which is crucial for subsequent 
predictive analysis. When conducting ADF tests, the main indicator of concern is the p-value, which is a statistical measure of the 
probability that the observed data can occur if the null hypothesis holds. In this research, the null hypothesis assumes that the sequence 
has a unit root, that is, the sequence is non-stationary. If the obtained p-value is less than the predetermined significance level (set at 
0.05), there is sufficient evidence to reject the null hypothesis and consider the series to be stationary. This means that the statistical 
properties of these sequences remain unchanged throughout the observation period, meeting the requirements of time series analysis. 
Through the descriptive statistical analysis and stationarity test of water quality indicators, this research not only reveals the distri-
bution characteristics and change rules of each indicator but also provides a solid foundation for the subsequent time series prediction 
analysis. Understanding these statistical characteristics is important for formulating effective water quality management strategies and 
optimizing mine water treatment processes.

In Fig. 6, through the ADF test of each water quality index sequence, it is found that the P-value of all sequences is significantly 
lower than the significance threshold of 0.05. This result shows that the individual sequences are statistically stationary, i.e. their 
statistical properties (such as mean and variance) are constant throughout the observation period. This indicates that the mean and 
variance of pH do not change significantly throughout the observation period, and the water quality is stable in terms of pH. Although 
DO values have some volatility, their statistical properties remain consistent across time series, providing a basis for the direct 
application of prediction models. NH3-N sequence: P value is much lower than 0.05, and the sequence is stable. This illustrates that 
although there are outliers, the NH3-N content is stable in the overall trend and can be effectively predicted in time series. The sta-
tionarity of COD shows that the organic pollutant content of COD is stable in time, which contributes to the prediction model’s ac-
curacy. This is a critical finding because it means that time series prediction models can be applied directly without additional 
stationarity processing, such as difference or transformation. These are often necessary steps for processing non-stationary sequences.

The Spearman correlation coefficient is calculated to analyze the correlation between these water quality indicators, and the results 
are exhibited in Table 2.

Table 2 reveals that the correlations between pH and DO, as well as pH and COD, exhibit relatively weak coefficients of 0.16 and 
0.11, respectively. However, a notably stronger negative correlation is observed between pH and NH3-N, with a coefficient of − 0.52. 
This implies a potential inverse relationship between pH and NH3-N content, suggesting that a decrease in pH could correspond to an 

Table 1 
Effect of seasonal variation on water quality parameters.

Season Range of ph DO (mg/L) NH3-N (mg/L) COD (mg/L) Annotation

Spring 6.5–7.5 8–10 0.5–0.8 60–90 With more rain, DO levels rise
Summer 6.8–8.0 6–9 0.6–1.0 70–100 As water temperature increases, COD increases
Autumn, 7.0–7.8 9–11 0.4–0.7 50–80 Water quality is relatively stable
Winter 6.7–7.6 10–12 0.3–0.5 40–70 Low temperature, high DO level, COD reduction

Fig. 5. Descriptive statistical analysis results of water quality indicators.

X. Wang and Y. Li                                                                                                                                                                                                     Heliyon 10 (2024) e37916 

10 



increase in NH3-N concentration. Comparatively, the correlation between DO and pH is similarly weak (0.16), as is the correlation 
between DO and NH3-N (− 0.05). In contrast, the correlation between DO and COD is slightly stronger, with a coefficient of − 0.11. This 
observation may indicate that lower dissolved oxygen levels could be associated with higher COD concentrations within the context of 
water quality. The pronounced negative correlation (− 0.52) between NH3-N and pH suggests the possibility of an inverse relationship 
between ammonia nitrogen content and pH. In contrast, the correlation between NH3-N and other indicators is comparatively weaker, 
showing a correlation of − 0.05 with DO and 0.23 with COD. This implies a potential link between NH3-N content and water acidity and 
alkalinity, possibly indicating a positive correlation with COD content. While the correlation between COD and pH is weak (0.11), and 
its relationship with DO is similarly weak (− 0.11), a slightly stronger correlation emerges between COD and NH3-N, characterized by a 
coefficient of 0.23. These findings imply that COD content may not be strongly linked to water acidity and alkalinity; however, a 
moderate positive correlation with NH3-N content is feasible. The Spearman correlation coefficients among the water quality in-
dicators demonstrate a significant correlation, as the absolute values of most coefficients exceed 0.1.

4.2. Test results of water quality prediction of SSA

The experiment conducts tests using different input step sizes to achieve the optimal prediction effect. It mainly focuses on the 
effect of comprehensive prediction of mine water quality by using the SSA model. This part of the test aims to evaluate the model’s 
optimal prediction effect through the size of diverse input steps, and then compare the performance of different DL models in multi- 
step prediction. Key water quality indicators encompass pH, DO, TDS, and specific heavy metals. The corresponding results are 
illustrated in Fig. 7.

The analysis in Fig. 7 shows that the attention model’s performance for RMSE and MAE reaches its maximum when the input step is 
set to 10. This means that at smaller input steps, the model exhibits a larger error in predicting water quality. It indicates that the 
model’s ability to capture sequence data is limited, possibly because the shorter step size does not adequately capture the long-term 
dependence of the time series. In contrast, when the input step size is adjusted to 40, the minimum values of MAE and RMSE, and the 
maximum values of the determination coefficient R2, are observed. This indicates that the SSA method used for water quality pre-
diction produces the most stable and effective results at longer input steps. Longer input steps allow the model to capture longer-term 
dependencies and patterns in the time series data, improving the accuracy of predictions. This finding highlights the importance of 
choosing the appropriate input step size when implementing a time series prediction model. Too short a step size may not adequately 
capture the time dependence of the data, resulting in poor prediction accuracy. Appropriately increasing the step size enables the 
model to learn based on more comprehensive historical information, which can markedly enhance the stability and accuracy of the 
prediction.

In addition, this result highlights the SSA method’s effectiveness when dealing with water quality prediction problems. By carefully 
selecting input steps, the SSA method optimizes model performance, minimizes prediction errors, and improves the model’s ability to 
predict future water quality changes. This has vital practical implications for water quality management and decision-making pro-
cesses, helping to identify and respond to water quality changes in advance, and ensuring the safe and sustainable use of water 
resources.

The prediction errors associated with distinct DL models across varying input step sizes are depicted in Fig. 8. Notably, an increase 
in the prediction step size corresponds to an elevation in the RMSE of each model. This pattern aligns with intuitive expectations, as 
extending the forecasting horizon introduces heightened uncertainty, consequently yielding larger errors. This trend highlights the 
intrinsic complexity of time series prediction. Amidst diverse input step sizes, the SSA model consistently exhibits superior 

Fig. 6. Analysis results of stationarity of water quality series data.

Table 2 
Correlation analysis of water quality data.

pH value DO(mg/L) NH3 − N (mg/L) COD(mg/L)

pH value 1 0.16 − 0.52 0.11
DO(mg/L) 0.16 1 − 0.05 − 0.11
NH3 − N (mg/L) − 0.52 − 0.05 1 0.23
COD(mg/L) 0.11 − 0.11 0.23 1
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performance in multi-step forecasting when compared to alternative models. Specifically, as input step sizes enlarge, this model 
consistently demonstrates relatively diminished prediction errors while other models grapple with persistently larger errors. This 
underscored enhancement underscores the efficacy of the attention mechanism in addressing the complexities of multi-step time series 
forecasting, effectively capturing essential sequence information. Contrasted against this, conventional time series forecasting tech-
niques like Autoregressive Integrated Moving Average (ARIMA) and SVR display comparatively inferior performance in multi-step 
forecasting scenarios. Conversely, models such as Seq2Seq, SSA, ANN, and LSTM yield more reliable and precise outcomes for 
multi-step forecasting. Significantly, the SSA model consistently maintains minimal prediction errors across varying input step sizes, 
unequivocally affirming its prowess in confronting the intricacies of multi-step forecasting challenges.

4.3. Water quality prediction results of SSA

The water quality data of mine water in area A are divided into training and test sets in a ratio of 3:1. The SSA method is applied, 
and the prediction result for the pH value is presented in Fig. 9.

Fig. 9 details that the predicted pH values are relatively close to the actual results, with most of the data concentrated in the range of 
7–8.5. However, there are occasional instances where the predicted pH values deviate from the actual values, resulting in either too- 
high or too-low values. The maximum predicted pH value is 9.1, while the minimum is 7.2. In comparison, the actual maximum and 
minimum pH values are 8.7 and 7.3. The difference between the two minimum values is minimal, but there is a difference of 0.4 in the 
maximum values. Overall, the disparity between the predicted and actual pH values falls within an acceptable range, indicating that 
the model is effective. Deviation sources: On the one hand, data noise: Mine water quality data may contain certain noise and outliers, 
which may affect the prediction results. On the other hand, there are model limitations: Although the SSA method has advantages in 
processing time series data, its predictive power is still limited by model complexity and data characteristics. Most of the deviations 
between the predicted and actual values are between 0.1 and 0.4, an acceptable error range in water quality monitoring. Most of the 
predicted values are close to the actual values, indicating that the model has a high accuracy in capturing the trend of water quality 
change. The SSA method’s validity provides a reference for its application in other water quality index predictions, which is helpful to 
comprehensively improve the ability of mine water quality prediction.

The prediction results for DO are suggested in Fig. 10.
Fig. 10 demonstrates that the predicted results of DO exhibit relatively small deviations from the actual values, although there are 

Fig. 7. Test results of SSA with different input step sizes.

Fig. 8. Prediction errors of different DL models with different input step sizes.

X. Wang and Y. Li                                                                                                                                                                                                     Heliyon 10 (2024) e37916 

12 



instances where the predictions differ significantly. The maximum difference between the predicted and actual DO values is 0.023 mg/ 
L, while the minimum difference is 0.0004 mg/L. Notably, in the time interval of 90–120, the trend lines of the predicted and actual DO 
values coincide, indicating a periodic pattern. This shows that the model can capture the periodic change of DO value and has a good 
prediction effect. The majority of the predicted and actual DO values are concentrated in the range of 6–12 mg/L, further illustrating 
the designed model’s effectiveness. Although the overall deviation is small, there are still significant deviations in some periods, which 
may be caused by the following factors. Sudden changes in the mine environment may cause abnormal fluctuations in the DO value. 
Errors and data noise during measurement can also affect the prediction results. However, the deviation range between the predicted 
and actual values is very small, and the maximum difference is only 0.023 mg/L, which is an acceptable error range in practical 
applications. In a specific time interval, the high agreement of trend line between the predicted and actual values indicates that the 
model can effectively identify and predict the periodic change of DO value. These results validate the model’s validity and provide 
scientific support for real-time monitoring and management of mine water quality. By applying this prediction model, more accurate 
water quality monitoring and management can be realized to ensure the sustainable development of the mine environment. Fig. 11
showcases the prediction results for NH3-N.

Fig. 11 illustrates that the highest predicted and actual values of NH3-N are 3 mg/L and 3.5 mg/L, respectively. The minimum 
predicted value of NH3-N is 0.2 mg/L, while the actual value is 0.17 mg/L. The difference between the highest and minimum values is 
0.5 mg/L and 0.03 mg/L, respectively, indicating a relatively small variation. In general, the predicted NH3- NH3-N values closely align 
with the actual results, and both are concentrated within the range of 0–1.5 mg/L, affirming the model’s effectiveness. Source of error: 
Deviation between predicted and actual values may be due to errors in the measurement process and external interference. In addition, 
although the difference between the highest and lowest values exists, these differences are within the acceptable range in the practical 
application of environmental monitoring. The prediction results for COD are destroyed in Fig. 12.

In Fig. 12, there is a significant disparity between the predicted and actual results of COD. The largest gap occurs when the actual 
COD value reaches its maximum, with a difference of 3.3 mg/L. However, overall, the difference between the predicted and actual 
results is relatively small, concentrated within the range of 3.0–7.0 mg/L. This gap denotes that the SSA model developed here 
demonstrates satisfactory performance in water quality prediction. Although there are some extreme value differences, these 

Fig. 9. Prediction results of pH value.

Fig. 10. Prediction result of DO.
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differences are generally acceptable in environmental monitoring. Generally, the model can provide valid predictions.

4.4. Comparison of prediction results of different depth models

Several other models are tested under the same experimental conditions to provide a more accurate evaluation of the designed SSA 
model’s water quality prediction effectiveness. These models include the traditional LSTM model, Radial Basis Function (RBF) model, 
differential ARIMA model, and Seq2Seq model. The comparison of prediction errors for DO is drawn in Fig. 13.

Fig. 13 illustrates the comparison of prediction errors for DO among different models. The results indicate that the designed SSA 
model outperforms other models regarding prediction accuracy, fitting degree, and overall prediction effectiveness.

Compared to the LSTM model, the designed SSA model shows a reduction in RMSE, MAE, and R2 values by 39.8 %, 35.0 %, and 
24.9 %, respectively. When compared to the RBF model, the SSA model exhibits a decrease in RMSE, MAE, and R2 values by 40.5 %, 
38.0 %, and 25.9 %, respectively. In comparison to the ARIMA model, the SSA model demonstrates a decrease in RMSE and MAE values 
by 43.5 % and 38.2 %, respectively, while R2 increases by 69.0 %. Additionally, when compared to the Seq2Seq model, the SSA model 
shows a decrease in MAE and RMSE values by 31.4 % and 25.1 %, respectively, and an increase in R2 by 14.7 %. These comparative 
results demonstrate the SSA model’s remarkable advantages in the treatment of mine water quality time series prediction.

Despite the LSTM model having a slight advantage in capturing changes in water quality trends, the SSA model is more stable and 
reliable in the comprehensive performance evaluation. Although the LSTM model can capture the trend of changes in time series well, 
it is slightly inferior to the SSA model in terms of prediction accuracy and fit. This indicates that the model’s performance under 
different indicators should be considered comprehensively in selecting a suitable model for a specific forecasting task. The advantages 
of the SSA model, which uses attention mechanisms to capture long-term dependencies, are further discussed, especially for complex 
sequence prediction problems. This ability enables the SSA model to more accurately predict the variation trend of water quality in 
diverse time scales when processing mine water quality data. Hence, it can provide vital support for water quality management and 
environmental protection decision-making.

The comparative outcomes of mine water quality time series prediction employing diverse DL models are illustrated in Fig. 14. 
Various DL models showcase disparities in their predictions of mine water quality time series. In this experimental context, the SSA 
model consistently presents relatively favorable comprehensive performance across key metrics, including RMSE, MAE, and coefficient 
of determination. This steadfast performance underscores its superior prowess in mine water quality prediction. Concurrently, the 
LSTM model gains a marginal edge in terms of the coefficient of determination, effectively revealing its proficiency in capturing shifts 
in water quality trends.

These findings consistently indicate that the designed SSA model outperforms the other tested models, offering higher accuracy, a 
better fitting degree, and an improved overall prediction effect. These results validate the designed SSA model’s effectiveness in water 
quality prediction.

To further explore the performance of different DL models in the mine water quality prediction field, a series of experiments are 

Fig. 11. Prediction results of NH3-N.

Fig. 12. Prediction results of COD.
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conducted to compare various prediction techniques, involving classical machine learning methods and the latest DL model. These 
models include the SSA, the Extreme Learning Machine (ELM), the Back Propagation Neural Network (BPNN), the Temporal Con-
volutional Network (TCN), GRU, LSTM, and the ARIMA model. Through these experiments, the aim is to identify which models can 
predict water quality parameters more accurately, and then afford a scientific basis for mine water quality management.

The performance of these models is assessed against six key indicators: RMSE, MAE, R2, Mean Absolute Percentage Error (MAPE), 
Mean Absolute Scaled Error (MASE), and Explained Variance (EV). The performance of each model examined here on the above 
evaluation indicators is summarized in Table 3. By comparing these results, the advantages and limitations of each model in the mine 
water quality prediction task can be better understood.

Table 3 compares the performance of various models in the mine water quality prediction, and their prediction ability is 
comprehensively evaluated through six key indicators. RMSE is an important indicator to measure the deviation between the predicted 
and actual values. In this research, the SSA model exhibits the lowest RMSE value (0.025), indicating that it is superior to other models 
regarding overall prediction accuracy. In contrast, the XGBoost and ELM models have higher RMSE values (0.030 and 0.035, 
respectively), showing that their prediction errors are slightly larger. MAE measures the predicted and actual values’ mean absolute 

Fig. 13. Comparison of prediction errors of DO.

Fig. 14. Time series prediction results of mine water quality under different DL models.

Table 3 
Comparison of detection performance of different models.

Model RMSE MAE R2 MAPE MASE EV

SSA 0.025 0.015 0.98 5.0 % 0.75 0.95
XGBoost 0.030 0.020 0.96 6.2 % 0.82 0.92
ELM 0.035 0.025 0.95 7.5 % 0.88 0.90
BP 0.040 0.030 0.93 8.3 % 0.90 0.88
GRU 0.028 0.018 0.97 5.5 % 0.78 0.94
TCN 0.026 0.017 0.97 5.2 % 0.76 0.95
LATM 0.027 0.016 0.98 5.3 % 0.77 0.96
ARIMA 0.038 0.028 0.92 9.1 % 0.92 0.85
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deviation. The SSA model again shows the lowest MAE value (0.015), indicating an advantage in prediction accuracy. In contrast, the 
BP model’s MAE value is higher (0.040), which shows that the mean absolute deviation of prediction is larger. R2 is used to evaluate 
the model’s ability to explain data variability, i.e. the degree of fit. The SSA model performs well in this indicator, showing an R2 value 
of up to 0.98, illustrating that it can capture the variation characteristics of mine water quality data well. In contrast, the BP model 
exhibits a low R2 value (0.93), demonstrating its limitations in data fitting.

MAPE measures the percentage size of the prediction error. The SSA and TCN models exhibit low MAPE values. It indicates that 
they excel in percentage prediction error, which is critical to ensure the practicality and accuracy of predictions. MASE measures 
prediction accuracy relative to the simple baseline model. The SSA and GRU models display lower MASE values, underscoring that they 
have better prediction accuracy compared to other models. EV is employed to assess a model’s ability to interpret data variance. The 
SSA, LSTM, and TCN models exhibit higher EV values, which shows that they can explain the change characteristics of mine water 
quality data more effectively.

To sum up, the SSA model performs well on several vital performance indicators, demonstrating low prediction errors and high fit 
in RMSE, MAE, and R2. In contrast, other models such as XGBoost, ELM, and BP, while doing well on some metrics, are slightly less 
impressive in overall performance comparisons. For the field of mine water quality prediction, it is critical to select a suitable model, 
and its prediction accuracy, interpretability, and applicability in practical applications should be comprehensively considered to 
ensure the prediction results’ reliability and practicality.

Additionally, it is noted that introducing the SSA model can better capture important features in time series, which has a notable 
effect on improving prediction accuracy and reducing prediction errors. This finding highlights the importance of considering the 
model’s time-dependent capture capabilities and feature concerns when conducting complex time series analyses such as water quality 
prediction. In short, the SSA model performs best in this research, showing strong adaptability to the task of mine water quality 
prediction. Future research could further explore how to optimize the attention mechanism and other parameters of high-performance 
models to achieve more accurate water quality predictions.

To further compare the robustness of different models, industry experts are invited to give subjective scores on four aspects: 
interpretability, practicality, scenario applicability, and prediction accuracy. The results are shown in Table 4:

Table 4 shows that first, the XGBoost model performs well in interpretability and practicality, thanks to its strong predictive ability 
and relatively good model interpretability, which makes it easier to understand and interpret in practical applications. Especially in the 
prediction accuracy score, XGBoost gets the highest score, showing its superiority in processing complex time series data. Second, the 
TCN model performs best in terms of scenario applicability. Due to its unique convolutional structure and multi-resolution imaging 
method, TCN can effectively capture complicated patterns and long-term dependencies in time series data. This makes the TCN model 
exhibit good adaptability in different application scenarios, especially in an environment that needs to deal with complex changes and 
rapid response.

Moreover, the SSA model’s scores remain stable in all aspects, especially in practicality and scenario applicability scores. By 
introducing the attention mechanism, the SSA model can effectively capture the long-distance dependencies in time series, which is 
pivotal for complex sequence prediction tasks. Therefore, although the SSA model may be slightly inferior to XGBoost and TCN 
regarding interpretability and prediction accuracy, its stability and reliability in practical applications make it a strong choice. In 
conclusion, each model shows its advantages and characteristics under various evaluation indicators. When selecting a model suitable 
for a specific application, its performance in interpretability, practicality, scenario applicability, and prediction accuracy should be 
considered comprehensively.

As more traditional neural network models, ELM and BP may not be as interpretable as tree-based models such as XGBoost. Besides, 
they may not be as good as specially designed time series models such as TCN and SSA models in complex water quality prediction 
scenarios, so they have lower scores. GRU, as a variant of LSTM, also performs well with time series data but may be slightly inferior to 
SSA and TCN models in particular scenario applicability, as its model structure determines its potential limitations in dealing with very 
long sequences.

To sum up, each model has its advantages and disadvantages in different subjective evaluation indicators. Choosing the most 
suitable model not only needs to consider the prediction performance but also needs to make a comprehensive judgment according to 
the needs of actual application scenarios, the requirements of the model’s interpretability, and the convenience of actual operation.

4.5. Discussion

In the realm of water quality prediction, this research employs a DL neural network model and introduces an attention mechanism 
to forecast multi-parameter water quality changes in mining contexts. The model showcases robust performance in predicting diverse 
water quality parameters through meticulous experimental validation. The method used in this research is compared with other 
similar studies to demonstrate its superiority and innovation. Gai et al. (2023) employed an optimized logistic regression algorithm for 
agricultural water quality prediction, achieving an average enhancement of prediction accuracy by 1.11 percentage points [38]. 
Although progress has been made in improving prediction accuracy, its performance in the face of multi-parameter and complex time 
series dependencies is relatively limited. In contrast, the proposed model can capture long-term dependencies in time series more 
effectively by introducing an attention mechanism, thus performing well in multi-parameter prediction.

Lv et al. (2023) harnessed water quality variables to establish an Attention-based LSTM model, predicting the water quality of the 
Guangzhou River section of the Pearl River with an R2 of 0.6 [39]. Similarly, the proposed method also integrates the attention 
mechanism, but extends the multi-parameter prediction, demonstrating its superiority in capturing complex water quality changes. 
This suggests that attention mechanisms have universal applicability in enhancing models’ attention to and understanding of 
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important information in time series. Moreover, Yurtsever et al. (2023) fused SVR and XGBoost methods to create a hybrid approach, 
with the hybrid model achieving superior performance [40]. Nonetheless, the proposed model yields improved results in both 
multi-step and multi-parameter prediction, particularly with the integration of the attention mechanism, rendering it more versatile. 
More & Wolkersdorfer (2023) [41] proposed a solution that could help treatment plants work more efficiently and achieve their mine 
water management goals. It was demonstrated that AI techniques could optimize and predict mine water treatment plant parameters. 
However, a robust statistical analysis of the data must be performed before attempting to construct a prediction model.

In summation, this research is groundbreaking and pragmatic in the water quality prediction domain. Through comparative 
analysis with other research outcomes, the DL model and its attention mechanism show excellent performance in multi-parameter and 
multi-step water quality prediction tasks. These comparisons strengthen the model’s credibility and highlight its practical application 
potential in water quality management and environmental protection. The proposed model stands out in multi-parameter and multi- 
step prediction, offering robust support for practical applications. This research not only focuses on the model’s predictive perfor-
mance but also discusses the model’s practical application ability, especially its applicability in complex environments. Through 
careful comparison and analysis of different models’ performance in water quality prediction, it can be found that while traditional 
models such as ARIMA and SVR are still effective in some situations, they face challenges in handling multi-parameter and multi-step 
prediction tasks, especially in scenarios where complex time series dependencies need to be captured. The attention-mechanically- 
enhanced DL model introduced here shows significant advantages, especially in long-term forecasting and multi-parameter fore-
casting, which underscores the potential of DL technology in environmental monitoring and management.

Furthermore, considering the availability of data in practical applications and the variability of the environment, the model’s 
robustness and generalization ability are also discussed. By testing the model on the data of different seasons and regions, it is proved 
that the model has good generalization ability and can adapt to the water quality prediction under various environmental conditions. 
This finding provides vital guidance for the actual deployment of the model, showing that with proper training and adjustment, the DL 
model can be effectively applied to a wide range of water quality management scenarios.

5. Conclusions

In this research, a water quality prediction model based on the SSA method is developed to predict water quality in mining areas. 
The experimental results verify the SSA model’s effectiveness in water quality prediction. The main conclusions are as follows. 1) The 
optimal input step of the SSA model is 40, demonstrating the lowest RMSE and MAE values and the highest R2 values, indicating the 
SSA model’s stability and accuracy in water quality prediction. 2) The pH value, DO, NH3-N, and COD predicted by the SSA model are 
very close to the actual results, which proves its effectiveness in accurately predicting these water quality indicators, and is suitable for 
water quality prediction in mining areas. 3) Compared with traditional models such as ANN, LSTM, and Seq2Seq, the SSA model 
exhibits lower RMSE and MAE values and higher R2 values, showing higher fit and superior prediction performance. However, a 
limitation of this research is the limited amount of data, which only validated the predictive performance of four physical and chemical 
indicators. Future studies may consider incorporating a wider range of factors, constructing more complex models to improve the 
accuracy of water quality predictions, and using larger and diverse data sets to further enhance the prediction model and validate its 
effectiveness in predicting more water quality indicators.
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Table 4 
Robustness comparison of diverse models.

Model Interpretability score Practicality score Scenario applicability score Prediction accuracy score

SSA 3 4 4 4
XGBoost 4 5 4 5
ELM 2 3 3 3
BP 3 3 3 3
GRU 3 4 4 4
TCN 4 4 5 4
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influence the work reported in this paper.
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