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Abstract

After experiencing the COVID-19 pandemic, it is widely acknowledged that a rapid drug repurposing method is highly
needed. A series of useful drug repurposing tools have been developed based on data-driven modeling and network
pharmacology. Based on the disease module, we identified several hub proteins that play important roles in the onset and
development of the COVID-19, which are potential targets for repositioning approved drugs. Moreover, different network
distance metrics were applied to quantify the relationship between drug targets and COVID-19 disease targets in the
protein–protein-interaction (PPI) network and predict COVID-19 therapeutic effects of bioactive herbal ingredients and
chemicals. Furthermore, the tentative mechanisms of candidates were illustrated through molecular docking and gene
enrichment analysis. We obtained 15 chemical and 15 herbal ingredient candidates and found that different drugs may play
different roles in the process of virus invasion and the onset and development of the COVID-19 disease. Given pandemic
outbreaks, our method has an undeniable immense advantage in the feasibility analysis of drug repurposing or drug
screening, especially in the analysis of herbal ingredients.

Key words: COVID-19; drug repurposing; disease module; network proximity; herbal ingredients

Yonghong Zhang, Ph.D, Associate Professor, College of Pharmacy, Chongqing Medical University; Vice President, Committee, Chongqing Bioinformatics
Society, Chongqing, China. She is also doing research in Medical Data Science Academy, Chongqing Medical University, Chongqing, 400016, China, and
in Chongqing Engineering Research Center for Clinical Big-data and Drug Evaluation, Chongqing Medical University, Chongqing, 401331, China. Research
interests are computer life science, computational aided drug analysis and evaluation.
Hong Wang is a master candidate in the College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China. She is also doing research in
Medical Data Science Academy, Chongqing Medical University, Chongqing, 400016, China, and in Chongqing Engineering Research Center for Clinical Big-
data and Drug Evaluation, Chongqing Medical University, Chongqing, 401331, China. Her research interests include bioinformatics, drug evaluation and
computer aided drug design.
Jingqing Zhang is a Professor in the College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China. Her research interests are drug design,
preparation, analysis and evaluation.
Zhigang Lu is currently an Associate Professor in Department of Neurology, the First People’s Hospital of Jingmen affiliated to Hubei Minzhu University,
China. His research interests are Pharmacology of Traditional Chinese Medicine, Basic and Clinical Study of Cerebrovascular Diseases.
Weina Dai is a master student in the College of Pharmacy, Chongqing Medical University. Her research interests are bioinformatics, computer aided drug
analysis and drug design.
Chuanjiang Ma is an undergraduate student in College of Pharmacy, Chongqing Medical University. His research interests include bioinformatics, drug
evaluation and computer aided drug design.
Yun Xiang is the deputy chief physician of the Obstetrics and Gynecology department of Guangzhou Women and Children’s Medical Center. Her research
interest is the analysis and evaluation of clinical drug use for children and pregnant women.
Submitted: 13 July 2021; Received (in revised form): 6 August 2021

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

https://academic.oup.com/
https://doi.org/10.1093/bib/bbab373
http://orcid.org/0000-0001-8574-9288


2 Wang et al.

Introduction
In past 18 months, the rapid spread and destructiveness of the
COVID-19 have presented significant challenges on public health
and biomedical research. Combating COVID-19 requires rapid
development of new drugs and vaccines [1–3]. The successful
development of multiple vaccines gives people hope; however,
the virus has madly evolved and mutated, and the pandemic
large-scale outbreaks in India indicating potential huge risks still
exist all over the world [4].Therefore, there is still an urgent need
for therapeutic drugs. When an emergency pandemic breaks out,
how to quickly and effectively obtain potential drugs or lead
compound is a new challenge for drug discovery. Given the tight
timescales, the methods relying on traditional development,
experimental testing, clinical validation and approval of new
compounds are not feasible. Repurposing clinically approved
drugs whose mechanisms of action and safety profiles have been
thoroughly investigated is an ideal alternative method.

In silico drug design, especially repurposing methodologies
based on data-driven and network medicine techniques have
been applied to develop a series of computational tools to iden-
tify drug repurposing candidates [5, 6]. Drug repurposing has
enabled the identification of successful therapeutics for cancer
[7] and Parkinson disease [8]. Drug repurposing can enhance the
development of traditional drugs and accelerate the develop-
ment of new treatments for patients with Alzheimer’s disease
[9]. In addition, the data-driven repurposing strategies that can
identify previously unknown relationships between drugs and
diseases by integrating multiple sources of data using compu-
tational modeling and machine learning have transformed the
current therapeutic method for rheumatic autoimmune inflam-
matory diseases [10]. A network-based drug-disease proximity
method, shed light on the relationship between drug targets and
disease targets [11], is a useful tool for effectively repurposing
approved drugs to new indications and predicting potential side
effects [12]. And network analysis method has been used in drug
repurposing for the treatment of COVID-19 [13, 14]. Zhou used
a state-of-the-art network proximity measure to quantify the
relationship between host proteins from four known the human
coronaviruses and drug targets in the human interactome by
calculating the GSEA score to screen some candidates [13]. Their
hypothesis focused on the selected host protein to explore the
process of inhibiting virus invasion, without considering the
complete occurrence and development of the COVID-19 disease.
Gysi ranked all approved drugs based on their likely efficacy
for COVID-19 patients, relying on network proximity, diffusion
and AI-based metrics, to arrive at 81 chemical candidates [14].
Their ranking method is very meaningful and interested, but it
only focused on the approved little molecule drugs or proteins
(named ‘chemicals’ in this article), and it also gave few mean-
ingful recommendations for the next step in ‘old’ drug use in
clinical or drug development.

The role of traditional Chinese medicine (TCM) in success-
fully fighting the COVID-19 epidemic cannot be ignored [15].
The National Health Commission (NHC) of China proposed the
‘New Coronavirus Infection Pneumonia Diagnosis and Treatment Plan
(Trial)’. It is clearly pointed out that there are some medications
which could exert the antiviral effect by the combination of
herbal ingredients and chemicals. For example, LianHuaQing-
Wen [16], as a representative TCM for the respiratory system
infections in public health events, had been recommended to
be used during the COVID-19 medical observation period by the
NHC. QingFeiPaiDu decotion is effective for COVID-19 patients
at all stages according to the treatment guidelines, and the total
effective rate is as high as 92.09% [17]. GanCao Mixture was on

the list of the descriptions of all patients who are cured and
discharged from the First People’s Hospital Jingmen City from
January to April in 2020. Specifically, Dali previously used the
patterns of hormetic responses to explain the applicability of
these processes to herbal medicines of TCM [18]. The ‘regulating’
functions promote adaptive or preventive responses, while ‘cur-
ing’ treatments alleviate the clinical symptoms. Not only TCM
but also chemicals play significant roles in treating the COVID-
19 [19–21]. Hydroxychloroquine and chloroquine have shown
antiviral activity against SARS-CoV-2 [22]. Lopinavir-ritonavir
can significantly shorten the median time from positive to neg-
ative symptoms treating COVID-19 patients [20]. Both TCM and
chemicals are useful to fight against the COVID-19, but the
mechanism and effectiveness of these drugs are still unclear.
The screening and mechanism analysis of TCM and chemicals
were suggested to carry out in parallel.

Large data-driven methods involving a systematic analy-
sis of multiple types of data [such as gene expression, chem-
ical structure, genotype or proteomic data, electronic health
records (EHRs) or clinical trials] enhance these computational
approaches leading to the repurposing hypotheses [5, 23]. The
principle of parsimony, known as ‘Occam’s razor’, resists being
put on a rigorous footing, a difficulty that has become more
pressing and topical with the ‘big-data’ explosion [24]. Hence,
we selected molecular structures, genes related to the onset and
development of diseases (disease module) and factors related
to drugs and the human body or virus (drug target), genotype
or proteomic data (human interactome), and clinical trials as
effective and important information for analysis.

Therefore, this study applied network proximity and network
diffusion to directly analyze the closeness between drug targets
and effective disease targets without bias, convert it into the
possibility of identifying new indications for old drugs. Possible
mechanisms of the onset and development of disease after virus
invasion were uncovered through the disease module. And the
relationship between drug targets and disease targets is ana-
lyzed based on the network overlapping. Here, chemical drugs
and TCMs are included in network analyses combining drug
screening method to identify COVID-19 potential therapeutic
targets and mechanisms. After chemicals and herbal ingredients
were pick out and mentioned that different candidates treated
disease by different pathways, our method could provide a sim-
ple fast tool for new use of ‘old’ drugs for major public pandemics
or other urgent emerging diseases.

Materials and methods
Drug screening and targets collecting

In this study, drug screening includes chemicals screening and
collecting, and herbal ingredients collecting. Chemicals are col-
lected by two ways. Some chemicals are collected from some
literatures of drug repurposing strategies based on previously
approved for certain pathogens [25–34]. The other come from
our results of virtual screening in 2454 approved drugs from the
DrugBank database (https://go.drugbank.com/) by docking them
to the 3CLpro, which is used the traditional repurposing strate-
gies focus on drugs that target human proteins that bind to viral
proteins. Herbal ingredients are mainly collected from classical
herbal prescriptions that are currently reported to be effective to
anti-COVID-19 [35–37]. Licorice Mixture, which is clinically effec-
tive to COVID-19 in Jinmen Hospital, Hubei province, is analyzed
to obtain herbal ingredients through network pharmacology, too.

Target-collecting includes collecting disease targets and
molecular targets. The COVID-19 disease targets are collected

https://go.drugbank.com/
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from the GeneCards database (https://www.genecards.org/,
downloaded on 31 October 2020) using ‘novel coronavirus pneu-
monia’ or ‘novel coronavirus’. The targets of collected herbal
ingredients are obtained from the TCMSP database, and those
targets of chemicals are from the DrugBank database (down-
loaded on 2 November 2020). Then, all targets are converted
into uniform gene names in UniProt (https://www.uniprot.org/).

The COVID-19 disease module constructing

The COVID-19 disease targets are distributed in the Menche’s
protein–protein-interaction (PPI) network [38] instead of the
human interactome to form a COVID-19 disease module. The
module size S, which represents the LCC in this COVID-19
disease module, is defined. Both the distribution Prand(S), which
test statistic could be calculated for the observed values of S, and
the Z-Score to describe the size of S were defined and calculated
by using the u-test [39]. To estimate whether the COVID-19
disease targets were significantly localized in the network than
that by chance, S was also defined where the same number of
proteins as the COVID-19 disease targets were randomly selected
and repeated it 1000 times in the same network. Then, Prand(S),
Z-Score with random was also calculated by Equation 1. The
interconnected targets were defined as the core disease genes.

Z-score = S − 〈Srand〉
σ

(
Srand

) . (1)

Rank repurposing candidates

Network-based proximity analysis

The proximity between COVID-19 and a drug was evaluated
using the closest distance measures that take into account the
path lengths between drug targets and disease targets in the
COVID-19 disease module [12]. The relative average shortest
distance Zdc was used and calculated as follows. Given V (the set
of collected COVID-19 disease targets), T (the set of drug targets
including each herbal ingredient and chemical) and d(v, t), the
shortest path length between nodes v (v∈V) and t (t∈T) in the
human interactome [14], the closest distance measure (dc), which
was the key parameter to describe the shortest path length for
the node v and t in the menche PPI and represents the average
shortest path length between the drug’s targets and the nearest
disease protein, was defined in Equation 2.

dc (V, T) = 1
||T||

∑
t∈T

minv∈Vd (v, t) . (2)

To assess the significance of the distance between a drug and
the COVID-19 disease (T, V), we determined a reference distance
distribution corresponding to the expected distances between
two randomly selected groups of proteins, matching the size
and degrees of the original V and T sets. The reference distance
distribution was generated by calculating the proximity between
these two randomly selected groups, a procedure repeated 1000
times. To define the proximity measure and avoid repeatedly
selecting the same high degree nodes, when the mean μd (V,
T) and standard deviation σ d (V, T) of the reference distribution
were used to convert an observed distance to a normalized
distance, the relative average shortest distance Zdc between T
and V was calculated as follows.

Zdc = dc − μdc (V, T)

σdc (V, T)
. (3)

If Zdc < 0, it means that the dc of the test group is significantly
smaller than the reference, the drug with this test targets group

is a potential candidate of anti-COVID-19. Whether it is an
herbal ingredient or a chemical, the closest distance measure is
calculated and estimated its network proximity.

Network-based diffusion analysis

Diffusion state distance (DSD) algorithm was used to rank drug
candidates based on the network similarity of their targets to
the COVID-19 targets [14]. In this study, the average minimum
DSD of drug targets and disease targets in the PPI network of
one candidate Imin

DSDis calculated as follows. DSD was calculated
as follows to measure the similarity that how a pair of proteins
affect the rest global network in the human interactome. On
an undirected graph G(V, E) with the vertex set V = {v1,v2,v3,
. . . ,vn} and |V| = n. Given k (k > 0), He{k}(i, j) represents the expected
number of the times of the random walks from the node i to meet
the node j after k steps. A node vi (vi∈V) has a He{k}(i, j) [denoted by
He (vi, vj)] to any other node in the PPI network. An n-dimensional
vector He(vi), ∀vi∈V was defined as follow:

He (vi) = [He (vi, v1) , He (vi, v2) , He (vi, v3) , . . . , He (vi, vn)] . (4)

He(vi) represents the influence of the node vi to all of the rest
nodes in the global PPI network. Then, the DSD between two
vertices i and j (∀i, j∈V) was defined as follow, which represents
similarity through the sum over the absolute value of differences
between the vertices of i and j.

DSD
(
i, j

) = ∥∥He(i)–He(j)
∥∥

1, (5)

where DSD is a non-zero (i �= j), positive definite and symmetric
value for a given k, ||He(i) − He(j)||1 is the L1 norm (Manhattan
distance) of the He vector of nodes i and j in the network. For the
drug target t and the disease target v, the smaller DSD(t, v), the
higher the similarity between t and v in the human interactome.
Then, the average minimum DSD of drug targets and disease
targets in the PPI network of one candidate,Imin

DSD, is calculated
to describe the impact of drug targets on the COVID-19 targets
(Equation 6).

Imin
DSD = 1

V

∑
t∈T

minv∈VDSD (t, v) . (6)

Then, an herbal ingredient or a chemical with smaller Imin
DSD

value is defined as a potential candidate to treat COVID-19
disease.

Aggregation ranking

An aggregation value was used to combine rankings returned
by different methodologies into a single rank for each drug,
which determined its anti-COVID-19 repurposing priority. The
aggregation value was obtained for each candidate by setting
the weight ratio of the values of network proximity and network

diffusion similarity as 1:1 (Aggregation_value =
(
Zdc + Imin

DSD

)
/2).

Then, the herbal ingredients and the chemicals were ranked by
this aggregation value, respectively.

Then, the drug repurposing feasibility of the candidate was
confirmed by comparing the relative proximity Zdc of the candi-
date targets to its original therapeutic disease targets and the Zdc

of the targets of this candidate to the COVID-19 disease targets
in the PPI network.

Besides, to evaluate the predictive ability of the above-
ranking methods, their power to recover the candidates in
clinical trials as COVID-19 treatment were tested by computing
the receiver operating characteristics (ROC) curves and the

https://www.genecards.org/
https://www.uniprot.org/


4 Wang et al.

area under the curve (AUC) scores for measuring the quality
of separation between positive and negative trials. Our herbal
candidates were collected into a positive herbal set, and other
herbal ingredients (retrieved from the TCMSP with degree = NA
in the ‘herb-herbal ingredients-targets’ of the Licorice Mixture
or OB<30, and DL<0.18) were selected into the negative set. In
addition, when our chemical candidates were selected into the
chemical positive set, other chemicals with lower LibDockScore
listed on the bottom of our screening results of docking to 3CLpro
were chosen as the negative set, or these chemicals had status of
‘Withdrawn’, ‘Terminated’ or ‘Suspended’ in ClinicalTrials.gov
website (accessed on 01 March 2021) [40]. Then, both the true
positive rate and the false positive rate of ROC and AUC were
computed under the trapezoidal rule using the Scikit-learn
package in Python.

Drug repurposing feasibility analysis of the candidates

Gene enrichment analysis

Gene enrichment is performed to explore the network vicinity of
key targets in the COVID-19 disease and the potential pathways
of drug treated COVID-19. The DAVID database (https://david.nci
fcrf.gov/) was used for disease module functional annotations
and network analysis. We examined enrichment in gene ontol-
ogy for the following subsets of genes related to the COVID-19
disease module (P-value ≤ 0.05): (i) all risk genes, (ii) intercon-
nected risk genes and (iii) risk genes in the LCC.

Key targets of the disease module

The key targets are pointed out by their appearing times in
the results of top gene enrichment analysis on the COVID-19
disease module. Comparing ‘the greater the degree centrality
(Degree) value of the network topology parameter node, the more
important the node’ [41], the node with high degree centrality is
selected as the effective target for COVID-19 treatment normally.
All obtained COVID-19 disease targets chosen in the ‘Homo sapi-
ens’ species with the minimum effect ‘high confidence’ to 0.7
were mapped into the STRING database by using the ‘Network-
Analyzer’ module with Cytoscape 3.7.2 software to analyze its
network topology parameters. Then the node with high degree
centrality was selected as a control of key target.

Molecular docking

We chose several key targets to do molecular docking to eval-
uate drug-target interaction. Two key targets selected from the
COVID-19 disease module are picked out according to above
methods. The other two main targets (3CLpro and ACE2) are
selected directly as effective targets for anti-COVID-19. Molecu-
lar docking of top 15 herbal ingredients and top 15 chemicals to 4
drug targets (http://www1.rcsb.org/) [42] are separately finished
by Discovery Studio 2018.

Results
Drug screening and targets collecting

The 350 disease targets were obtained by using key words ‘novel
coronavirus pneumonia’ or ‘novel coronavirus’ with MeSH method
in the GeneCards database (Table S1A, see Supplementary Data
available online at http://bib.oxfordjournals.org/). In chemicals
drug screening, we collected the top 10 chemicals with highest
LibDockScore screened 2454 approved drugs in DrugBank by
docking to 3CLpro (Table S2A, see Supplementary Data available

online at http://bib.oxfordjournals.org/) with Discovery Studio
2018 software. And those top chemical drugs with anti-COVID-
19 effects screened by docking to 3CLpro [25–27], E protein
[28], RDRP [29–31], S protein or ACE2 [43], respectively, were
also collected (Table S2B, see Supplementary Data available
online at http://bib.oxfordjournals.org/). After those chemicals
without molecular targets in DrugBank were eliminated, 120
chemicals were chosen (Table S2E, see Supplementary Data
available online at http://bib.oxfordjournals.org/). In herbal
ingredients collecting, firstly, after the network pharmacology
method was applied to screen the anti-COVID-19 ingredients
of the Chinese medicine prescription called Gan-Cao Mixture
(also named Licorice Mixture), eight ingredients with degree >5
in the overlap network are defined as key active ingredients
for the treatment of diseases (Table S2C, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/,
and Figure S1, see Supplementary Data available online at
http://bib.oxfordjournals.org/). In addition, other 122 anti-
COVID-19 herbal ingredients reported earlier [16, 35–37, 44], also
screened by network pharmacology method, were collected from
the 14 TCM prescriptions. After eliminating ingredients without
known targets, 92 ingredients without duplicates were obtained
(Table S2C, D and E, see Supplementary Data available online at
http://bib.oxfordjournals.org/).

Construction of COVID-19 disease module

Among 350 collected COVID-19 disease targets, only 327 were
significantly localized in the Menche human interactome
[38, 39] (Z = 12.65, P < 0.0001, randomly sampling 1000 times)
compared with the random gene sets, with an average of
1.19 edges between two disease targets, forming our COVID-
19 disease module. There were 260 targets (S = 260, Z = 6.14,
P = 4.07 × 10−10) formed the largest connected component
(LCC) in the disease module (Figure S2, see Supplementary
Data available online at http://bib.oxfordjournals.org/). Except
for the LCC, the core disease module included only one
interconnected COVID-19 disease target (Table S3, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/,
and Figure S3, see Supplementary Data available online at
http://bib.oxfordjournals.org/).

Prioritizing drug repurposing candidates for COVID-19

To identify drug repurposing candidates for COVID-19, collected
chemicals and herbal ingredients were identified by network
proximity and network diffusion repurposing strategies.

Network-based proximity analysis

After network-based proximity analysis, the relative average
proximity distance between the drug targets and the COVID-
19 disease targets distributed in the human interactome,
Zdc, was calculated and listed in Table S4, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/. A
negative Zdc value of a drug represents that the targets of
this drug were close to the COVID-19-related targets. From
Table S4A and B, see Supplementary Data available online at
http://bib.oxfordjournals.org/, among chemicals, rescinnamine
has the lowest Zdc value, −3.236, and the Zdc values of rilonacept,
fingolimod, lypressin and nabumetone are following. Moreover,
chloroquine has the Zdc value of −2.036, while the Zdc value
of remdesivir is 0.071. Here, chloroquine, with Zdc < 0, is less
proximal to COVID-19 targets comparing to remdesivir (with

http://ClinicalTrials.gov
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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Zdc > 0), while chloroquine is a positive choice in antiviral drugs
for COVID-19 [45] and remdesivir failed in clinical trial [46].
Among herbal ingredients, the Zdc value of quercetin is lowest,
while the values of luteolin, apigenin, wogonin, rutin, rosmarinic
acid and kaempferol are followed. Kaempferol have been proven
effective [47], while quercetin and kaempferol are less proximal
to COVID-19 targets causing with lower Zdc.

Network-based diffusion analysis

Network diffusion methodology was also used to probe the simi-
larity of the collected the targets of drugs with COVID-19 disease
targets. According the Imin

DSD values show in Table S4, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/,
all drugs were ranked. From Table S4C, see Supplementary
Data available online at http://bib.oxfordjournals.org/, among
chemicals, those antitumor drugs, such as baricitinib (Imin

DSD=
4.96), imatinib (Imin

DSD= 5.056) and ruxolitinib (Imin
DSD= 5.144), had

lowest Imin
DSD values, denoting that their targets had most

similarity with COVID-19 targets. Baricitinib [48], for example,
is a rheumatological drug in clinical trial for COVID-19, while
its Imin

DSD value is lowest among all chemicals. Furthermore,
there are 11 anti-viral drugs, such as pibrentasvir, elbasvir,
daclatasvir, ledipasvir, paritaprevir, glecaprevir, ombitasvir,
velpatasvir, remdesivir, nelfinavir and tipranavir, which had
relatively lower Imin

DSD values. Here, remdesivir is described
with the network similarity of its targets to COVID-19 targets.
From Table S4D, see Supplementary Data available online at
http://bib.oxfordjournals.org/, five herbal ingredients, such as
acacetin, luteolin,quercetin, isorhamnetin and kaempferol, had
the relatively low Imin

DSD scores, indicating that their targets had
most similarity with COVID-19 targets among all collected herbal
ingredients.

Rank

Combining two network-based methods, aggregation values of
all candidates were calculated (Table S4, see Supplementary
Data available online at http://bib.oxfordjournals.org/) and
the top 15 herb ingredients and the top 15 chemicals with
the lowest aggregation value were picked out and listed
in Table S5, see Supplementary Data available online at
http://bib.oxfordjournals.org/. Their structures are shown in
Figure 1. All 15 chemicals are molecular diversity. Among
chemicals, fingolimod is the best candidates with lowest
aggregation value. Most anti-viral drugs with lowest Imin

DSD

values were not included here. And chloroquine is listed as a
positive candidate but remdesivir is not, which indicates that
chloroquine may be better choice than remdesivir, which was
confirmed by previous anti-COVID-19 reports [45, 46]. Observed
top 15 herbal ingredients, quercetin, luteolin, acacetin and
kaempferol, are candidates with high hit rate discussed in
Chinese medicine clinical trial [35]. From Figure 1, there were
14 herbal ingredients with flavonoid structures (purple circle on
herbal ingredient No. 6) indicating that most herbal candidates
are similar in molecular structure.

Then, fingolimod and rosmarinic acid were randomly picked
as positive candidates to discuss the possibility of correctness
and the feasibility of treatment mechanism by comparing the
relative proximity Zdc of the drug targets to its original ther-
apeutic disease targets and the Zdc of the candidate targets
to the COVID-19 disease targets, and the results were plotted
in Figure 2. Fingolimod had a significant anti-human immun-
odeficiency virus (HIV) effect [49]. Rosmarinic acid has strong
anti-inflammatory activity and even has anti-HIV effect [50].

Therefore, HIV was considered as an original therapeutic disease
for both fingolimod and rosmarinic acid. To demonstrate the
utility of the relative proximity, Figure 2A shows the shortest
paths between drug targets and disease proteins for two known
drug-disease associations: fingolimod-HIV and rosmarinic acid-
HIV, and for two candidate-disease associations: fingolimod-
COVID-19 and rosmarinic acid-COVID-19. In Figure 2B, the low
Zdc value represents that both fingolimod and rosmarinic acid
are expected drugs for the COVID-19 and HIV. The lower Zdc value
is, the more potential the drug is.

Fingolimod binds to sphingosine kinase 1(SPHK1) and his-
tone deacetylase 1(HDAC1) and inhibits virus entry. Dipeptidyl
peptidase 4 (DPP4) is a key receptor for the SARS-Cov-2 [51, 52],
and there is at least one protein associated with COVID-19 tar-
gets within three steps of HDAC1 as neighborhood correspond-
ing to an average distance of dc = 1.2 between fingolimod and
the disease using the closest measure. The relative proximity
between fingolimod and COVID-19 is Zdc = −2.876, suggesting
that the targets of fingolimod are closer to the COVID-19 targets.
Similarly, the relative proximity of rosmarinic acid, inhibiting the
estrogen receptor (ESR1) and androgen receptor (AR), to COVID-
19 is Zdc = −5.211, offering network-based support for the thera-
peutic effect of rosmarinic acid in COVID-19. The HIV proteins
and drug targets are also closer than expected for randomly
selected protein sets (Zdc = −0.867 and Zdc = −2.462, respectively),
but farther than COVID-19 targets sets, respectively, suggest-
ing that fingolimod and rosmarinic acid are nearer to COVID-
19 disease module, they are specific to the COVID-19 disease
module.

To evaluate the predictive ability of the above-ranking meth-
ods, and to identify candidate drugs with similar characteristics
to known drugs used in a disease, by computing the ROC curves
and the AUC scores for measuring the quality of separation
between positive and negative trials, the AUC of the target
proximity was calculated based on our positive candidates as a
positive set and other reported negative herbal ingredients as
a negative set. For herb, we collected our 86 herbal candidates
into a positive set, while 44 herbal ingredients [retrieved from
the TCMSP with degree = NA (no application) in the ‘herb-herbal
ingredients-targets’ of the Licorice Mixture or OB < 30,DL < 0.18]
were selected into a negative set. In addition, for chemicals,
our positive chemical candidates were regarded as a positive
set. And 31 chemicals that had status of ‘Withdrawn’, ‘Termi-
nated’ or ‘Suspended’ (Table S6, see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/) were chosen as a
negative set. We evaluated the potential of the candidates for
the COVID-19 by using three methods: (i) network proximity,
(ii) network diffusion and (iii) aggregation ranking (Figure 3).
From Figure 3A, the values of AUC on six sets were bigger than
the value of a random set and bigger than 0.5, indicated our
predicting results offering better candidates for the COVID-19
than random according to the proximity is a good proxy of
therapeutic effect [12]. The AUC of two subsets by aggregation
ranking methods was bigger than 0.8, which indicated that our
final screened positive herbal and chemical candidates were
reliable possible drugs for COVID-19.

Potential drug targets and mechanisms analysis

Gene enrichment analysis

After Gene enrichment analyses for (i) all risk genes (N = 350),
(ii) interconnected risk genes (N = 261) and (iii) LCC risk genes
(N = 260) were performed, all significant results (P < 0.05,
corrected) were presented in Table S7, see Supplementary Data
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Figure 1. The molecular structures of the selected candidates (Chemicals No.11 and 13 as proteins are absent here).

Figure 2. Network-based drug-disease proximity.

available online at http://bib.oxfordjournals.org/. Checked the
top 10 gene enrichment results of the disease module, those
pathways of ‘Influenza A’, ‘Measles’ and ‘Hepatitis B’, and some
important biological processes (BP) including ‘inflammatory
response’, ‘type I interferon signaling pathway’ and ‘defense

response to the virus’ were some potential non-specific and
significant pathogeneses in the COVID-19 disease develop-
ment (Table S7A, see Supplementary Data available online at
http://bib.oxfordjournals.org/). Normally, gene enriched pathway
analyses on the COVID-19 disease module from the human
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Figure 3. Validating drug-disease proximity. (The plot shows AUC and coverage values for network-based measures. Coverage is defined as the percentage of drug-

disease associations for which the method can make predictions. C: chemicals; HI: herbal ingredients; NP: network proximity method; ND: network diffusion method;

AG: aggregation rank).

interactome treated all COVID-19 disease targets equally and
some targets located in the same loci would have some links
with others [53]. Then IL-6 and TNF-α (or TNF) previously
approved for general inflammation pathogens [54] were further
identified as hub targets because they were found in these
important BPs and pathways of the COVID-19 disease module
with the highest hit (Table S7D, see Supplementary Data
available online at http://bib.oxfordjournals.org/, both IL-6 and
TNF appeared eight times in the top 10 pathways and also
appeared eight times in BPs). Especially, by the analyses to genes
in (ii) and (iii), the core genes of the COVID-19 disease module, it
could be identified that enrichment items could not be identified
while treating all risk genes equally [55], including the pathways
of ‘adherens junction’ and ‘dilated cardiomyopathy’ and the BPs
of ‘circadian rhythm’,‘thymus development’,‘regulation of cell
adhesion’, etc. (See more details in Table S7F, see Supplementary
Data available online at http://bib.oxfordjournals.org/). These
items may be concluded as some specific indirect regulatory
gene ontologies.

Gene enrichment on the overlapping network of the targets
of the selected candidate and all disease module genes were
systemically analyzed to discover important gene ontology of
the candidate. Five candidates (including two herbal ingredients,
‘kaempferol’ and ‘rosmarinic acid’, two chemicals ‘fingolimod’
and ‘chloroquine’, and one chemical ranked as worse candidate,
remdesivir) were analyzed their targets by overlapping to 350
disease targets, respectively (Figure S4, see Supplementary
Data available online at http://bib.oxfordjournals.org/). As their
targets with ds ≤ 1 show in Table S8, see Supplementary Data
available online at http://bib.oxfordjournals.org/, kaempferol
had 140, rosmarinic acid had 75, fingolimod had 29, chloroquine
had 33 and remdesivir had only 6 targets. Then, we listed
the results of gene enrichment analysis of their targets with
ds ≤ 1 to the disease targets in Table S9, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/.
From Table S9F, see Supplementary Data available online at
http://bib.oxfordjournals.org/, four positive candidates had some
similar significant pathways focused on the virus infection,
including ‘Hepatitis B’ and ‘Influenza A’, but remdesivir had no.
When four candidates had similar BPs on ‘negative regulation of

apoptotic process’ and ‘lipopolysaccharide-mediated signaling
pathway’, remdesivir still had none. It indicates that remdesivir
is not a good choice, while other four candidates could be
positive for anti-COVID-19 by different mechanism. As four
candidates also had similar molecular functions (MFs, ‘protein
binding’,‘identical protein binding’ and ‘enzyme binding’) and
cellular components (CCs, ‘cytosol’ and ‘extracellular exosome’),
remdesivir had ‘protein binding’, and similar CCs (cytosol and
extracellular exosome) too. It indicates that remdesivir is easily
to misunderstand as a positive candidate for anti-COVID-19
without systemic mechanism analysis.

Key targets of the COVID-19 disease

According to the gene enrichment analysis above, TNF and IL-
6 were suggested to be two key targets for new medications,
which is consistent with that previous experiment pointed out
that the high IL-6 and TNF levels in the serum of COVID-19
patients are a strongly forward-looking predictor when host
was infected by SARS-Cov-2 and even was taken as the pre-
dictor when the COVID-19 disease becoming extremely terrible
[56]. Previous study identified that inflammatory monocytes,
T cells secrete large amounts of IL-6 that can incur inflam-
matory storm for the COVID-19 [54, 57] and TNF is a crucial
driver for multiple inflammatory macrophage phenotypes [58].
Comparing to analyzing the degree of 350 disease targets in
PPI network from STRING database, IL-6 and TNF were also
picked out as important potential drug-activated targets because
their degree values were the highest when IL-6 had 65 and
TNF had 66 (Table S10, see Supplementary Data available online
at http://bib.oxfordjournals.org/). Degree centrality is the most
convenient available centrality way to analyze potential drug
targets [59]. But, here, it is only coincidence. The main reason
of IL-6 and TNF chosen is according to the gene enrichment
analysis results.

Molecular docking

After 30 candidates were docked to 3CLpro (PDB ID: 6 LU7),
ACE2 (6 M17), TNF (2AZ5) and IL-6 (1ALU), separately, the best
combinations were chosen based on -CDOCKER ENERGY scores.
At the same time, the ligand N3 as the control of a binding
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Table 1. The results of the candidates docking to 3CLpro, ACE2, IL-6 and TNF

Molecules - CDOCKER ENERGY

3CLpro ACE2 IL6 TNF

Herbal
ingredients

Quercetin 36.407 4.201 43.300 25.354
Luteolin 31.357 18.330 27.322 18.687
Acacetin 27.231 0.993 18.338 14.805
Kaempferol 41.206 21.401 59.233 23.093
Wogonin 23.072 10.181 20.031 13.073
Apigenin 39.477 26.308 52.288 19.789
Rosmarinic acid 43.409 34.407 51.048 28.870
Rutin 10.244 / −15.917 −14.400
Licochalcone a 26.498 −20.441 30.645 11.037
Nobiletin 11.367 / −2.453 −6.200
Puerarin 28.539 −10.652 41.049 13.833
Petunidin 16.760 −38.396 8.552 2.879
Naringenin 28.325 7.524 22.635 15.269
5,7-Dihydroxy-3,4,5- TrimethoxyFlavon 22.382 −70.834 10.330 7.869
Tricin 34.672 −32.983 39.708 13.734

Chemicals Fingolimod 43.926 21.114 31.440 28.750
Icatibant / / 41.574 92.676
Rescinnamine −2.989 / −10.755 −3.126
Thalidomide 14.491 / 7.950 3.837
Ciclopirox 2.862 −96.214 −3.363 −4.608
Nabumetone 18.360 6.696 11.717 8.498
Lypressin / / / 86.941
Spirapril 33.588 / 30.796 21.097
Pirfenido ne 8.261 3.705 2.128 −1.544
Chloroquine 35.518 −21.148 12.146 12.035
Miconazole 31.916 / 18.950 19.038
Suramin −35.387 −54.038 −36.270 −22.930
Ledipasvir / −92.034 −13.859 −1.371

Control ligands N3 80.039 / / /
Tartaric acid / / 21.984 /

site was docked to 3CLpro and tartaric acid was also docked
to IL-6, separately. The docking results were listed in Table 1.
In Table 1, some herb ingredients, such as rosmarinic acid,
kaempferol and apigenin with the higher values, while the
values of several chemicals, such as fingolimod, chloroquine,
spirapril and miconazole, were relative higher, indicated that
these compounds had good binding ability to 3CLpro. Observed
the ACE2 complex, several drugs had greater values, such as
rosmarinic acid, kaempferol, apigenin and luteolin as herbal
ingredients and fingolimod as chemical. Except for nobiletin and
rutin with negative values docking to TNF and IL-6, the rest 13
selected herbal ingredients had positive values docking to TNF
and IL-6. Especially, four herbal ingredients (rosmarinic acid,
kaempferol, apigenin and quercetin) had higher values docked
to both TNF and IL-6. Among chemicals, fingolimod, spirapril
and icatibant had the greater values docking to IL-6, even higher
than tartaric acid. In addition, icatibant, lypressin, fingolimod
and spirapril had the higher values, which meant that they
had prominently interaction with TNF. Icatibant seemly had the
prominently inhabitation for the TNF and IL-6, and interfered
related the BP of inflammation and immunity, involved and
interrupted the inflammation feedback loop and improve
symptoms of inflammation clinically [60]. Lypressin displayed
notable interaction with TNF, suggesting that it can inhibit
relative targets and pathways to play the anti-inflammation
effect.

Similar to some infectious diseases, such as hepatitis B and
HIV, although there is still considerable value in optimizing
access to virus-suppressing regimens, the researchers have
embarked on a concerted journey to identify new antiviral
drugs and immune interventions aimed at curing the virus
infection [61]. The SARS-CoV-2 virus is not cytopathic. Hence,
the treatment of COVID-19 should focus on the inhibition of
virus replication and transfection in body and the treatment
of immune symptoms and inflammatory reactions, not only
on the inhibition of virus invasion. Comparing the results of
herbal candidates docking to four targets, rosmarinic acid was
identified the best inhibitor for the four targets, indicating
that rosmarinic acid may have better potential to antiviral and
regulate immune system by interacting with 3CLpro, ACE2, IL-
6 and TNF. Previous study pointed out that rosmarinic acid
can fight with immunodeficiency viruses, herpessimplex and
influenza virus [62]. Chung found that magnesium lithosper-
mate B combined rosmarinic acid can inhibit EV71 absorption
stage during viral infection and rosmarinic acid blocked EV71
entering the cells to further hinder RNA expression and VP1
protein translation of the viral [62, 63]. Rosmarinic acid also can
hinder the phosphorylation of TNF and reduce the production
of chemokines, CCL11 and CCR3 [64], in line with that IL-6 and
TNF in the COVID-19 disease module belong to chemokines,
such as CXCL10, CXCL2 and CXCL8, precisely participating in the
chemokine-mediated biology processes and triggering a series
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of cascade inflammation response [65]. Not only that, rosmarinic
acid reduced more inflammatory cytokines and mediators
likely TNF, IL-6, IL-1β and COX-2 to improve the symptoms of
inflammation [66].

Observed the structures of herbal candidates, except ros-
marinic acid, the other 14 molecules have C6-C3-C6 flavonoids
framework. These flavonoids were suitable for embedding in the
3CLpro, IL-6 and TNF cavity (the results of 14 flavonoids docking
to 3CLpro, IL-6 and TNF in Figure S5, see Supplementary Data
available online at http://bib.oxfordjournals.org/), exerting the
inhibition effects of virus proliferation and inflammation, espe-
cially kaempferol, apigenin and quercetin. Kaempferol showed
strong inhibition with 3CLpro and ACE2, which is consistent
with that it blocked the process of the proteolysis and SARS-
CoV-2 cell entry [67]. Apigenin, luteolin and quercetin had the
reliable IC50 values for the 3CLpro [68]. Quercetin can prevent the
expression of inducible NO (Nitric oxide) synthase and IL-6 by
interfering with the significantly enriched Lipopolysaccharide
biology process [69].

Moreover, observed docking results, fingolimod showed us
the best combination to four targets. Fingolimod is treated
with multiple sclerosis (MM)—a CNS disease to inhibit ACE2
to hinder SARS-CoV-2 entry into nervous system preventing
neurogenesis happening [70]. It can modulate a sphingosine-1-
phosphate receptor to treat the neurogenesis and inflammation
that are COVID-19 complication. Fingolimod could reduce the
T-cell response when varicella-zoster virus infecting the host
who suffered from multiple sclerosis disease [71], and influence
virus-specific T cells proliferation and migration when viral
triggering the acute-induced encephalomyelitis [72]. Hence, we
conclude that fingolimod plays a role in anti-SARS-CoV-2 by
inhibiting the proteins of 3CLpro and ACE2, while fingolimod
also decreases T cells activity by interacting with TNF and IL-6,
respectively, to evoke the antiviral and immunomodulatory.

In addition, combining the network-overlapping analy-
sis (Table S9, see Supplementary Data available online at
http://bib.oxfordjournals.org/) and docking results, we can find
that four different positive candidates have different effects
and regulate mechanisms in the occurrence and development
of the COVID-19 disease. They have interactions with 3CLpro
or ACE2 result in interference the SARS-Cov-2 duplication,
transcription processes and intrusion process, while they
interact with TNF or IL-6 to block some immunomodulatory
and anti-inflammatory BPs and pathways or other antiviral
ontology including influenza A, hepatitis B and hepatitis C
to play anti-inflammatory and antiviral effects. The gene
enrichment results of targets (ds = 1) of four candidates were
together shown in Figure 4 and each was separately plotted
on the same network attached in Figure S6, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/.
Basically, the BPs of four candidates are different and there
are fewer overlapping items with the BPs of the COVID-19
disease module (Table S9, see Supplementary Data available
online at http://bib.oxfordjournals.org/), means that they
have few effect on BPs. For kaempferol, rosmarinic acid and
fingolimod (Figure S6, see Supplementary Data available online
at http://bib.oxfordjournals.org/), there are focused on several
similar viral infection pathways (such as Hepatitis B, Influenza
A and Herpes simplex infection) to influence the onset and
the development of the COVID-19 disease. Consistent with
the good docking results, they three have a certain impact on
the process of virus replication and transfection after virus
invasion and the inflammatory and immune development in
the COVID-19 disease. Moreover, kaempferol and rosmarinic

acid, as classical TCM, are more similar in MF and CC to regulate
the development of the COVID-19 disease. To chemicals, the
overlapping pathways of chloroquine on the disease module
are Hepatitis B and Influenza A, and its MFs and CCs are also
similar on protein binding to the disease module. Combined
with docking results, the combination with 3CLpro can indeed
bind significantly, indicating that chloroquine has a significant
effect in the process of the replication and transfection of the
virus after it invaded. However, it may have not a significant
role in inhibiting virus invasion, inflammation and immunity.
The overlapping pathways of fingolimod are more similar
to the disease module, the same as its MFs and its CCs,
too. The combination with four receptors of fingolimod can
indeed bind significantly, indicating that fingolimod has a
significant effect on virus invasion, and it may have a good
effect in the process of the replication and transfection of the
virus, inflammation and immunity. Similar to treat with the
hepatitis B, it is recommended to consider the above-mentioned
aspects for subsequent experimental verification as a positive
anti-COVID-19 candidate.

Furthermore, we focus on some specific and non-specific
pathways in our results to explore different mechanisms.
Through gene analysis, we found that compared with chemical,
kaempferol and rosmarinic acid are significantly enriched in a
specific pathway of adherens junction (Figure 5A). Researchers
have reported that the death of ICU patients with COVID-19
is also related to cell adhesion and innate host reactions [73].
Normally adherens junction is an important pathway for the
host immune response caused by virus invasion. One aspect,
in adherens junction, CSNK2A2, an extracellular kinase, can
phosphorylate various extracellular proteins involved in the life
cycle of viral, coincidentally, which should be phosphorylated
during viral infection [74]. Another aspect, TJP1 is a membrane-
associated scaffold protein that assembles and locates a
continuous network of tightly connected supramolecules on
adherens junction, and plays a key role in cell adhesion [75].
TJP1 is a connected neighbor of Epidermal growth factor
receptor (EGFR, a key pathway protein in adherens junction),
which is closely related to COVID-19, especially related to
the pathological effects of the inflammatory process in the
brain [76, 77]. Previous studies have shown that SARS-CoV-
2 can act on complex tip tight junctions, such as the E and
3a proteins of SARS-CoV-2, which bind to TJP1 protein and
affect the entire cell connection and cell polarity [78]. In
Figure 5A, AR, as a target of rosmarinic acid and kamepferol,
directly regulates EGFR to affect TJP1; both ESR1 (a target
of rosmarinic acid) and four targets of kamepferol (PGR,
RELA, AKT1 and JUN) interact with CSNK2A2; ESR1 and two
targets of kaempferol (STAT1 and ICAM1) interact with EGFR
to indirectly regulate TJP1. Therefore, rosmarinic acid mainly
regulates EGFR, SMAD3, CREBBP and CSNK2A2 by AR and ESR1.
Kaempferol involves more high-end targets such as AR, STAT1,
RELA, JUN, etc. to regulate multiple adhesion pathway targets
comprehensively.

In overlap analysis, four candidates have a regulatory effect
on the Hepatitis B pathway (named non-specific pathway, shown
in Figure 5B). From Figure 5C (the diagram of regulating in Hep-
atitis B by the targets of kaempferol), Kaempferol is related to
NFκB1, TP53, PRKCA and other pathway targets regulating the
production of interferon. For example, the target of kaempferol,
RELA regulates the production of IFN-α by acting on IRF3 and
FOS genes and affects IFNB1, too. IKBKB and RELA can establish
an antiviral state by regulating TBK1. TBK1 phosphorylates IRF3
and dissociates from the adaptor protein to form a dimer, which
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Figure 4. The gene enrichment analysis results of the targets with ds ≤ 1 of 4 candidates.

then enters the nucleus to induce the expression of interferon
[78]. RELA regulates the transcription of IL-6 to reduce the host
inflammatory response caused by viral infection. In addition,
STAT1 (as a kaempferol target) has an effect on JAK, STAT2, JUN,
MAPK3, FOS and other targets. Previous studies have suggested
that the abnormal STAT pathway is at the core of the treatment
of COVID-19 [79]. Therefore, kaempferol affects the production
of interferon and the expression of cytokines by interacting with
these targets, resulting a therapeutic effect on viral infections
[80, 81].

From Figure 5D, AR, ESR1 and MAPK1 (the targets of ros-
marinic acid) with large node degrees can simultaneously adjust
with multiple pathway targets, such as TP53, NFκB, MAPK3 and
ATF2 (ds = 1). The targets of rosmarinic acid, MAPK1 and IL2
have a regulatory relationship with pathway targets IFNA1 and
IFNAR1 (interferon, IFN, the cores of antiviral immunity). Virus
recognition triggers the production of IFN, which in turn trig-
gers gene transcription to produce various antiviral cytokines,
thereby producing antiviral effects [82]. For example, IFN-γ and
TNF are the main cytokines against hepatitis B virus [83]. Hadjadj
et al. [84] showed that the peripheral blood immune cells of
severe and critical COVID-19 patients reduced type I interferon,
enhanced the response stimulated by pro-inflammatory IL-6
and TNF, and proposed that type I IFN deficiency is a sign of
severe COVID-19.

From Figure 5E,in the interaction network between the tar-
gets of fingolimod and chloroquine and the targets of the hep-
atitis B pathway, ABCB1 and HMGB1 existing in fingolimod and
chloroquine act on the pathway targets (such as TP53, NFκB1,
RB1, PRKCB, PRKCA, etc.). Among them, HIV-1 viral infection
factor can interact with TP53 to induce G2 cell cycle arrest and

positively regulate virus replication [85]. TP53 is significantly
related to the expression of TMPRSS2, a key protein of SARS-
Cov-2 invasion [86]. NFκB with genetic polymorphisms helps
to clear the virus [87]; NFκB also participates in T cell acti-
vation and enhances HIV-1 gene expression [88]. PRKCB and
NFκB closely related to human T-cell leukemia virus type 1
(HTLV-1) [89]. Besides TP53, NFκB1 and RB1, the target of fin-
golimod, HDAC, also has connections with STAT2 [90]. There is
also an interaction between chloroquine-acting COVID-19 pro-
inflammatory factor TNF and hepatitis B virus pathway pro-
tein ATF2.

Discussion
We have studied a combined method of various data-driven
computational approaches to identify drug repurposing candi-
dates in clinical emergencies, such as COVID-19. In this method,
we constructed a network-based framework approach to rank
drug repurposing candidates based on the COVID-19 disease
module. We proceeded with the top gene enrichment analysis
of overlapping of disease genes and targets of candidates to
identify effective disease targets and probe the anti-COVID-19
mechanisms of those chemical and herbal candidates. Further-
more, we applied molecular docking to key targets to verify some
specific therapeutic hypotheses. We found that different drugs
may play different roles in the process of virus invasion and the
onset and development of the COVID-19 disease.

The COVID-19 disease phenotypes are typically determined
by the defects of multiple genes whose concurrent and abnormal
activity is significant for the onset and the development of
the COVID-19 disease. The disease genes are not randomly
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Figure 5. The relationship between drug targets and disease genes in adherens junction and hepatitis B.

distributed but clustered in the COVID-19 disease module
corresponding to well-defined neighborhoods of the human
interactome with the human interactome. We used a com-
putational framework to quantify the relationship between
disease and candidate using the distance measures that
capture the network-based proximity of targets of a drug to
all significant disease genes. The distribution characteristics
and the relationships of disease genes in the COVID-19
disease module can be used to analyze the mechanism of
disease onset and development. The enrichment analysis

of disease genes in different parts of the COVID-19 disease
module can distinguish specific and non-specific regulations
for key targets that trigger the onset and development of the
disease.

The network proximity of drug targets to the COVID-19 dis-
ease genes provides special insights into the candidate mech-
anism of action, uncovering the pathobiological components
targeted by drug candidates, and improves the feasibility and
interpretability for drug repurposing. The systematic analysis
of the proximity of drug targets to the COVID-19 and to their
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original treatment diseases shows that drugs target the COVID-
19 disease module effectively than aim at an original treatment
disease of this drug. If a drug is proximal to the COVID-19
disease, it is more likely to be effective than a distant drug. The
proximity can also be used to define similarity between two
drug candidates and covered a great number of drug-disease
associations.

Given the limitations of the current human interactome, from
incompleteness to investigative bias, we have explored how the
number and centrality of drug targets and disease proteins affect
their network-based proximity. It was found that the proximity
is unbiased with regard to both the number of targets of a candi-
date and their degrees in the network. Though some important
targets may have bigger numbers and higher centralities of drug
targets (such as TNF and IL-6), the proximity demonstrates the
mechanism and effects of drug candidates much clearly than
by docking to few key targets. Therefore, the use of proximity
corrects a common pitfall in existing research that does not
account for the elevated number of interactions of drug targets.

Conclusion
In summary, this research highlights probing the effective tar-
gets and drugs repurposing for the COVID-19, which may provide
a quick way to find drug candidates. Basing on the COVID-19
disease module, different network distance strategies to quan-
tify the relationship between drug targets and disease genes
distribution in the PPI were adopted to predict drug candidates
on herbal ingredients and chemicals, respectively. Integrating
molecular docking and gene enrichment analysis of key tar-
gets offer the possible anti-disease mechanisms of candidates.
However, disease modules and molecular targets still need to
be improved due to the relationships of human interactome
unexplored currently. Sure, we need to further verify the calcula-
tion results through experiments comprehensively. Despite the
limitations in this study, for an outbreak of pandemic disease,
it still has an undeniable immense advantage in the feasibility
analysis of drug repurposing or drug screening, especially on
herbal ingredients. Currently, the emergence of highly conta-
gious variants of SARS-Cov-2 in many countries has brought
huge challenges to the world’s public health. We will continue
to study drug repurposing methods developed on the onset and
development of diseases, verify their effectiveness for rapidly
evolving and mutating viruses and further verify the calculation
results through experiments.

Key Points
• Based on the formed COVID-19 disease module, we

identified several hub proteins that play important
roles in the onset and development of the COVID-19,
which are potential targets for repositioning approved
drugs. The COVID-19 disease module revealed that the
onset and development of COVID-19 mainly involve
antiviral, inflammatory and immune responses, as
two proinflammatory factors, TNF and IL-6, play vital
role as hub targets in the development of the COVID-
19.

• Network strategies on different network distance met-
rics were successfully applied to quantify the rela-
tionship between drug targets and COVID-19 disease
targets in the PPI network and predict COVID-19 ther-
apeutic effects of bioactive herbal ingredients and

chemicals. Our method has an undeniable immense
advantage in the feasibility analysis of drug repur-
posing or drug screening, especially in the analysis of
herbal ingredients.

• The tentative mechanisms of candidates were illus-
trated through molecular docking and gene enrich-
ment analysis. For example, rosmarinic acid and fin-
golimod could be multi-target inhibitors, not only
restrain TNF, IL-6 activity to influence the inflamma-
tion and immunity relevant process but also inhibit
3CLpro and ACE2 to hinder the SARS-Cov-2’s reproduc-
tion and replication process.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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