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Climate change is undoubtedly one of the biggest problems in the 21st century. Currently,

however, most research efforts on climate forecasting are based on mechanistic,

bottom-up approaches such as physics-based general circulation models and earth

system models. In this study, we explore the performance of a phenomenological,

top-downmodel constructed using a neural network and big data of global meanmonthly

temperature. By generating graphical images using the monthly temperature data of 30

years, the neural network system successfully predicts the rise and fall of temperatures for

the next 10 years. Using LeNet for the convolutional neural network, the accuracy of the

best global model is found to be 97.0%; we found that if more training images are used,

a higher accuracy can be attained. We also found that the color scheme of the graphical

images affects the performance of the model. Moreover, the prediction accuracy differs

among climatic zones and temporal ranges. This study illustrated that the performance

of the top-down approach is notably high in comparison to the conventional bottom-up

approach for decadal-scale forecasting. We suggest using artificial intelligence-based

forecasting methods along with conventional physics-based models because these two

approaches can work together in a complementary manner.

Keywords: climate change, neural networks, big data, historical data, NVIDIA DIGITS, top-down approach,

graphical image classification, global environmental change

INTRODUCTION

Because climate change is the biggest environmental problem currently, it has attracted interest
from many researchers and policymakers. For climate forecast, physics-based models have
been widely used. General circulation models (GCMs) have been constructed by numerical
representations of atmospheric physical conditions (Manabe et al., 1965). Earth system models
(ESMs) are advanced models based on GCMs and are mainly used for current climatic
studies (e.g., Collins et al., 2006), which considers features such as biogeochemical cycling and
atmospheric chemistry. These models are based on the laws of physics such as conservation
of mass, energy, and momentum. These models can be referred to as bottom-up approaches
because they forecast climate using physical boundary conditions. Although the performance
of ESMs is improving, these models still suffer from significant forecast uncertainties. Such
uncertainties in future climate may delay amelioration and adaptation to climate change
(Intergovernmental Panel on Climate Change, 2013).

There should be another approach for climate forecasting; a top-down,
phenomenological approach can complement a bottom-up, mechanistic approach. The
most intuitive top-down approach is using statistical models such as regression analysis.
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For forecasts, there are many statistical approaches for time
series, such as Autoregressive Integrated Moving Average.
However, a top-down approach is not mainstream for the
current research as its forecast ability is believed to be

FIGURE 1 | Global mean monthly temperature in March 2001.

FIGURE 2 | Some examples of training images. To illustrate the characteristics of climate zones, we show images of 30-year mean monthly temperature of grids

including (A,E,I) Manaus, Brazil, (B,F,J) Cairo, Egypt, (C,G,K) Chapel Hill, United States, and (D,H,L) Yakutsk, Russia to represent tropical rain forest, desert, moist

temperate, and boreal, respectively. For (A–D), the upper and lower limits of the color scheme are set automatically by software R. These images may look similar but

note the difference in temperature ranges shown in the legends. For (E–H), the upper and lower limits of the color scheme are set manually to the universal maximum

and minimum temperatures of the entire dataset. For (I–L), the color scheme rainbow is used.

limited, especially under novel environmental conditions.
Still, there are several interesting examples of the top-down
approach. Sévellec and Drijfhout (2018) predicted climatic
trends by probabilistic forecast where trained researchers
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“picked” seemingly important trends and expressed them in a
statistical manner.

We believe that using deep neural networks (DNNs) can be
an excellent tool for the top-down approach because DNNs are
proven to be very successful in artificial intelligence (LeCun et al.,
2015). For example, deep learning has revolutionized computer
vision (e.g., Ise et al., 2018), chemical engineering (e.g., Pławiak
and Rzecki, 2015), and medical diagnosis (e.g., Yıldırum et al.,
2018). It has attracted many users as it has a variety of libraries
and computational environments, especially for image detection
and classification. DNNs have been used for time-series analysis
(e.g., Sak et al., 2014). However, these approaches are mostly
unsuitable for finding large-scale features in climatic trends.
Although there are a few studies where machine learning has
been utilized in parametrization of atmospheric models (Gentine
et al., 2018; Rasp et al., 2018), DNNs are not fully utilized in
climate studies currently.

In this study, we apply a simple but novel approach to
determine climatic trends. Using global historical data of mean
monthly temperature for the years 1901–2016, we graphically
represent the temperature dynamics and feed these images to
a DNN. We classify the images in two categories: when a
temperature rise is observed after the training period and when
a temperature fall is observed after the training period. This
study is a pedagogical experiment as we know the “correct”
answer; we verify whether the DNN successfully determines the
answer. We test whether this top-down approach can be a tool
for phenomenological forecast of future climate. We also test
the forecast performance in limited spatiotemporal scales to
find specific timings and locations for which the performance
is unusually good or bad. Our approach is unique because it
employs a DNN-based, top-down approach for climate forecasts.
Our aim is to illustrate the performance and characteristics of this
new approach and to contribute to the studies on climate change.

METHODS

The input data used for this experiment was the global mean
monthly temperature data (CRU TS 4.01) from the Climatic
Research Unit (Harris et al., 2014). This dataset covers the
global terrestrial area in 0.5◦ × 0.5◦ grids (Figure 1). Using this
dataset, we randomly selected a place and start time for each
graphical representation. In one graphical representation, the
mean monthly temperature of the selected place was retrieved,
and data for 30 years (training period) from the start time were
used for the graphical representation; we created an image of
60 × 60 pixels from the temperature data (Figure 2) using R
3.4.4 (R Core Team, 2018). Then, we classified the images into
two categories (RISE and FALL) based on the mean temperature
for 10 years after the training period. The assigned categories
were used as training data paired with the training images
for the DNN. The hardware to run and test the DNN had
XEON E5-2630v3 CPU, 16 GB RAM, and NVIDIA Quadro
K620 GPU; the operating system was Ubuntu 14.04 LTS. The
settings and parameters for NVIDIA DIGITS 6.0 (Caffe version:
0.15.13), the platform for the DNN, are summarized in Table 1.
We employed convolutional neural network (CNN) with LeNet
(LeCun et al., 1998). Randomly selecting 25% of images for

TABLE 1 | NVIDIA DIGITS 6.0 settings and parameters.

% validation images 25

Image encoding png

DB backend lmdb

DB compression none

Training epochs 30

Snapshot interval 1

Validation interval 1

Random seed none

Solver type stochastic gradient descent

Base learning rate 0.01

Network LeNet (LeCun et al., 1998)

In this framework, there is a choice for the DB backend (data format for the database):

lmdb and hdf5. We created the database in the former format. Although we set snapshot

interval = 1 to store the model for each training epoch, we only used the models from

the last (30th) training epoch for analyses in this study. We set validation interval = 1

to calculate accuracy for each training epoch. We did not set the random seed, and

the models for this study were individually initialized. We used the stochastic gradient

descent solver (default); other choices were Nesterov’s accelerated gradient, adaptive

gradient, AdaDelta, adaptive moment estimation, and RMSprop. The base learning rate is

the parameter to determine efficiency for learning. We set the parameter to 0.01 (default).

The network we used was LeNet (LeCun et al., 1998). Other network choices were

AlexNet (Krizhevsky et al., 2012) and GoogLeNet (Szegedy et al., 2014). See Discussion

for the comparison.

validation, accuracy, and loss are calculated in each training
epoch. We set the number of training epoch to 30, with
systematically decreasing learning rates.

There are 67,420 terrestrial grid cells in a resolution of 0.5◦.
The length of the time series is 116 years. When we systematically
shift the window of 40 years (30 years for training images and
10 years to assign categories: RISE and FALL), there can be
116–40 +1= 77 different training images. Thus, the maximum
number of the training images is 67,420 × 77 = 5,191,340. To
accelerate the series of experiments in this study, we randomly
chose subsets of training images by assigning a random number
c from 0 to 1 for each training image in each experiment.
Only when c > ct , where ct is the threshold, the ith training
image was chosen for the subset. For example, when ct = 0.99,
approximately 1% of the training images (∼51,913 images) will
be selected as the subset. We analyzed the data to determine
the effect of ct .

We also performed analysis to see the difference in the color
schemes in R (heat.colors, topo.colors, and rainbow). Moreover,
we tested the effect of upper and lower limits of the images. In
the default condition, upper and lower limits of an image plot
are automatically defined by the “image” function in R, according
to the monthly temperature data. In this experiment, we created
an alternative condition where universal highest and lowest
temperatures of the entire dataset were set as the upper and lower
limits of all images; globalmaximum andminimum temperatures
for 1901–2016 were 39.5◦C and −59.5◦C, respectively. The
images for Manaus, Brazil (Figures 2A,E,I), for example, were
drawn using identical temperature data. Although the differences
were only from the plotting scheme (upper and lower limits and
color scheme), these differences somewhat affected the resultant
classification accuracy.

Moreover, we made classification experiments with space
and time restrictions. For spatial limitation, we selected four
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climatic zones (Amazon as tropical rainforest, Sahara as desert,
Eastern US as temperate, and Siberia as boreal) and evaluated the
differences in the model performance. For temporal limitation,
we restricted the starting year to a single decade (1900s−1960s)
and compared the model performance.

RESULTS

The training process of the DNN in NVIDIA DIGITS 6.0 was
successful in classifying images into RISE and FALL categories.
The greater number of training images involved, the higher was
the attained accuracy of classification (Table 2). We set MODEL3
as the reference model for the following experiments. With the
hardware and software configurations for this study (seeMethods
andTable 1), the time required to trainMODEL3was 13min. For
MODEL4, the required time was increased to 133min, showing
that the training times were linearly correlated to the number
of training images. For training of MODELs 1–24, the same
settings such as DNN parameters and structure were used (see
Table 1). Figure 3 shows the learning process of DIGITS 6.0 with
30 epochs.

The performance of the models improved with the increase
in the number of training images. However, the change in
accuracy per unit number of training images gradually decreased,

suggesting saturation. This suggests that researchers should
consider cost performance because accuracy and computational
burden have a tradeoff relationship.

We tested the effect of color schemes in R. Overall, heat.colors
showed the best performance among other color schemes. This
implies that the color scheme of artificially generated images can
affect the performance of DNNs. We also noted that topo.colors
was not the best color scheme when the number of training
images was small.

Next, using the reference model (MODEL3) settings, we
limited the time or space of the training data to determine
the performance in specific conditions. We focused on specific
climate zones (MODEL14–MODEL17): tropical rain forest
(Amazon, 0-12S, 50-70W), desert (Sahara 12-26N, 10W-30E),
temperate (Eastern United States, 30-42N, 70-92W), and boreal
(Siberia, 60-70N, 80-140E). The accuracy of these spatially
restricted models was generally higher than the reference
model (MODEL3) even though the numbers of training images
was almost the same. Globally, there are several different
climatic zones with different interannual trends. Our results
may suggest that the DNN is able to capture climatic trends
more successfully when the target area is restricted to a single
climatic zone. Among climatic regions, Amazon (tropical rain
forests) shows particularly high accuracy, whereas Siberia (boreal

TABLE 2 | Summary of classification experiments.

Model number ct Spatiotemporal restrictions Number of training images Image design Accuracy

(%)

FALL RISE Total

MODEL1 0.9999 none 141 328 469 default 65.625

MODEL2 0.999 none 1,524 3,573 5,097 default 78.984

MODEL3 0.99 none 15,685 36,206 51,891 default 92.026

MODEL4 0.9 none 157,042 362,676 519,718 default 97.037

MODEL5 0.9999 none 148 342 490 topo.colors 72.656

MODEL6 0.999 none 1,581 3,588 5,169 topo.colors 77.210

MODEL7 0.99 none 15,525 36,414 51,939 topo.colors 91.441

MODEL8 0.9 none 157,154 362,716 519,870 topo.colors 96.762

MODEL9 0.9999 none 146 325 471 rainbow 70.313

MODEL10 0.999 none 1,598 3,529 5,127 rainbow 79.040

MODEL11 0.99 none 15,593 36,378 51,971 rainbow 91.818

MODEL12 0.9 none 157,028 361,762 518,790 rainbow 96.913

MODEL13 0.99 none 15,623 36,026 51,649 fixed universal min and max 88.165

MODEL14 0.3 Amazon 15,020 36,851 51,871 default 98.468

MODEL15 0.907 Sahara 17,259 34,724 51,983 default 97.551

MODEL16 0.1 Eastern US 21,887 29,935 51,822 default 97.145

MODEL17 0.946 Siberia 13,799 37,999 51,798 default 93.366

MODEL18 0.923 1900s 8,414 43,605 52,019 default 96.821

MODEL19 0.923 1910s 22,810 29,481 52,291 default 94.988

MODEL20 0.923 1920s 30,693 21,400 52,093 default 95.393

MODEL21 0.923 1930s 35,492 16,161 51,653 default 95.862

MODEL22 0.923 1940s 16,961 34,898 51,859 default 95.797

MODEL23 0.923 1950s 4,801 46,813 51,614 default 98.059

MODEL24 0.923 1960s 1,045 50,724 51,769 default 98.974

For image design, the color scheme “default” is for heat.colors, and the maximum and minimum temperatures are set automatically. MODEL3 is the reference model and MODEL4 is

the best model. MODEL13–MODEL24 are compared with MODEL3 because these models use approximately the same number of training images.

Frontiers in Robotics and AI | www.frontiersin.org 4 April 2019 | Volume 6 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Ise and Oba Forecasting Climatic Trends Using AI

FIGURE 3 | Development of the image classification for the best model (MODEL4).

FIGURE 4 | Comparison of accuracy for different colors. Note that both

horizontal and vertical axes are logarithmic axes.

forests) has relatively low accuracy. This may be caused by the
heterogeneity within the climatic regions. When interannual
trends in temperature are homogeneous within the climatic
region, we expect higher accuracy. This is understandable from
the viewpoints of artificial intelligence and computer vision. For
example, to construct amodel of human faces, numerous training
images are required because human faces are heterogeneous.
On the other hand, a homogeneous object such as the trade
mark of Coca Cola can be identified relatively easily with a

few training images with sample size amplification by modifying
colors and shapes.

In experiments with temporal restrictions (MODEL18–
MODEL24), the accuracy of the models was in the range 95.0–
96.8 for MODEL18 (1900s) to MODEL22 (1940s); however,
for MODEL23 (1950s) to MODEL24 (1960s), the accuracy was
above 98%. This may be because in MODEL23 and MODEL24,
more than 90% of the training images were classified as RISE
because global warming became obvious in the latter half of the
20th century. This bias may make predictions easier. Another
reason is the data quality; we assume that the quality of the data
is improving gradually in the temporal range and this makes
predictions more reliable. Although MODEL18 (1900s) also has
a bias toward RISE, the accuracy is not particularly high possibly
because of the low data quality in the early 20th century.

DISCUSSION

In this study, we showed that, without physics-based
mechanisms, a top-down forecast model can successfully
predict rise or fall in temperature in a decadal timescale.
Although this study has limitations in predictability because only
two classes (RISE or FALL) are used for forecast, this top-down
approach can be a meaningful measure for climate change
studies. We suggest that this top-down approach should be used
together with physics-based bottom-up approaches because
these approaches can work in a complementary manner. This
study is different from the preceding top-down approach using
probabilistic forecast (Sévellec and Drijfhout, 2018) in that we
did not need to make any assumptions related to climatology; we
simply prepared two-dimensional figures using climate data and
fed them to a DNN.
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Different color schemes lead to some differences in the model
performance (Figure 4). We noticed that the rainbow color
scheme (see Figures 2I–L) gives more information to human
observers but this may not be the case for an artificial intelligence
system constructed using a DNN model. When number of
training images is small, the performance of the default color
scheme (heat.colors) is not good. With large numbers of training
images, the performance of heat.colors was better than the other
color schemes. These findings may be insightful for various
studies on artificial intelligence.

This study can be enhanced with several modifications. For

example, we employed LeNet among choices of CNN because
of its simplicity. We did not change the default parameter

settings of NVIDIA DIGITS 6.0 to show the robustness of our

concept. However, other networks such as AlexNet (Krizhevsky
et al., 2012) or GoogLeNet (Szegedy et al., 2014) with systematic
parameter tuning and multifold cross validation can be used for
further improvements in forecasting. Moreover, although this
study is a two-class classification in temperature trend (RISE or
FALL), it can be possible to use ca. 5 temperature classes for
better forecasting. There are advantages and disadvantages for
this study. Since this is a top-down approach, it is difficult to
measure whether our approach would perform well under novel
conditions. This limitation is universal for phenomenological
forecasting. Therefore, we suggest that climatic forecasting
should integrate both the top-down approach such as this study
and the bottom-up approach based on physics.

CONCLUSION

This study uncovers several insightful research topics. For
example, the models constructed in this study can be used to
forecast future trends in temperature. Moreover, along with
the mean monthly temperature, other meteorological datasets
such as maximum and minimum temperatures and precipitation
can be used to generate images for DNN training. This may
further improve the model performance. We also suggest using
temperature data from simulation studies such as ESM. By
doing this, we may be able to show whether climate simulations
generate interannual trends similar to observed data. Overall,
because climate change is a very important problem, many
different approaches should be used to address it. We hope
that our DNN-based, top-down approach can be one such
novel approach.
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