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Connections in nervous systems are disproportionately concentrated on a small subset of

neural elements that act as network hubs. Hubs have been found across different species

and scales ranging fromC. elegans to mouse, rat, cat, macaque, and human, suggesting

a role for genetic influences. The recent availability of brain-wide gene expression atlases

provides new opportunities for mapping the transcriptional correlates of large-scale

network-level phenotypes. Here we review studies that use these atlases to investigate

gene expression patterns associated with hub connectivity in neural networks and

present evidence that some of these patterns are conserved across species and scales.
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1. INTRODUCTION

The brain is a multiscale network, with neuronal elements exhibiting coordinated patterns of
activity that unfold across several orders of magnitude in time and space (Buzsáki and Draguhn,
2004; Lichtman and Denk, 2011; Fornito et al., 2016). Graph theory provides a useful approach
to represent network organization at each scale by focusing on the essential elements of the
system: processing units and their interactions, represented, respectively, as nodes and edges in the
graph (Bullmore and Sporns, 2009; Fornito et al., 2016). The advantage of using a graph theoretic
approach to understand the organizational properties of the brain is that the same analysis tools can
be applied regardless of the species or scale, ranging from electron micrograph data of neuron-and-
synapse connectivity in the nematode worm Caenorhabditis elegans (White et al., 1986; Varshney
et al., 2011), through tract-tracing data in the mouse (Oh et al., 2014; Gămănuţ et al., 2018)
and macaque (Stephan et al., 2001; Markov et al., 2014), to brain-wide non-invasive structural
and functional imaging in the human (Bassett and Bullmore, 2009; Bullmore and Sporns, 2009;
Fornito et al., 2013).

A growing body of work has demonstrated that the connection topology of neural networks—
that is, the specific arrangement of connections between system elements—shows a number of
non-random properties that are conserved across different scales and in different species (Bullmore
and Sporns, 2009; Sporns, 2011; Fornito et al., 2016; van den Heuvel et al., 2016a; Schröter et al.,
2017). These include (i) a predominance of short-range, locally clustered connections supporting
functional specialization coupled with sparse, long-range projections that may promote global
integration and functional diversity, resulting in an economical small-world organization (Watts
and Strogatz, 1998; Bassett and Bullmore, 2017; Betzel and Bassett, 2017); (ii) the presence
of densely connected sub-networks, termed modules, organized hierarchically across several
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resolution levels so that modules contain nested sub-modules
and so on (Meunier et al., 2009; Bassett et al., 2010); (iii) a fat-
tailed distribution of connectivity across nodes, such that some
nodes possess a relatively large number of connections and act
as network hubs (van den Heuvel and Sporns, 2011; Towlson
et al., 2013; van den Heuvel et al., 2016a); and (iv) a dense inter-
connectivity of hub nodes, leading to the formation of a “rich-
club” (Zamora-López et al., 2010; van den Heuvel and Sporns,
2011; Harriger et al., 2012; Towlson et al., 2013).

The strong conservation of such topological properties across
scales and species implies that particular connectivity patterns are
being evolutionary favored either through common descent or
convergent evolutionary paths. This raises questions concerning
the degree to which genes influence brain network topology.
Twin studies have shown that topological properties of human
brain networks mapped at the macroscale are heritable (Smit
et al., 2008; Fornito et al., 2011; van den Heuvel et al., 2013a;
Bohlken et al., 2014; Sinclair et al., 2015; Zhan et al., 2015;
Colclough et al., 2017), but they do not indicate the specific
genes involved. Studies linking structural variation in the genome
to variability in network-level phenotypes, both at the level of
candidate genes (Liu et al., 2010; Brown et al., 2011; Dennis
et al., 2011; Markett et al., 2017) and in genome-wide scans
(Jahanshad et al., 2013), have started to address this gap.
However, they provide a partial picture, as it is often unclear
how a given DNA variant impacts gene expression to give rise
to phenotypic variability.

In neuroscience, it has been difficult to link direct measures
of gene expression to variation in network phenotypes defined
across large swathes of the brain, as gene expression has
traditionally only been quantifiable though invasive interrogation
of regionally localized tissue samples. The recent availability of
large-scale, brain-wide atlases of gene expression (Lein et al.,
2007; Hawrylycz et al., 2012), has overcome this hurdle and
presented new opportunities to understand the molecular
correlates of network-level phenotypes. Patterns of gene
expression have been used to predict whether two neurons
(or large-scale brain regions) will be structurally connected
(Kaufman et al., 2006; Varadan et al., 2006; Baruch et al., 2008;
French and Pavlidis, 2011; Wolf et al., 2011; Ji et al., 2014;
Fakhry and Ji, 2015), and confirmed that regional variations in
gene expression track specific aspects of structural (Goel et al.,
2014; Forest et al., 2017; Parkes et al., 2017; Romero-Garcia
et al., 2018) and functional (Cioli et al., 2014; Hawrylycz et al.,
2015; Richiardi et al., 2015; Krienen et al., 2016; Anderson
et al., 2018) brain networks. The integration of gene expression
atlases with imaging data is also shedding light on the molecular
correlates of macroscopic brain changes observed in a range of
disorders, such as Huntington’s disease (McColgan et al., 2018),
Parkinson’s disease (Rittman et al., 2016), and schizophrenia
(Romme et al., 2017).

One important aspect of brain network organization
is the distribution of connections across nodes, which is
disproportionately concentrated on a small number of network
hubs (van den Heuvel and Sporns, 2011; Towlson et al., 2013).
Most simply, network hubs are defined as nodes with a relatively
large number of connections, placing them in a topologically

central position within the network (although other definitions
are possible; see Power et al., 2011; Oldham et al., 2018).
Intuitively, the global air transportation network offers insight
into the role of hubs in mediating network traffic flow; certain
airports, such as Dubai International, London Heathrow, and
LAX are linked to the rest of the network by a much larger
number of direct flights than other airports. They are thus
positioned to mediate a large fraction of intercontinental travel.
Similarly, connections are not distributed equally across neurons,
neuronal populations or large brain areas, with specific network
elements possessing the lion’s share of connections (van den
Heuvel and Sporns, 2011; Towlson et al., 2013; de Reus and
van den Heuvel, 2014; van den Heuvel et al., 2016a). These
brain hubs are thought to play a critical role in the functional
integration of anatomically disparate systems (Harriger et al.,
2012; van den Heuvel et al., 2012), and are disproportionately
impacted by a diverse variety of brain diseases (Crossley et al.,
2014; Fornito et al., 2015). Thus, understanding the molecular
basis for hub connectivity may provide insights not only into
integrated cerebral function, but also into the various disease
processes that plague the brain.

In this article, we review how brain-wide gene expression
atlases have been used to link two traditionally disparate scales
of analysis in neuroscience: molecular function (microscale) and
whole-brain network topology (macroscale), by identifying the
transcriptional correlates of brain network hubs. We begin with
a brief overview of the expression atlases that are currently
available and then consider how hubs are defined in brain
networks and what we know about their functional role. We then
examine research indicating that brain network hubs possess a
distinct and conserved transcriptional signature.

2. CHARACTERIZING GENE EXPRESSION
ACROSS THE ENTIRE BRAIN

Gene expression is a process through which genetic information
encoded in sequences of DNA is read and used to synthesize
a particular gene product. The two key steps in this complex
process are transcription, where an unwound segment of
DNA is read to produce messenger (mRNA), and translation,
which occurs when the resulting mRNA is used to synthesize
the gene product, such as a protein. Gene expression is
commonly inferred from mRNA levels, thus serving as an
index of transcriptional activity—an indirect proxy for the
protein abundance. Transcriptional activity can be measured
using several different techniques that either assay bulk tissue
samples [microarray (Schulze and Downward, 2001), RNA-seq
(Mortazavi et al., 2008; Wang et al., 2009)], histological sections
at a cellular resolution [in situ hybridization (ISH) (Schulze and
Downward, 2001)], or single cells [single-cell RNA sequencing
(scRNA-seq) (Tang et al., 2009)]. Different classes of brain cells
show distinctive gene expression patterns (Darmanis et al., 2015;
Poulin et al., 2016; Tasic et al., 2016; Mancarci et al., 2017), and
scRNA-seq is thus regarded as the most promising technology
for accurately resolving cell-type specificity (Yu and Lin, 2016).
However, scRNA-seq is difficult to scale to brain-wide analyses,
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and current brain-wide atlases of gene expression have relied on
microarray or ISH. ISH has high spatial resolution, allowing gene
expression to be measured in a tissue section with relatively high
sensitivity and specificity, but requires a very large number of
samples to quantify expression levels across thousands of genes
(Unger et al., 2010). ISH has therefore only been used to construct
atlases for species with high tissue availability, such as the mouse
(Lein et al., 2007). Microarray, on the other hand, allows the
quantification of expression levels of thousands of genes at once
by measuring the hybridization of cRNA (Cy3-labeled RNA) in
a tissue sample to particular spot (probe) on the microarray
chip. The technique is limited to known gene sequences and is
prone to background noise (Okoniewski and Miller, 2006; Royce
et al., 2007), but provides a cost-effective way to measure gene
transcription in high-throughput manner. It has been used to
produce spatially comprehensive atlases of the human (Kang
et al., 2011; Hawrylycz et al., 2012; Miller et al., 2014) and
non-human primate brain [NIH Blueprint Non-Human Primate
(NHP) Atlas (2009), in conjunction with ISH].

As summarized in Keil et al. (2018), there is a large number
of gene expression atlases. Due to their high spatial coverage,
the two most used brain-wide expression atlases are the Allen
Mouse Brain Atlas (AMBA) (Lein et al., 2007) and the Allen
Human Brain Atlas (AHBA) (Hawrylycz et al., 2012), both made
freely available by the Allen Institute for Brain Science. The
AMBA provides an extensive representation of the expression
patterns of 19 419 genes across the whole mouse brain, using
ISH to quantify brain-wide expression patterns with the cellular
resolution at each tissue slice with slices acquired every 200µm
(the latter resolution depends on the section). Spatially resolved
gene expression data can be further parcellated using anatomical
atlases of the mouse brain (Johnson et al., 2010; Furth et al.,
2018) to acquire averaged expression values through a hierarchy
of brain regions defined at different resolution scales. The AHBA
comprises expression measures for 21, 245 genes (depending on
available annotation data) taken from 3, 702 spatially distinct
post-mortem tissue samples distributed throughout the brains of
six human donors (Hawrylycz et al., 2012, 2015). Both atlases
have been mapped to stereotaxic space, allowing researchers to
link spatial variations in gene expression to the spatial variations
of a given neural phenotype (i.e., any quantifiable, spatially
varying property of the brain, as measured either at the level of
brain regions or pairs of regions) (Fornito et al., 2019). Other
gene expression databases include both spatial (Fertuzinhos et al.,
2014) and spatio-temporal (Ayoub et al., 2011; Belgard et al.,
2011; Colantuoni et al., 2011; Miller et al., 2014) atlases, along
with the Allen Developing Mouse Brain Atlas (2008), however
most of these lack the spatial coverage of the AMBA and AHBA
with only a handful regions being assessed across multiple time
points. Some gene expression atlases have also been published
for the macaque, using ISH and microarray (Bakken et al., 2016),
and C. elegans (Harris et al., 2010). The latter database has been
curated from published reports and contains binary entries on
around 5% of the ∼ 20, 000 genes in the full worm genome,
such that the only information encoded is whether a given gene
is expressed or not in a neuron.

Gene expression measures can be influenced by a number of
technical and biological factors (Fraser et al., 2005; Berchtold

et al., 2008; Kumar et al., 2013; Trabzuni et al., 2013). For
example, the AHBA consists of data from six donor brains,
each varying in characteristics, such as age at death, cause
of death, sex, and ethnicity. Therefore, any analysis pooling
expression measures across brains should ensure that inter-
subject variability has not directly influenced the results. The
analysis of gene expression measures often involves important
additional processing decisions that are not applied consistently
and can impact final results. For example, useful steps in
processing raw AHBA data prior to analysis include (i) verifying
probe-to-gene annotations; (ii) filtering genes that are not
expressed above the background; (iii) selecting a representative
probe when more than one probe has been used to assay
a single gene; (iv) assigning tissue samples to specific brain
regions in the imaging dataset; and (v) normalizing expression
measures to account for inter-individual differences and outlying
values. Each step requires a number of decisions, and best-
practice workflows have not been established yet (Arnatkevic̆iūtė
et al., 2019). Finally, gene expression data often shows a strong
spatial autocorrelation, such that gene expression is more tightly
coupled between regions that are close to each other compared to
those that are spatially distant. This trend has been demonstrated
in the mouse (Fulcher and Fornito, 2016), human (Richiardi
et al., 2015; Krienen et al., 2016; Vértes et al., 2016; Pantazatos
and Li, 2017; Arnatkevic̆iūtė et al., 2019) and head of C.
elegans (Arnatkevic̆iūtė et al., 2018). In order to demonstrate
that a putative association between regional variations in gene
expression and a given neural phenotype is evident beyond
this distance-dependence, potential biases introduced by the
dependence can be addressed using methods ranging from
simple regression (Fulcher and Fornito, 2016), partial Mantel
tests (French and Pavlidis, 2011; Ji et al., 2014; Fakhry et al., 2015)
or spatially constrained randomization procedures (for example,
see Vértes et al., 2016; Burt et al., 2017; Seidlitz et al., 2018;
Arnatkevic̆iūtė et al., 2019).

Brain-wide gene expression measures can be related to a
brain network-level phenotype either at the level of specific brain
regions (Myers et al., 2007; Rittman et al., 2016; Vértes et al.,
2016; Parkes et al., 2017) or using inter-regional transcriptional
coupling (Richiardi et al., 2015; Fulcher and Fornito, 2016;
Arnatkevic̆iūtė et al., 2018; Romero-Garcia et al., 2018). Analyses
of regional gene expression focus on understanding how the
expression of a given gene varies across regions, and whether
this variation tracks spatial variations in some other phenotype
(e.g., regional gray matter volume, or number of connections). In
analyses of inter-regional transcriptional coupling or correlated
gene expression (CGE), each region’s transcriptional profile is
mapped as a vector of expression values across all genes, and these
vectors are correlated between different regions, thus resulting in
a region × region CGE matrix indicating the similarity between
brain regions in terms of their gene expression patterns. Gene-
to-gene co-expression (Eising et al., 2016; Keo et al., 2017;
Negi and Guda, 2017), on the other hand, is estimated at the
levels of genes (rather than regions). Each gene’s expression
profile across regions is summarized as a vector, and these
vectors are correlated between pairs of genes, resulting in a gene
× gene coexpression matrix demonstrating whether regional
expression patterns for gene pairs match. Note that the term gene
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coexpression is sometimes used in reference to CGE. We use the
current nomenclature to avoid confusion between the two.

Once a relationship between gene expression and a given
neural phenotype has been established, functional groups of
genes involved in driving the effect can be identified using
gene set enrichment analyses (GSEA) (Subramanian et al., 2005;
Irizarry et al., 2009). Since such analyses are often performed
across many thousands of genes, GSEA offers a method for
determining whether certain categories of genes—e.g., defined by
gene ontology (GO) (Ashburner et al., 2000) or KEGG ontology
(KO) (Kanehisa and Goto, 2000)—are over-represented in the set
of genes showing the strongest associations. This approach allows
for a functional interpretation of the results, at the expense of
specificity at the level of single genes (i.e., inferences are made
about functional groups of genes).

3. HUBS IN BRAIN NETWORKS

Complex behaviors require the coordination and integration
of information both within and across different, functionally
specialized brain regions. In primate brains, it has long been
assumed that association areas, sitting atop the cortical hierarchy,
and in interaction with subcortical regions, play an important
role in these integrative processes (Felleman and Van Essen,
1991; Mesulam, 1998; Meyer and Damasio, 2009). Structural
connectivity studies have confirmed that association areas, and
regions of basal ganglia and thalamus, have high levels of
connectivity, marking them as network hubs (van den Heuvel
and Sporns, 2011). Artificially lesioning these nodes rapidly
fragments the network, indicating that they play a vital role
in network integration (Albert et al., 2000; van den Heuvel
and Sporns, 2011). Moreover, both simulated node deletion and
in vivo regional inactivation experiments demonstrate a direct
relationship between a brain region’s centrality and its functional
impact on connected networks (Vetere et al., 2017).

Network hubs, the core elements in the network, can be
defined using a range of different measures. These measures
quantify distinct aspects of topological centrality, which can be
defined as the capacity of a node to influence or be influenced
by other nodes by virtue of its connection topology (Fornito
et al., 2016). The simplest such measure is node degree, which is
defined as the number of connections attached to a node. Other
commonly used measures include closeness and betweenness
centrality, which are both built on the premise that information
in the network propagates through the most efficient route
(the shortest path between regions), and thus, the centrality of
any given node can be quantified by its average shortest path
length (closeness), or the number of shortest paths between other
nodes on which it lies (betweenness). These measures are often
positively correlated across most networks, including the brain,
and it is common to find a subset of nodes that score highly
on most centrality measures, representing a topologically central
network core (Oldham et al., 2018).

Another way to define hubs is in relation to the modular
organization of the network. Nodes within a module are densely
interconnected with each other and relatively sparsely connected

to nodes in other modules. Given a partition of a network into
modules (e.g., Blondel et al., 2008), the integrative role of a
node in the network can be characterized using the participation
coefficient: a measure of connection diversity that assigns a
high score to nodes with connections distributed evenly across
modules. Thus, hubs defined based on the degree centrality can
be further classified into “local hubs,” which connect primarily to
nodes in the same module (high degree and low participation),
and “connector hubs,” which connect to nodes from other
modules (Figure 1) (Guimerá et al., 2012).

The interpretation of different measures of network centrality
must be moderated by an appreciation of how the network
has been constructed. If one investigates structural connectivity
(e.g., through electron microscopy, tract tracing, or diffusion
MRI) then network edges represent physical connections
between network elements, and interpretation is straightforward.
If one investigates functional connectivity (e.g., through
electrophysiology, calcium imaging, or functional MRI), which
captures statistical dependencies between physiological signals
recorded at each node (Friston, 1994), the interpretation is less
clear and some measures of dependence, such as the correlation
coefficient, can bias the topology of the network (Power et al.,
2011; Zalesky et al., 2012). Furthermore, different centrality
measures make assumptions about how dynamics unfold on
the network structure. For example, closeness and betweenness
assume information is routed along shortest paths, which may
not be a realistic model of communication in nervous systems
(Goñi et al., 2014; Mišić et al., 2015; Seguin et al., 2018).

Brain network hubs are densely interconnected, forming a
rich-club (Colizza et al., 2006). This property has been observed
in the macroscale human connectome (van den Heuvel and
Sporns, 2011), the mesoscale connectomes of the mouse (Fulcher
and Fornito, 2016), rat (van denHeuvel et al., 2016b), cat (de Reus
and van den Heuvel, 2013) and macaque (Harriger et al., 2012),
and the micro-scale neuronal connectome of the C. elegans
(Towlson et al., 2013) (Figure 2).

Given that hubs are distributed throughout the brain and
involved in diverse functional systems (de Reus and van den
Heuvel, 2013; van den Heuvel and Sporns, 2013; Fulcher
and Fornito, 2016), dense inter-connectivity of hub nodes is
thought to support efficient integration of different functionally
specialized systems (van den Heuvel et al., 2012), and to increase
the diversity of the brain’s functional repertoire (Senden et al.,
2014). This integrative capacity comes at cost, with connections
between hubs extending over longer anatomical distances than
other types of connections (van den Heuvel and Sporns, 2011;
Harriger et al., 2012; Fulcher and Fornito, 2016; Arnatkevic̆iūtė
et al., 2018). Hub regions also have the highest levels of resting
metabolism (Vaishnavi et al., 2010; Tomasi et al., 2013) and blood
flow (Liang et al., 2013). This high metabolic cost is thought
to partly explain why pathology preferentially accumulates in
brain network hubs across a wide range of diverse neurological
diseases (Bullmore and Sporns, 2012; Crossley et al., 2014;
Fornito et al., 2015).

The mechanisms resulting in the emergence of network
hubs are unknown, but geometric constraints and evolutionary
pressures to maximize adaptive function may play a role
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Arnatkevic̆iūtė et al. Transcriptional Correlates of Hub Connectivity

FIGURE 1 | Different concepts of hubness in brain networks. A schematic representation of a modular network where nodes within a module (different background

colors) show a relatively high degree of intra-modular connectivity and a low degree of inter-modular connectivity. High degree nodes can be classified into (i) local

hubs (blue) that have a high degree centrality and low participation coefficient; and (ii) connector hubs (red) that have high degree and connect to nodes in other

modules. Nodes with high betweenness centrality are located on shortest paths between nodes and can play an important role in linking different nodes, even if they

have low degree (e.g., the green node supports communication between the yellow and orange modules).

(Henderson and Robinson, 2014; Roberts et al., 2016; Betzel
and Bassett, 2017). Whereas, generative network models based
on simple geometric rules reproduce a range of statistical
properties of brain networks (Ercsey-Ravasz, 2013; Henderson
and Robinson, 2014; Song et al., 2014), the spatial location of
hub regions cannot be explained by geometry alone (Roberts
et al., 2016), suggesting an additional role for non-geometric
factors in shaping the specific topology and topography of the
connectome. In this context, genes may make an important
contribution to shaping complex properties, such as rich-
club organization. We now turn our attention to recent
studies investigating the transcriptional correlates of hub
connectivity by integrating connectomic data with spatially
comprehensive gene expression databases across different species
and scales.

4. THE MOLECULAR CORRELATES OF
HUB CONNECTIVITY

The first study to link transcriptional measures to the hub
connectivity (Rubinov et al., 2015) combined gene expression
data from the AMBA (Lein et al., 2007) with a mouse
connectome inferred statistically from 461 tract-tracing studies
(Oh et al., 2014). Data from these anterograde tracer injections
into the right hemisphere were aggregated into a directed

and weighted connectivity matrix comprising of 112 bilaterally
symmetrical cortical and subcortical nodes defining edge weights
as normalized connection densities and ranging over four orders
of magnitude, with 53% of all possible pairs of regions showing
some level of non-zero connectivity. The authors identified
a subset of nodes with high degree and a high participation
coefficient, indicating that they were highly connected while
also being connected to nodes in diverse functional systems.
Using partial least squares (PLS) (Hervé, 2010), they were able
to derive a linear combination of genes whose expression levels
explained 48% of the variance in nodal participation coefficient.
The analysis focused on a subset of 3,380 genes form the AMBA
that passed quality control criteria and were assayed in at least
one additional independent experiment allowing the authors to
evaluate gene expression reproducibility. The genes weighting
strongly on the participation-related component were enriched
for GO categories, such as learning, cognition, and memory,
suggesting a link between the expression of genes related to
regional variations in network participation and those implicated
in cognition.

In a subsequent analysis of the Allen Institute mouse
connectome, Fulcher and Fornito (2016) used a parcellation
comprising 213 regions linked by 3, 063 connections (6.9%
of all possible links), focusing on the right hemisphere
only (where complete information on afferent and efferent
connectivity was available), in combination with ISH measures
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FIGURE 2 | Rich club connectivity in different species. Top row: The spatial location of hubs in C. elegans (A), mouse (B), and human (C). (A) Neurons are

represented as nodes with colors corresponding to neuron type: interneurons (red), motor neurons (green), sensory neurons (blue), multimodal neurons (yellow). Hub

neurons (neurons with node degree, denoted k, > 44) are shown as circles outlined in black. Connections between hubs are shown in red; other connections shown

in gray in the upper plots. The upper part represents zoomed-in plots of the head and tail that are shown as dotted rectangles in the lower plot [adapted and

reproduced from (Arnatkevic̆iūtė et al., 2018)]. (B) Meso-scale connectome of the mouse. Hub regions (regions with k > 44) are distributed across the whole brain

and contain areas in isocortex, striatum, hippocampal formation, pallidum, thalamus, hypothalamus, midbrain, pons, and cortical subplate [adapted and reproduced

from (Fulcher and Fornito, 2016)]. (C) Macro-scale connectome of the human brain. Hub regions (regions with k > 30) are shown as big red spheres while other

regions as smaller gray spheres. Connections between hubs are shown in pink. Hubs are bilateral: lingual gyrus, precuneus, superior frontal gyrus, superior parietal

gyrus, insula, thalamus, putamen and hippocampus; right pallidum; left caudate and lateral occipital gyrus. Middle row: Distribution of degree values across nodes. In

each network, the distribution is heavy-tailed, consistent with the presence of highly connected hub nodes. Bottom row: Normalized rich-club coefficient 8norm (red)

and average connection distance of hub-hub links, d (blue), as a function of degree (k) at which hubs are defined. The coefficient 8norm is defined by thresholding the

network at a given level of k, calculating the density of connections between hub nodes (all nodes with degree > k), and normalizing this value by the corresponding

value obtained in an ensemble of appropriately matched surrogate graphs. The normalized coefficient therefore quantifies the degree to which the density of

connections between hubs exceeds chance expectations. Since the threshold to define hubs is arbitrary, the coefficient is evaluated across all possible values of k. A

rise in 8norm at high levels of k is consistent with rich-club organization. Red circles indicate 8norm values that are significantly higher than an ensemble of 10,000 null

networks (permutation test p < 0.05). Blue circles indicate where the mean connection distance between hubs is significantly greater relative to other links in the

network (one-sided Welch’s t-test; p < 0.05).

of expression across 17, 642 genes in the AMBA (Lein et al.,
2007). Their primary aim was to characterize how coupled
patterns of gene expression between regions (i.e., correlated
gene expression or CGE) relate to network topology. After
confirming that the right hemisphere of the mouse connectome
did indeed show evidence of rich-club organization, and that
connections between hubs were both the most costly (measured
by connection distance, reciprocity and weight) and central
(measured using edge betweenness centrality and an alternative
measure called communicability, that does rely on shortest path
communication) connections of the network, they distinguished
between three topological classes of connections following the
work of van den Heuvel et al. (2012): (i) rich links, which connect
two hubs (where hub is defined based on degree); (ii) feeder
links, which connect a hub to non-hub (feed-out) or a non-
hub to a hub (feed-in); and (iii) peripheral links, which connect
two non-hubs (Figure 3A). Across a wide range of thresholds
for defining a hub, CGE was highest for rich links, followed
by feeder, and lowest for peripheral edges, with CGE showing
a sharp rise at a hub threshold range that coincided with a
regime in which a significant topological rich-club was observed
(Figure 3B). This tightly coupled transcriptional activity between
hub nodes defied a general trend in the brain where CGE between
two areas decayed sharply (exponentially) as a function of their

distance. That is, despite connected hubs being separated by
longer anatomical distances than other pairs of regions, they
showed the highest levels of transcriptional coupling (note that
CGE measures were corrected for this dependence). Enrichment
analysis showed that this effect was driven by genes regulating
the oxidative synthesis and metabolism of ATP—the primary
energetic source of neuronal communication. By comparison,
an enrichment analysis comparing connected to unconnected
regions (regardless of whether those connections involved hubs)
found significant involvement of a large number of GO categories
related to synaptic plasticity and communication, axon structure,
andmetabolism. These findings suggest that while genes involved
in forming and maintaining synapses and axons are important
for establishing a connection between two regions, the primary
genomic distinction between different topological classes of
connections (as defined in relation to hubs) is related to the
metabolic requirements of those connections.

More recently, we found a qualitatively similar pattern
of elevated CGE in rich links in the nematode C. elegans
connectome (Arnatkevic̆iūtė et al., 2018). Combining electron
micrograph data defining the electrochemical connectome of
279 neurons (Varshney et al., 2011) with binary gene expression
profiles across 948 genes (Figure 3C) acquired from WormBase
(Harris et al., 2010), we identified the same trend for CGE to be
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FIGURE 3 | Empirical studies investigating the transcriptional properties of hub connectivity in mouse (A,B) and C. elegans (C,D). (A) The schematic representation of

different types of connections in the mouse brain: rich (connecting a hub to a hub)—red, feeder (connecting a hub to a non-hub or a non-hub to a hub)—green,

peripheral (connecting a non-hub to a non-hub)—blue. Links in the connectome were categorized across this scheme. For each region, a vector of gene expression

values was extracted as the corresponding row of the region in the full gene expression matrix comprising the AMBA. The matrix represents the normalized gene

expression of 17,642 genes (columns) across 213 regions (rows). Gene expression profiles for each region were then used to estimate correlated gene expression

(CGE) between region pairs. (B) Mean correlated gene expression for rich, feeder, and peripheral links as a function of node degree (k) where hubs are nodes with

degree > k. The mean CGE of rich links increases at levels of k that coincide with a regime where evidence of topological rich-club organization is found indicating that

CGE is highest for connected pairs of network hubs. The topological rich-club regime (determined from the network topology, see Figure 2A) shaded gray. Circles

indicate a statistically significant increase in correlated gene expression for a given link type relative to the rest of the network (one-sided Welch-s t-test; p < 0.05)

[adapted and reproduced from (Fulcher and Fornito, 2016)]; (C) Neuron-and-synapse connectome of C. elegans, reconstructed for 279 neurons using electron

microscopy. Connections colored according to how they connect hubs (neurons with degree > 44) and non-hubs (neurons with degree ≤ 44): red (rich links

connecting hubs), orange (feed-in links connecting a non-hub to a hub), yellow (feed-out links connecting a hub to a non-hub), blue (peripheral links connecting

non-hubs). Middle: additional data acquired for each neuron, such as its: chemically secreted transmitter, anatomical location, birth time, hub status and neuronal

type. Right binary gene expression profile for each of the 279 neurons (rows) across 948 genes (columns). (D) Median CGE for each connection type (feed-in and

feed-out connections are combined and represented as feeder) as a function of node degree k. The topological rich-club regime (determined from the network

topology, see Figure 2A) shaded gray. Circles indicate a statistically significant increase in CGE in a given link type relative to the rest of the network (one-sided

Wilcoxon rank sum test, p < 0.05) [adapted and reproduced from (Arnatkevic̆iūtė et al., 2018)].

highest for rich links, followed by feeder, and then peripheral
edges (Figure 3D). The involvement of metabolic genes in
rich-club connectivity—as in the mesoscopic mouse connectome
(Fulcher and Fornito, 2016)—could not be confirmed due
to limited gene expression data in the worm, but analysis
of the available data indicated that glutamate signaling and
neuronal communication genes made the strongest contribution
to elevated CGE for hub-hub connections (Arnatkevic̆iūtė et al.,
2018). Leveraging the extensive additional data on neuronal
phenotypes available for the worm, we found that elevated
CGE for connected hubs could not be explained by a range

of other properties, such as neuronal lineage distance (number
of cell divisions separating pairs of neurons from a common
ancestor), differences in birth time, neuronal subtype (sensory,
motor, or interneuron), chemically secreted neurotransmitter,
anatomical separation distance or topological module affiliation.
However, the effect did seem to be driven by the fact that most
hubs in the worm connectome are command interneurons, a
specialized class of neurons that regulates motion. Motion is
one of the more complex behaviors in the worm’s repertoire,
and these findings parallel evidence in primates that network
hubs are primarily located in association cortices, which are
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thought to mediate higher-order cognition (Achard et al., 2006;
Sporns et al., 2007). Thus, despite numerous differences in the
data, including different gene annotation methods (∼ 20 000 ISH
genes in mouse vs.∼ 1, 000 binary literature-curated annotations
in worm), the type of the neural system (spatially continuous
macroscopic mouse brain vs spatially separated C. elegans
nervous system), and the orders ofmagnitude differences in scale,
both studies demonstrated the same general pattern of increased
transcriptional similarity across topologically central hub nodes.

In light of the findings in both mouse and C. elegans,
where several groups of genes implicated in cognition (Rubinov
et al., 2015), oxidative metabolism (Fulcher and Fornito, 2016),
and neuronal communication (Arnatkevic̆iūtė et al., 2018)
have been identified as being related to hub connectivity, one
could wonder whether the same genes are involved in the
hub connectivity of the human brain. The first analysis to
link gene expression and hub connectivity in humans was
performed by Vértes et al. (2016), who combined resting-state
fMRI (rs-fMRI) data with the high coverage genome-wide gene
expression from AHBA (Hawrylycz et al., 2012). Rendering
rs-fMRI data for 285 cortical regions as a binary undirected
network, thresholded to retain 10% of all possible connections,
they measured three different properties of each node: its within-
module connectivity, its participation coefficient (between-
module connectivity), and its average Euclidean distance from
other nodes. PLS identified three components that collectively
accounted for 37% of the total variance in nodal metrics

with the first component exhibiting a positive correlation with
intra-modular degree and a negative correlation with average
nodal distance, corresponding to high degree nodes that mostly
form short-range within-module connections. Genes positively
loading on this component were enriched for GO categories
related to transcriptional regulation. The second component was
positively related to both the participation coefficient and average
nodal distance, thus representing nodes with long connections
that extend between modules, consistent with the integrative
hubs of the network (Figure 4A). As seen in the analysis of
the structural connectivity analysis of the mouse (Fulcher and
Fornito, 2016), genes loading positively on this component were
enriched in GO categories related to oxidative metabolism and
mitochondrial function. These genes also showed significant
over-representation for a set of 19 genes (Krienen et al., 2016)
selectively enriched in the supragranular layers of the human
cortex (HSE-human supragranular enriched genes) with some of
those genes being implicated in the formation of corticocortical
projections emanating from the higher layers of the cortex
(Krienen et al., 2016). Together these findings suggest that hubs
across species demonstrate conserved transcriptional properties
related to their high metabolic demands.

It is well-known that the human brain undergoes an
extended period of development during adolescence that is
critical for brain maturation and coincides with the period
of peak risk for many mental disorders (Paus et al., 2008).
Some of those developmental changes particularly target hub

FIGURE 4 | Empirical studies investigating the transcriptional properties of hub connectivity in human. (A) A schematic representation of the modular organization of

the connectome demonstrating the key properties of inter- and intra- modular hubs based on Vértes et al. (2016). Intra-modular hubs (blue nodes) mostly connect

nodes within the same module and have relatively short connection distances; characterized by the PLS1. Intra-modular hubs (red nodes) have a more diverse

connectivity profile with connections extending long distances and connecting nodes from different modules; characterized by the PLS2. Size and color saturation of

the nodes in the connectome corresponds to the regional scores on PLS1 (Intra-modular hub) and PLS2 (Inter-modular hub) to represent the spatial pattern of

transcriptional profiles [adapted and modified from (Vértes et al., 2016)]. (B) Gene expression and cortical consolidation in adolescence based on Whitaker et al.

(2016), (top) spatial topography of the second component from a PLS analysis corresponding to cortical consolidation during adolescence, defined as cortical

shrinkage/myelination. Genes identified in this profile are related to synaptic transmission and risk to schizophrenia, among others, and are overexpressed in prefrontal

areas of the cortex; (bottom) hubs in the structural covariance network experience faster rates of cortical thinning (CT) and myelination. The PLS2 gene expression

profile is also significantly associated with degree, meaning that hubs are likely to over-express those genes [adapted and modified from (Whitaker et al., 2016)].
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regions (Dennis et al., 2013; Hwang et al., 2013; Baker et al.,
2015; for a review see Cao et al., 2016). Whitaker et al.
(2016) examined a large sample of adolescents (279, aged
14–24 years old) and found that topologically central hubs
of the cortical structural covariance networks undergo an
increased rate of consolidation, defined by increased cortical
thinning and enhanced myelination (Figure 4B). Components of
transcriptional variance that correlated with this consolidation
were extracted using PLS, employing the full set of 20 737 genes
from the AHBA. The first two components explaining 28%
of the variance in MRI measures were related to the baseline
measures of cortical thickness and myelination (PLS1), and
cortical shrinkage and myelination—consolidation over time
(PLS2) (Figure 4B), respectively. The PLS2 component involved
contributions from genes regulating synaptic transmission and
a set of genes linked to risk for schizophrenia, suggesting
that deviation from the normal developmental consolidation of
hub regions might manifest as an intermediate phenotype for
schizophrenia (Whitaker et al., 2016), consistent with evidence
that hubs are disproportionately impacted by the disease (van den
Heuvel et al., 2013b; Crossley et al., 2014; Klauser et al., 2016)
and that regional variations in the expression of schizophrenia
risk genes track the regional variations in the magnitude of
group differences in connectivity between controls and patients
(Romme et al., 2017).

Importantly, this work implies that genes involved in the
development of hubs, which relate to myelination and synaptic
transmission, are distinct from those implicated in cross-
sectional studies of adult hub connectivity, which implicate
metabolic genes. In other words, the genetic mechanisms
underlying the development of hub connectivity may differ from
those involved in sustaining the functional role that hubs play
in a mature neuronal system. The further development of brain-
wide atlases of developmental changes in gene expression will
help shed light on how such differences can be leveraged to gain
insight into the development of different brain disorders.

5. CONCLUSIONS AND FURTHER
DIRECTIONS

Brain-wide gene expression atlases provide exciting
opportunities to link different scales of brain organization. At
the same time, integrating such data with connectomic measures
poses challenges. Given the nascence of this field, no standardized
data processing pipelines have been developed, with widespread
inconsistencies in processing of the same transcriptional data
across studies (Arnatkevic̆iūtė et al., 2019) complicating direct
comparison between findings, even within the same species.

Nonetheless, the available studies—conducted in diverse species
and using different measures of brain connectivity and gene
expression acquired at different resolution scales—point to a
conserved transcriptional signature of hub connectivity related
to genes regulating neuronal communication and metabolism,
consistent with the high centrality and metabolic cost of hub
regions (Bullmore and Sporns, 2009).

One limitation affecting the human data is that the gene
expression measures are derived from bulk tissue samples. The
cellular composition of these samples can influence measured
gene expression patterns, such that two samples can differ in their
transcriptional properties simply due to the differences in the
density of distinct cell types. Single-cell transcriptomics is able
to provide precise gene expression measurements in individual
cells, thus resolving cell-specific transcriptional profiles. While
scRNA-seq is not currently feasible for the whole human
brain, the expression profiles of specific cell groups in the
adult (Johnson et al., 2015; Hu and Wang, 2017; Picardi
et al., 2017) and developing brain (Zhong et al., 2018) are
being characterized.

These limitations notwithstanding, the consistency of results
considered here—often identified through unbiased, data-driven
techniques—demonstrate the potential utility of brain-wide
transcriptomic measures in yielding biologically meaningful
insights to otherwise abstract graph-theoretical structures, such
as hubs and other neural phenotypes. With the availability of new
resources and developments in neuroimaging, the combination
of such data across resolution scales offers a promising way
forward for uncovering the molecular mechanisms that drive the
large-scale organization of the connectome.
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(2018). Consistency and differences between centrality metrics across distinct

classes of networks. Available online at: https://arxiv.org/pdf/1805.02375.pdf

Pantazatos, S. P., and Li, X. (2017). Commentary: BRAINNETWORKS. Correlated

gene expression supports synchronous activity in brain networks. Science 348,

1241–4. Front. Neurosci. 11:412. doi: 10.3389/fnins.2017.00412

Parkes, L., Fulcher, B. D., Yücel, M., and Fornito, A. (2017). Transcriptional

signatures of connectomic subregions of the human striatum. Genes Brain

Behav. 16, 647–663. doi: 10.1111/gbb.12386

Paus, T., Keshavan,M., andGiedd, J. N. (2008).Why domany psychiatric disorders

emerge during adolescence? Nat. Rev. Neurosci. 9, 947–957. doi: 10.1038/

nrn2513

Picardi, E., Horner, D. S., and Pesole, G. (2017). Single-cell transcriptomics reveals

specific RNA editing signatures in the human brain. RNA 23, 860–865. doi: 10.

1261/rna.058271.116

Poulin, J. F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J. M., and Awatramani, R.

(2016). Disentangling neural cell diversity using single-cell transcriptomics.

Nat. Neurosci. 19, 1131–1141. doi: 10.1038/nn.4366

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A.,

et al. (2011). Functional network organization of the human brain. Neuron 72,

665–678. doi: 10.1016/j.neuron.2011.09.006

Richiardi, J., Altmann, A., Milazzo, A. C., Chang, C., Chakravarty, M.

M., Banaschewski, T., et al. (2015). Correlated gene expression supports

synchronous activity in brain networks. Science 348, 1241–1244. doi: 10.1126/

science.1255905

Rittman, T., Rubinov, M., Vértes, P. E., Patel, A. X., Ginestet, C. E., Ghosh, B. C.,

et al. (2016). Regional expression of the MAPT gene is associated with loss of

hubs in brain networks and cognitive impairment in Parkinson disease and

progressive supranuclear palsy. Neurobiol. Aging 48, 153–160. doi: 10.1016/j.

neurobiolaging.2016.09.001

Roberts, J. A., Perry, A., Lord, A. R., Roberts, G., Mitchell, P. B., Smith, R. E., et al.

(2016). The contribution of geometry to the human connectome. Neuroimage

124, 379–393. doi: 10.1016/j.neuroimage.2015.09.009

Romero-Garcia, R., Whitaker, K. J., Váša, F., Seidlitz, J., Shinn, M., Fonagy, P.,

et al. (2018). Structural covariance networks are coupled to expression of

genes enriched in supragranular layers of the human cortex. Neuroimage 171,

256–267. doi: 10.1016/J.NEUROIMAGE.2017.12.060

Romme, I. A. C., de Reus, M. A., Ophoff, R. A., Kahn, R. S., and van den Heuvel, M.

P. (2017). Connectome disconnectivity and cortical gene expression in patients

with schizophrenia. Biol. Psychiatry 81, 495–502. doi: 10.1016/j.biopsych.2016.

07.012

Royce, T. E., Rozowsky, J. S., and Gerstein, M. B. (2007). Toward a

universal microarray: prediction of gene expression through nearest-neighbor

probe sequence identification. Nucleic Acids Res. 35:e99. doi: 10.1093/nar/

gkm549

Rubinov, M., Ypma, R. J. F., Watson, C., and Bullmore, E. T. (2015).

Wiring cost and topological participation of the mouse brain connectome.

Proc. Natl. Acad. Sci. U.S.A. 112, 10032–10037. doi: 10.1073/pnas.14203

15112

Schröter, M., Paulsen, O., and Bullmore, E. T. (2017). Micro-connectomics:

probing the organization of neuronal networks at the cellular scale. Nat. Rev.

Neurosci. 18, 131–146. doi: 10.1038/nrn.2016.182

Schulze, A., and Downward, J. (2001). Navigating gene expression using

microarrays–a technology review. Nat. Cell Biol. 3, E190–E195. doi: 10.1038/

35087138

Seguin, C., van den Heuvel, M. P., and Zalesky, A. (2018). Navigation of brain

networks. Proc. Natl. Acad. Sci. U.S.A. 115, 6297–6302 doi: 10.1073/pnas.

1801351115

Seidlitz, J., Váša, F., Shinn, M., Romero-Garcia, R., Whitaker, K. J., Vértes, P.

E., et al. (2018). Morphometric similarity networks detect microscale cortical

organization and predict inter-individual cognitive variation. Neuron 97, 231–

247.e7. doi: 10.1016/j.neuron.2017.11.039

Senden, M., Deco, G., de Reus, M. A., Goebel, R., and van den Heuvel, M. P.

(2014). Rich club organization supports a diverse set of functional network

configurations. Neuroimage 96, 174–182. doi: 10.1016/j.neuroimage.2014.03.

066

Sinclair, B., Hansell, N. K., Blokland, G. A. M., Martin, N. G., Thompson, P.

M., Breakspear, M., et al. (2015). Heritability of the network architecture of

intrinsic brain functional connectivity.Neuroimage 121, 243–252. doi: 10.1016/

j.neuroimage.2015.07.048

Smit, D. J. A., Stam, C. J., Posthuma, D., Boomsma, D. I., and de Geus, E. J. C.

(2008). Heritability of “small-world” networks in the brain: a graph theoretical

analysis of resting-state EEG functional connectivity. Hum. Brain Mapp. 29,

1368–1378. doi: 10.1002/hbm.20468

Song, H. F., Kennedym, H., and Wang, X.-J. (2014). Spatial embedding of

structural similarity in the cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 111,

16580–16585. doi: 10.1073/pnas.1414153111

Sporns, O., Honey, C. J., and Kötter, R. (2007). Identification and classification of

hubs in brain networks. PLoS ONE 2:e1049. doi: 10.1371/journal.pone.0001049

Sporns, O. (2011). The non-random brain: efficiency, economy, and complex

dynamics. Front. Comput. Neurosci. 5:5. doi: 10.3389/fncom.2011.00005

Stephan, K. E., Kamper, L., Bozkurt, A., Burns, G. A., Young, M. P., and Kötter, R.

(2001). Advanced database methodology for the Collation of Connectivity data

on the Macaque brain (CoCoMac). Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356,

1159–1186. doi: 10.1098/rstb.2001.0908

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,

M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach

for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.

102, 15545–15550. doi: 10.1073/pnas.0506580102

Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., et al. (2009).

mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6,

377–382. doi: 10.1038/nmeth.1315

Tasic, B., Menon, V., Nguyen, T. N., Kim, T. K., Jarsky, T., Yao, Z., et al. (2016).

Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.Nat.

Neurosci. 19, 335–346. doi: 10.1038/nn.4216

Tomasi, D., Wang, G. J., and Volkow, N. D. (2013). Energetic cost of brain

functional connectivity. Proc. Natl. Acad. Sci. U.S.A. 110, 13642–13647. doi: 10.

1073/pnas.1303346110

Towlson, E. K., Vértes, P. E., Ahnert, S. E., Schafer, W. R., and Bullmore, E. T.

(2013). The rich club of the C. elegans neuronal connectome. J. Neurosci. 33,

6380–6387. doi: 10.1523/JNEUROSCI.3784-12.2013

Trabzuni, D., Ramasamy, A., Imran, S., Walker, R., Smith, C., Weale, M. E., et al.

(2013). Widespread sex differences in gene expression and splicing in the adult

human brain. Nat. Commun. 4:2771. doi: 10.1038/ncomms3771

Unger, E. R., Nitta, H., Lee, D. R., and Grogan, T. M. (2010). “In situ hybridization:

principles and applications,” inMolecular Diagnostics, eds W. W. Grody, R. M.

Nakamura, C. M. Strom, and F. L. Kiechle (San Diego, CA: Elsevier), 71–79.

doi: 10.1016/B978-0-12-369428-7.00007-0

Vaishnavi, S. N., Vlassenko, A. G., Rundle, M. M., Snyder, A. Z., Mintun, M.

A., and Raichle, M. E. (2010). Regional aerobic glycolysis in the human

brain. Proc. Natl. Acad. Sci. U.S.A. 107, 17757–17762. doi: 10.1073/pnas.1010

459107

van den Heuvel, M. P., Bullmore, E. T., and Sporns, O. (2016a). Comparative

connectomics. Trends Cogn. Sci. 20, 345–361. doi: 10.1016/j.tics.2016.03.001

van den Heuvel, M. P., Kahn, R. S., Goni, J., and Sporns, O. (2012). High-cost,

high-capacity backbone for global brain communication. Proc. Natl. Acad. Sci.

U.S.A. 109, 11372–11377. doi: 10.1073/pnas.1203593109

Frontiers in Neural Circuits | www.frontiersin.org 12 July 2019 | Volume 13 | Article 47

https://doi.org/10.1016/J.NEURON.2015.05.035
https://doi.org/10.1038/nmeth.1226
https://doi.org/10.1038/ng.2007.16
https://doi.org/10.1038/s41598-017-00952-9
https://doi.org/10.1038/nature13186
https://doi.org/10.1186/1471-2105-7-276
https://arxiv.org/pdf/1805.02375.pdf
https://doi.org/10.3389/fnins.2017.00412
https://doi.org/10.1111/gbb.12386
https://doi.org/10.1038/nrn2513
https://doi.org/10.1261/rna.058271.116
https://doi.org/10.1038/nn.4366
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1126/science.1255905
https://doi.org/10.1016/j.neurobiolaging.2016.09.001
https://doi.org/10.1016/j.neuroimage.2015.09.009
https://doi.org/10.1016/J.NEUROIMAGE.2017.12.060
https://doi.org/10.1016/j.biopsych.2016.07.012
https://doi.org/10.1093/nar/gkm549
https://doi.org/10.1073/pnas.1420315112
https://doi.org/10.1038/nrn.2016.182
https://doi.org/10.1038/35087138
https://doi.org/10.1073/pnas.1801351115
https://doi.org/10.1016/j.neuron.2017.11.039
https://doi.org/10.1016/j.neuroimage.2014.03.066
https://doi.org/10.1016/j.neuroimage.2015.07.048
https://doi.org/10.1002/hbm.20468
https://doi.org/10.1073/pnas.1414153111
https://doi.org/10.1371/journal.pone.0001049
https://doi.org/10.3389/fncom.2011.00005
https://doi.org/10.1098/rstb.2001.0908
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/nn.4216
https://doi.org/10.1073/pnas.1303346110
https://doi.org/10.1523/JNEUROSCI.3784-12.2013
https://doi.org/10.1038/ncomms3771
https://doi.org/10.1016/B978-0-12-369428-7.00007-0
https://doi.org/10.1073/pnas.1010459107
https://doi.org/10.1016/j.tics.2016.03.001
https://doi.org/10.1073/pnas.1203593109
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles
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