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OBJECTIVE—In vitro models suggest that free fatty acid–
induced apoptotic �-cell death is mediated through protein
kinase C (PKC)�. To examine the role of PKC� signaling in vivo,
transgenic mice overexpressing a kinase-negative PKC� (PKC�KN)
selectively in �-cells were generated and analyzed for glucose
homeostasis and �-cell survival.

RESEARCH DESIGN AND METHODS—Mice were fed a
standard or high-fat diet (HFD). Blood glucose and insulin levels
were determined after glucose loads. Islet size, cleaved
caspase-3, and PKC� expression were estimated by immunohis-
tochemistry. In isolated islet cells apoptosis was assessed with
TUNEL/TO-PRO3 DNA staining and the mitochondrial potential
by rhodamine-123 staining. Changes in phosphorylation and
subcellular distribution of forkhead box class O1 (FOXO1) were
analyzed by Western blotting and immunohistochemistry.

RESULTS—PKC�KN mice were protected from HFD-induced
glucose intolerance. This was accompanied by increased insulin
levels in vivo, by an increased islet size, and by a reduced staining
of �-cells for cleaved caspase-3 compared with wild-type litter-
mates. In accordance, long-term treatment with palmitate in-
creased apoptotic cell death of isolated islet cells from wild-type
but not from PKC�KN mice. PKC�KN overexpression protected
islet cells from palmitate-induced mitochondrial dysfunction and
inhibited nuclear accumulation of FOXO1 in mouse islet and
INS-1E cells. The inhibition of nuclear accumulation of FOXO1
by PKC�KN was accompanied by an increased phosphorylation
of FOXO1 at Ser256 and a significant reduction of FOXO1
protein.

CONCLUSIONS—Overexpression of PKC�KN in �-cells pro-
tects from HFD-induced �-cell failure in vivo by a mechanism
that involves inhibition of fatty acid–mediated apoptosis, inhibi-
tion of mitochondrial dysfunction, and inhibition of FOXO1
activation. Diabetes 59:119–127, 2010

O
besity is associated with high plasma concen-
trations of free fatty acids (FFAs). Especially,
saturated FFAs like palmitate have been de-
scribed to induce apoptotic cell death in insu-

lin-secreting cells (1–4). Previous data suggest that the
protein kinase C (PKC)� is activated by FFAs and plays a
crucial role in �-cell survival (5). In particular, overexpres-
sion of kinase-negative PKC� (PKC�KN) in insulin-secret-
ing RINm5F cells protected cells from palmitate-induced
cell death by a mechanism involving nuclear translocation
of PKC� and probably stimulation of a phospholipase C
(6). Overexpression of PKC�KN in INS-1 cells inhibited
interleukin-1�–induced cell death (7). In contrast, down-
regulation of PKC� by long-term treatment with phorbol
myristate acetate (PMA), a synthetic analog of diacylglyc-
erol, did not protect against palmitate-induced cell death
(8). Furthermore, PKC�KO mice displayed reduced glu-
cose-induced insulin secretion and developed glucose
intolerance as they aged (9).

Due to these controversial observations, our previous
study showing that PKC� mediates FFA-induced apoptotic
cell death needs further in vivo evidence (6). For this
purpose, we generated a transgenic mouse model overex-
pressing PKC�KN selectively in insulin-secreting �-cells.
This mouse model was used to test whether PKC�KN
protects against high-fat diet (HFD)-induced glucose intol-
erance in vivo and to analyze molecular changes due to
PKC�KN overexpression in comparison with wild-type
littermate controls.

RESEARCH DESIGN AND METHODS

Generation of PKC�KN transgenic mice and stably transfected INS-1E

cells. To generate �-cell–specific PKC�KN transgenic mouse lines, the RIP-I/
PKC�KN chimeric gene containing the K376R mutation was excised from the
plasmid, purified, and microinjected into fertilized eggs as described previ-
ously (10,11). Two transgenic mouse lines (#179 and #162) on a C57BL/6
background were selected and analyzed. They displayed normal fertility and
growth. For in vivo experiments control mice (wild type) were littermates of
transgenic mice. All animal experiments were done in accordance with the
accepted standard of human care of animals and were approved by the local
Animal Care and Use Committee. INS-1E cells were infected with a retrovirus
containing the wild-type or PKC�KN construct. Transfected cells were se-
lected by geneticin (G418) and subcloned by separation of single cells.
Glucose and insulin tolerance test and insulin secretion in vivo. Mice
were fed either a standard diet or HFD and kept under a light/dark cycle of
12/12 h. HFD consisting of 45% kcal fat from lard was fed to 4-week-old mice
for 8 weeks (D12451; Research Diet, New Brunswick, NJ). Blood glucose was
determined in overnight-fasted mice using a Glucometer Elite (Bayer, Elkhart,
IN). Plasma insulin concentrations were measured by radioimmunoassay
(Linco Research, St. Charles, MO). Glucose tolerance tests (intraperitoneal
glucose tolerance tests [ipGTTs]) were performed in overnight-fasted mice.
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Animals were injected intraperitoneally with a single dose of D-glucose (2 g/kg
body wt), and blood glucose concentrations were detected at the indicated
times. For glucose-stimulated insulin release, a D-glucose dose of 3 g /kg body
wt was used. To determine insulin tolerance, a bolus of human insulin (1
unit/kg body wt) was injected intraperitoneally into fed mice and glucose
concentrations were determined. The results were expressed as percent of the
initial glucose levels.
In vitro insulin secretion. Mouse islets were isolated and cultured as
described previously (12). In brief, after culture islets were preincubated for
1 h at 37°C in modified Krebs-Ringer Bicarbonate buffer containing (in mmol/l)
140 NaCl, 5.6 KCl, 1.2 MgCl2, 2.6 CaCl2, 10 HEPES, 2.8 glucose, and 4 g/l BSA
(FFA free; Sigma, Deisenhofen, Germany), pH 7.4. Thereafter, batches of 5
islets/0.5 ml were incubated for 30 min at 37°C in the presence of test
substances as indicated for each experiment. Insulin released into the

supernatant and insulin content after extraction with acid ethanol (HCl 1.5%
[vol/vol]/ethanol 75% [vol/vol]) were measured by radioimmunoassay.
Apoptosis. Activation of caspase-3 was examined by immunohistochemical
staining against cleaved caspase-3 in pancreatic slices of mice fed standard
diet or HFD. Sections of frozen pancreatic tissue were fixed with 4%
paraformaldehyde in PBS for 20 min, permeabilized with 0.2% Triton X-100 for
2 min on ice, and then blocked with 10% FCS in PBS for 45 min. Primary
antibody against cleaved caspase-3 (1:200; Cell Signaling Technology, Dan-
vers, MA) was applied overnight in PBS supplemented with 10% FCS. After
washing with PBS supplemented with 10% FCS, the slices were incubated for
1 h with an anti-rabbit secondary antibody (1:400; Alexa-Fluor546 IgG,
Invitrogen, Paisley, U.K.).

Transferase-mediated dUTP nick-end labeling (TUNEL) staining was per-
formed in isolated islet cells that were prepared as described previously and
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FIG. 1. Expression of PKC� in islets and other tissues of control and PKC�KN-overexpressing mice. A: Detection of PKC� by Western blotting of
homogenates of isolated islets from control and PKC�KN mice (#179). B: In islet cells of pancreatic slices that stain positive for insulin (red),
a low endogenous and a significant overexpression of PKC� (green) is detected in control and PKC�KN-overexpressing mice (#179), respectively.
C: Western blot analysis of tissue homogenates (50 �g mouse line #179) of control (WT) and PKC�KN-overexpressing (KN) mice reveals a high
expression of PKC� in brain, spleen, and hypothalamus (hypothal) but a low expression of PKC� in heart, kidney, liver, muscle, and fat. As
control, homogenate of INS-1E cells transfected with PKC�WT (15 �g) is blotted on the left. (A high-quality color digital representation of this
figure is available in the online issue.)
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cultured in RPMI-1640 supplemented with 10% FCS, 10 mmol/l HEPES, 1
mmol/l Na pyruvate, 2 mmol/l L-glutamine, 100 IU/ml penicillin, and 100 �g/ml
streptomycin (13). Prior to the addition to the culture medium palmitate from
a 200 mmol/l stock solution dissolved in DMSO was coupled to FCS at a
concentration of 6 mmol/l. The palmitate-to-albumine ratio was �10:1, with
the final concentration of DMSO of 0.3%. The same concentration of the
solvent was added to control culture medium. After 3 days of culture in the
presence of 0.6 mmol/l palmitate, apoptosis was quantified in islet cells by
TUNEL staining using a commercial kit (Roche Diagnostics, Mannheim,
Germany). Nuclei were stained with 1 �mol/l TO-PRO3 in PBS for 1 h
(Invitrogen, Karlsruhe, Germany). The fluorescence was examined with a
confocal microscope (Leica, Wetzlar, Germany) using a 40� objective and
excitation wavelengths of 546 nm (for cleaved caspase-3 staining), 488 nm (for
TUNEL staining), and 633 nm (for nuclei staining).
Mitochondrial potential. Mitochondrial potential (��) was measured in
isolated and cultured islet cells loaded with rhodamine-123 as described
previously (13). Briefly, cultured islet cell clusters were treated for 3 days with
0.6 mmol/l palmitate. Thereafter the cells were loaded with 10 mg/l rhoda-
mine-123 in modified Krebs-Ringer bicarbonate buffer solution containing 0.5
mmol/l glucose for 10 min at 37°C. The fluorescence was measured using a
device provided by Till Photonics (Gräfelfing, Germany). Mitochondrial
hyperpolarization induced by increasing glucose concentration is expressed
as percentage of maximal increase of fluorescence induced by carbonylcya-
nide-p-trifluoromethoxyphenylhydrazone (1 �mol/l FCCP).
Immunohistochemistry. Sections of frozen pancreatic tissue, cultured iso-
lated islet cells, and INS-1E cells, control or stably transfected with RIP-I/
PKC� constructs, were fixed with 4% paraformaldehyde in PBS, permeabilized
with PBS containing 0.2% Triton X-100, and blocked with 10% FCS in PBS for
45 min. Primary antibodies against PKC� (1:500; BD Transduction Laborato-
ries, Heidelberg, Germany), insulin (1:150; Dako Denmark, Denmark), and
forkhead box class O (FOXO)-1 (1:200; Santa Cruz Biotechnology, Santa Cruz,
CA) were applied overnight in PBS containing 10% FCS. After 30 min washing
with PBS supplemented with 10% FCS, the samples were incubated for 1 h
with the appropriate secondary antibodies (1:400 in 10% FCS-PBS): Alexa-
Fluor488 anti-mouse IgG (for PKC�), Alexa-Fluor546 anti-rabbit IgG (for

FOXO1), and Alexa-Fluor546 anti-guinea pig IgG (for insulin). Nuclei were
stained with 1 �mol/l TO-PRO3 in PBS for 1 h.

For morphometric estimation of �-cell mass, insulin antibody binding on
pancreatic sections was visualized with a second antibody coupled to horse-
radish peroxidase. The islet sizes (insulin-stained areas) of every 10th
cryosection of a mouse pancreas were measured with the AxioVision LE
documentation program (AxioVs40 LE V 4.4.0.0.; Carl Zeiss Vision).
Western blotting. Isolated islets, excised mouse tissues, and INS-1E cells
were lysed in buffer containing 125 mmol/l NaCl, 1% (v/v) Triton X-100, 0.5%
sodiumdeoxycholate, 0.1% SDS, 10 mmol/l EDTA, 25 mmol/l HEPES pH 7.3, 10
mmol/l NaPP, 10 mmol/l NaF, 1 mmol/l Na-vanadate, 10 �g/ml pepstatin A, 10
�g/ml aprotinin, and 0.1 mmol/l phenylmethylsulfonyl fluoride. Cytosolic and
nuclear fractions of INS-1E cells were prepared using a commercial kit
(#78833; Pierce Biotechnology, Rockford, IL). The 10,000 g supernatant of
homogenates or the cell fractions were subjected to a SDS-PAGE (8–12%) and
blotted onto nitrocellulose membranes (Schleicher and Schuell, Dassel,
Germany). The membranes were incubated overnight with primary antibodies
against FOXO1, PKC�, PKC�, PKCε, histone H1, and glyceraldehyde-3-phos-
phate dehydrogenase (each 1:1,000 in Tris-buffered saline [TBS] containing 5%
milk, Santa Cruz Biotechnology); P-Ser256-FOXO1 and Tubulin (each 1:1,000
in TBS containing 5% BSA, Cell Signaling Technology); followed by incubation
with a secondary antibody (horseradish peroxidase–linked anti-rabbit IgG;
1:2,000 in TBS containing 5% milk).
Pancreatic insulin content. Insulin was extracted by acid ethanol from
homogenized whole pancreata of 9-month-old mice.
Statistics. Data are expressed as means 	 SEM; P 
 0.05 (unpaired Student
t test) was considered to be statistically significant.

RESULTS

Overexpression of PKC�KN in mice protects against
HFD-induced glucose intolerance. To define the physi-
ological and molecular consequences of depleted PKC�
signaling in pancreatic �-cells, we established two trans-
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FIG. 2. Overexpression of PKC�KN in �-cells counteracts impaired glucose tolerance. A and B: Blood glucose and serum insulin concentrations
were measured during ipGTT of control (ƒ, E) and PKC�KN (Œ, F) mice at the age of 6 weeks (circles) and 9 months (triangles). C: Insulin
sensitivity in control and PKC�KN-overexpressing mice fed HFD. Blood glucose concentrations were measured after injection of insulin (1 unit/kg
body wt) at 0 min as described in details under RESEARCH DESIGN AND METHODS. Shown are means � SEM of control mice (n � 3; ƒ, E) and PKC�KN
mice (#179, n � 3; Œ, F). D and E: Blood glucose and serum insulin concentrations were measured during ipGTT in mice fed HFD for 8 weeks.
Results are expressed as means � SEM of three to five mice. F: Serum insulin concentrations measured during ipGTT in mice fed HFD after
injection of 3 g glucose/kg body wt; shown are the means � SEM of n � 3 control mice (ƒ, E) and n � 4 PKC�KN mice (#179, Œ, F). *P < 0.05
against the value of control mice at the same time point.
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genic mouse lines (#179 and #162) that overexpress
PKC�KN in insulin-producing cells. PKC�KN overexpres-
sion was verified by specific immunoblotting of islet
extracts containing equal amounts of total protein and by
immunohistochemistry (Fig. 1A and B; supplemental Fig.
S1A, available in an online appendix at http://diabetes.
diabetesjournals.org/cgi/content/full/db09-0512/DC1). The
data revealed that PKC�KN was highly overexpressed in
line #179 compared with line #162, and a low endogenous
expression of PKC� was detected in islets of wild-type
controls. Immunoblotting of other tissues revealed that
the overexpression of PKC� was restricted to pancreatic
�-cells (Fig. 1C; supplemental Fig. S1B).

To study the impact of impaired PKC� signaling in
pancreatic �-cells on glucose homeostasis in vivo, glucose
tolerance tests (ipGTT) were performed in both lines (Fig.
2; supplemental Fig. S1C and D). As depicted in Fig. 2A,
control and transgenic mice (line #179) displayed the same
increase in blood glucose levels at 6 weeks of age (circles).
With aging, 9-month-old control and PKC�KN mice had
comparable fasting glucose levels and similar body weight
(Fig. 2A, triangles; supplemental Table S1) but seemed to
be partly protected against age-related glucose intolerance
because 120 min after a glucose load, plasma glucose
levels were lower in 9-month-old PKC�KN animals com-
pared with control mice; this was also true for the second
transgenic line (Fig. 2A, triangles; supplemental Table S1
and Fig. S1C). However, the ipGTTs expressed as area
under the curve (AUC glucose) were not significantly
improved. Consistently, serum insulin increased up to
1.3 	 0.13 ng/ml throughout the glucose tolerance test in
PKC�KN animals, whereas aging control mice were not
able to increase insulin secretion during the ipGTT (Fig.
2B, triangles).

To examine whether PKC� plays a decisive role in fatty
acid–mediated dysfunction of pancreatic �-cells in vivo,
mice were fed HFD for 8 weeks. After HFD, body weight
and insulin sensitivity were comparable between control
and PKC�KN mice (Fig. 2C; supplemental Table S1).
However, glucose levels during ipGTT, expressed as AUC
glucose, were greatly improved in transgenic mice (con-
trol mice: 46.047 	 8.837 mg � dl�1 � min�1 vs. PKC�KN:
28.907 	 6.085 mg � dl�1 � min�1; n � 3, P 
 0.05; Fig. 2D).
In parallel, basal insulin levels tend to be higher in
PKC�KN mice, and insulin secretion rose approximately
twofold in the first 30 min and sustained at a significantly
higher level up to 120 min in PKC�KN transgenic mice,
whereas insulin levels declined already after 60 min in
control animals (Fig. 2E). In glucose-stimulated insulin
release, already after 30 min, serum insulin levels of
PKC�KN mice remained significantly higher than in con-
trol mice after HFD feeding (Fig. 2F). As expected, trans-
genic mice that express low levels of PKC�KN (line #162)
were less protected against HFD-impaired glucose tolerance
(supplemental Fig. S1C and D). Therefore, further experi-
ments were performed with islets of line #179.

In isolated islets of wild-type and PKC�KN mice, insulin
secretion was stimulated to the same extent by glucose,
phorbol ester, and forskolin, and pretreatment with palmi-
tate for 3 days resulted in the same glucose-independent
hypersecretion (Fig. 3A and B). These results indicate that
insulin secretion is not directly regulated by PKC�.
PKC�KN overexpression augments �-cell mass and
protects against apoptotic cell death induced by HFD
and palmitate. As the improvement of insulin secretion in
vivo in PKC�KN-overexpressing mice may result from an

increased insulin disposability due to increased �-cell
mass, pancreatic insulin content and islet size were as-
sessed. Indeed, in 9-month-old transgenic mice, total pan-
creatic insulin content was significantly higher than in
control littermates (Fig. 4A). In addition, according to
insulin staining the mean islet size was nearly doubled in
old PKC�KN transgenic animals, and the islets of trans-
genic mice fed HFD were also significantly larger than that
of control animals (Fig. 4B and C). However, BrdU and
Ki67 staining suggested no increase in proliferation rates
(data not shown).

As apoptosis modulates �-cell mass, the effect of
PKC�KN overexpression on cell death was examined next.
In pancreatic slices from wild-type but not from PKC�KN
mice, cleaved caspase-3 staining was increased almost
threefold after HFD feeding (Fig. 4D and E). Inhibition of
apoptosis by overexpression of PKC�KN was further con-
firmed in cultured isolated islet cells pretreated with
palmitate. In cells of PKC�KN mice, palmitate did not
change the percentage of apoptotic cells, whereas in
control cells palmitate doubled the amount of TUNEL-
positive cells (Fig. 4F). Therefore, the inhibition of palmi-
tate-induced cell death in PKC�KN-overexpressing cells
suggests that PKC� indeed transmits palmitate-mediated
�-cell dysfunction.
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Apoptotic activation of caspase-3 implies cytochrome c
release and mitochondrial depolarisation. To examine the
integrity of mitochondria, glucose-induced hyperpolariza-
tion was assessed. The rise of glucose from 0.5 to 16.7
mmol/l hyperpolarized mitochondria in isolated islet cells
from control and PKC�KN mice to the same extent. After
pretreatment with palmitate, the effect of glucose was
reduced by 60% in islet cells of control but not of PKC�KN
mice (Fig. 5A and B). These results indicate that PKC�
affects mitochondrial function.

PKC�KN overexpression interferes with FOXO1 reg-
ulation. Because it has been described that the dominant-
negative transcription factor FOXO1 inhibited FFA-
dependent �-cell death (14), experiments were performed
to examine whether nuclear translocation of FOXO1 is
altered by PKC�KN. In control islet cells, immunostaining
of FOXO1 was homogenously distributed throughout the
cell. Palmitate triggered FOXO1 accumulation into the
nucleus, and this effect was inhibited in cells overexpress-
ing PKC�KN (Fig. 6A). That PKC� affects nuclear translo-
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cation of FOXO1 is further confirmed by experiments
performed with the insulin-secreting cell line INS-1E over-
expressing either wild-type PKC� (PKC�WT) or PKC�KN
(Fig. 6B; supplemental Fig. S2). Transfection did not alter
the expression of PKCε and PKC� (supplemental Fig. S2),
whereas other novel PKCs (PKC and PKC�) remained
undetectable (data not shown). In control INS-1E cells
FOXO1 accumulated in the nucleus after palmitate treat-
ment (Fig. 6B and 7A–C). Overexpression of PKC�WT
resulted in an increased nuclear staining of FOXO1 already
under control conditions, whereas overexpression of
PKC�KN inhibited nuclear accumulation of FOXO1 (Fig.
6B and 7A–C). Because Jun NH2-terminal kinase (JNK)
inhibition by SP600125 did not affect FOXO1 accumulation
induced by palmitate in either control INS-1E cells or
PKC�WT–INS-1E cells, it is suggested that FOXO1 accu-
mulation does not depend on JNK activity (supplemental
Fig. S3). Because phosphorylation of FOXO1 at Ser256
stimulates its nuclear extrusion and degradation, the
amount of FOXO1 protein and its phosphorylation were
examined in control and transfected INS-1E cells. Indeed,
increased phosphorylation of FOXO1 and significantly
lower protein levels were detected in PKC�KN–INS-1E
cells, whereas reduced phosphorylation of FOXO1 and
increased FOXO1 protein levels were found in PKC�WT–
INS-1E cells (Fig. 7D–F). In summary, these data suggest
that overexpression of PKC�KN in �-cells inhibits palmi-
tate-mediated �-cell dysfunction by protecting against
mitochondrial dysfunction and apoptosis while counter-
acting nuclear accumulation of FOXO1.

DISCUSSION

The observation that overexpression of PKC�KN in �-cells
protects against HFD-induced glucose intolerance strongly
supports the idea that PKC� plays a central role in
lipotoxicity. Indeed, significantly lower blood glucose and

increased plasma insulin concentrations during HFD
were observed in PKC�KN-overexpressing mice, whereas
animals fed standard chow displayed no significant
difference.

Our study, therefore, differs from observations in whole-
body PKC� knockout (PKC�KO) mice that displayed glu-
cose intolerance (9). The directly opposed results may be
explained first by the difference between whole-body
knockout versus �-cell–specific inhibition of PKC� be-
cause, especially in brain tissue, large amounts of PKC�
are expressed. To exclude alterations in other tissues than
ß-cells, we therefore restricted expression of the trans-
gene to insulin-secreting cells. Moreover, the most signif-
icant effect of PKC�KN overexpression was observed after
high-fat feeding in our study, a condition that was not
studied in PKC�KO mice.

The conclusion that PKC�KN protects against lipotox-
icity in vivo was further substantiated by the fact that the
percentage of islet cells that stained positive for cleaved
caspase-3 after HFD was not increased and that palmitate-
induced apoptotic cell death was inhibited in PKC�KN-
expressing �-cells. Because we were unable to detect
proliferation, i.e., BrdU incorporation or Ki67-positive
cells in pancreatic slices of HFD-fed mice (data not
shown), it is anticipated that PKC�KN inhibits cell death in
insulin-secreting cells; this effect contributes to the in-
crease in islet size and the increase in pancreatic insulin
content. This is in contrast to studies that demonstrated
that PKC� exerts stimulatory or inhibitory effects on cell
proliferation. These opposing effects of PKC� may depend
on the cell cycle status of the respective cell (15).

Because �-cell mass depends on proper insulin/IGF-1
receptor signaling, interference of PKC� with these cas-
cades may belong to its proapoptotic effect. Indeed, Wrede
et al. (5) reported that PKC stimulation by PMA inhibits
protein kinase B (PKB)/Akt activation in insulin-secreting
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cells and described a reduced binding of insulin receptor
substrate (IRS)-2 to p85 after PMA stimulation of the cells.
This observation may be explained by putative PKC�-
mediated serine/threonine phosphorylations of IRS-2 that
inhibit IRS-2 activation in parallel to known PKC� phos-
phorylation sites in IRS-1 (16). Further experiments are
needed to clarify whether PKC� mediates changes of IRS-2
activity via serine phosphorylation that reduce PKB/Akt
activation.

In �-cells, the mitochondrial potential plays a central
role in normal glucose responsiveness of insulin secretion,
whereas the collapse of mitochondrial potential is an
essential step of the intrinsic pathways of apoptotic cell
death (17,18). The protective effect of PKC�KN on mito-
chondrial potential strengthens the idea that PKC� inter-
feres with mitochondrial function. In line with this
concept, salivary epithelial cells overexpressing PKC�KN

were resistant to the loss of mitochondrial potential and
apoptosis induced by etoposide, ultraviolet irradiation,
bredfeldinA, and paclitaxel (19). Furthermore, it has been
shown that PKC� interacts with the tyrosine kinase cAbl.
This complex transfers the endoplasmic reticulum (ER)
stress to mitochondria, which further leads to apoptotic
cell death (20,21). Although we cannot exclude direct
effects of PKC� in mitochondria and in ER, our data favor
the idea that PKC� leads to nuclear accumulation of
FOXO1 with palmitate treatment. In fact, it has been
previously demonstrated that FFA-induced ER stress and
apoptosis are inhibited in insulin-secreting cells express-
ing the dominant-negative form of FOXO1 (14). Activation
of FOXO1 leads to multiple cellular changes and plays a
major role in stress resistance and survival of �-cells
(22–27). In contrast, inhibition of FOXO1 is necessary for
adaptive �-cell proliferation during insulin resistance
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(28,29). Our study therefore provides strong evidence that
FFAs stimulate nuclear sequestration of FOXO1 through
the activation of PKC� because the nuclear accumulation
of FOXO1 is inhibited in cells overexpressing PKC�KN.
Moreover, phosphorylation of FOXO1 at the PKB/AKT
phosphorylation site Ser256 is reduced in cells overex-
pressing PKC�WT but increased in cells expressing
PKC�KN. The signaling pathway through PKC� that leads
to reduced Ser256 phosphorylation of FOXO1 may involve
activation of inhibitory pathways such as JNK and protein
phosphatase 2A (30,31). However, JNK inhibition did not
affect nuclear FOXO1 accumulation induced by palmi-
tate, suggesting a PKC�-dependent but JNK-independent
mechanism.

Our study delivers in vivo evidence that activation of
PKC� by FFAs mediates �-cell failure. Because PKC�KN
inhibited FFA-induced nuclear accumulation of FOXO1,
mitochondrial dysfunction, and apoptosis, it is anticipated
that the underlying mechanism involves PKC�-dependent
chronic activation of FOXO1. In fact, a gene variation of
FOXO1 associates with impaired glucose tolerance and
type 2 diabetes in humans (32).
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