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E C O L O G Y

Spatial compartmentalization: A nonlethal predator 
mechanism to reduce parasite transmission between 
prey species
L. Gustavo R. Oliveira-Santos1,2*, Seth A. Moore3, William J. Severud1, James D. Forester4, 
Edmund J. Isaac3, Yvette Chenaux-Ibrahim3, Tyler Garwood1, Luis E. Escobar5, Tiffany M. Wolf1

Predators can modulate disease transmission within prey populations by influencing prey demography and be-
havior. Predator-prey dynamics can involve multiple species in heterogeneous landscapes; however, studies of 
predation on disease transmission rarely consider the role of landscapes or the transmission among diverse prey 
species (i.e., spillover). We used high-resolution habitat and movement data to model spillover risk of the brain-
worm parasite (Parelaphostrongylus tenuis) between two prey species [white-tailed deer (Odocoileus virginianus) 
and moose (Alces alces)], accounting for predator [gray wolf (Canis lupus)] presence and landscape configuration. 
Results revealed that spring migratory movements of cervid hosts increased parasite spillover risk from deer to 
moose, an effect tempered by changes in elevation, land cover, and wolf presence. Wolves induced host-species 
segregation, a nonlethal mechanism that modulated disease emergence by reducing spatiotemporal overlap be-
tween infected and susceptible prey, showing that wildlife disease dynamics may change with landscape disturbance 
and the loss of large carnivores.

INTRODUCTION
Wildlife predators play a key role in the top-down cascade effect 
paradigm in ecology (1). Although predation drives trophic effects 
through the lethal removal of individuals within a population of prey, 
growing evidence highlights the importance of nonlethal effects 
through changes in prey behavior (2–4). Predator-induced changes 
in prey behavior are based on countermeasures to avoid predation 
(5). Nonetheless, nonlethal effects of predator presence can addi-
tionally influence food webs beyond what is expected with lethal 
effects alone (6, 7).

Predators are known to also affect parasite transmission among 
prey, but research is dominated by studies of predator lethality over 
infectious hosts (8–11) [but see (12)]. The status quo in disease ecol-
ogy theory proposes that predators’ selective lethality on aged and 
diseased hosts is the main driver of transmission dynamics among 
prey populations (12–14). However, increased predator activity has 
been linked to decreased parasite transmission among prey without 
changes in prey abundance (3). For example, predator-driven non-
lethal effects on parasite transmission may include behavioral changes, 
such as decreases in prey activity (6) and distribution (15, 16), that 
reduce contact and transmission between infectious and susceptible 
individuals. Thus, we hypothesize that predators can also shape 
parasite transmission dynamics through nonlethal effects rather than 
the largely assumed lethal effects (4, 17, 18). These nonlethal effects 
may be more important in sustaining a healthy prey population by 

reducing parasite spillover to aberrant hosts, where the lethal removal 
of infected individual aberrant hosts would not necessarily affect 
ongoing transmission within a system (11). Further, transmission 
models generally assume that prey distribution is homogeneous with 
random movement of hosts and vectors (15). Therefore, the role of 
habitat configuration on prey distribution has been generally ne-
glected in spillover models of wildlife (19, 20). Accounting for habitat 
heterogeneity on prey distribution could offer new insights on the 
expectations of disease transmission in wildlife (21, 22).

To better understand how nonlethal-predator effects and habitat 
configuration influence parasite transmission in a complex predator-
prey system, we explored Parelaphostrongylus tenuis transmission 
from white-tailed deer (Odocoileus virginianus, hereafter deer) to 
moose (Alces alces) (23). Studies were conducted in northeastern 
Minnesota, United States, where moose populations have declined 
from about 10,000 individuals to less than 5000 in the past 15 years 
(24). Here, at least 23% of moose mortalities were affected by 
P. tenuis, where other causes of death included wolf predation, bac-
terial infection, accidents, hunter harvest, and calving complications 
(25). The P. tenuis nematode life cycle includes deer as the definitive 
host, terrestrial gastropods as intermediate host, and aberrant wild-
life hosts (i.e., “spillover”), such as moose, elk (Cervus canadensis), 
caribou (Rangifer tarandus), and mule deer (Odocoileus hemionus), 
for which infection is fatal (Fig. 1; see the Supplementary Materials 
for a more detailed life cycle description) (26). While the prevalence 
of P. tenuis infection in white-tailed deer exceeds 90% (27), deer 
populations appear to be unaffected by P. tenuis transmission. Con-
sequently, high deer density is associated with high P. tenuis preva-
lence in intermediate and aberrant hosts (26–28). Furthermore, 
P. tenuis spillover from deer to moose is expected to increase in re-
sponse to increasing deer density across moose range in many parts 
of North America, including Minnesota (29).

In this Minnesota system, gray wolves (Canis lupus) are the primary 
predator of deer (30, 31) and moose (25, 32). Deer demonstrate semi-
migratory behavior (33), and space-use changes driven by predation 
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risk might be expected in both cervid species (30, 34). This offers an 
opportunity to understand how predators (wolves) may drive sea-
sonal changes in space use by the definitive (deer) and aberrant 
hosts (moose) in a heterogeneous landscape. We hypothesized that 
predator-driven space use changes may produce spatial compart-
mentalization or segregation, which could alter spillover risk to the 
aberrant host through a nonlethal cascade effect.

We used 10 years of GPS-telemetry data from sympatric deer, 
moose, and wolves coupled to satellite-derived habitat data to investi-
gate how predation risk influences P. tenuis spillover. Our goal was to 
describe the nonlethal-predator effect on the timing, direction, and 
magnitude of host movement that contributes to the spatial compart-
mentalization of cervid hosts on the Grand Portage Indian Reservation 
in northeastern Minnesota, where moose and deer serve as important 
subsistence species for the indigenous nation. Our specific aims were to 
(i) characterize the effects of season and predation risk on host habitat 
selection, (ii) identify the spatial overlap of deer and moose hosts as a 
surrogate of spillover risk, and (iii) quantify host compartmentalization 
through seasons and under different levels of predation risk.

RESULTS
We captured and tracked 94 adult moose, 89 deer (65 adults), and 
47 adult wolves during the 2007–2019 study period, yielding about 
2 million movement locations. We tracked individuals for an average 
of 22.9 months (range, 5.6 to 100) for moose, 10.7 months (range, 
1.8 to 36.7) for deer, and 7.3 months (range, 3.4 to 21.4) for wolves. 
Because of strong environmental seasonality in our study area, some 
moose and deer migrate, which we expected to affect parasite trans-
mission. Therefore, we used parametric net squared displacement 
(NSD) to characterize the movement pattern of study subjects that we 
tracked for at least 9 months and quantified the proportion of each 
population performing different movement syndromes: nomadic, 
sedentary, dispersal, and migratory (fig. S1). We classified 54 (83%; 
n = 65) moose and 33 (80%, n = 41) deer as dispersers or migrators.

Seasonality is critical to understanding P. tenuis epidemiology be-
cause of evidence of (i) seasonal survivorship of larvae, (ii) seasonal 
availability of intermediate vectors (snail and slugs), and (iii) seasonal 
brainworm-induced moose mortality (see P. tenuis life cycle in the 
Supplementary Materials). Standard season classification relies on a 
fragile assumption of climate homogeneity across years and response 
homogeneity among individuals, which could be unrealistic for most 
populations and problematic for those composed of semi-migratory 
individuals living in an area experiencing rapid climate change. Con-
versely, a classification using migratory and dispersing individuals 
rigorously informs what should be considered seasons for our popula-
tions (see the “Movement syndrome classification by individual” 
section in Materials and Methods). Thus, we used the estimated pa-
rameters for the migratory and dispersal NSD equations to estimate 
season dates: winter, summer, and migration dates. Migration gener-
ally occurred between March and April (i.e., spring migration) and 
again between October and November (i.e., fall migration) for deer 
and moose (fig. S1). Deer migrated farther (mean = 18.8 km, 3 to 92 km), 
typically in a north-south direction, than moose (mean = 5.3 km, 
1.4 to 26 km) that favored a west-east direction (Fig. 2 and fig. S1).

Mapping predation risk
To model associations between predation risk and prey habitat selec-
tion, we first created a predation risk surface that captured variation 
in time spent by wolves (weighted by pack size) across the study site. 
We estimated the mean number of individuals in each pack based on 
direct observations from aerial tracking flights. A network cluster 
analysis of collared wolf locations consistently identified five packs 
inhabiting the study area (fig. S2). Validation using aerial monitoring 
records also revealed that our cluster analysis appropriately classified 
all wolf individuals (n = 15) in the correct pack, confirming the valid-
ity of a network-modeling approach to estimate pack number, distri-
bution, and composition. Individuals tracked for multiple seasons or 
years demonstrated home range stability (i.e., area overlap between 
seasons and years) of >77 and >86%, respectively. We estimated 
pack home range based on standard kernel density and then used the 
packs’ kernel utilization distribution, weighted by pack size, to build 
a continuous surface representing spatial variation in predation risk. 
Individual movement and predation risk data supported our three 
main assumptions: (i) individuals demonstrated pack fidelity and 
(ii) pack territories were stable between seasons and (iii) among years.

Habitat selection
We investigated habitat selection of migrating and dispersing deer and 
moose using step selection functions (SSFs) (35). The top-ranked 

Fig. 1. Hypothesized predator impact on P. tenuis transmission cycle between 
white-tailed deer (O. virginianus) and moose (A. alces). The parasite P. tenuis 
replicates within the white-tailed deer, the definitive vertebrate host (purple). Deer 
shed the parasite’s first-stage larvae through feces, which then infect terrestrial 
gastropods (snails and slugs) to develop to third-stage larvae (green). Infectious 
gastropods are incidentally consumed by white-tailed deer (light green arrow), in 
which the life cycle continues with further development to the adult stage and 
reproduction, or moose (green arrow), where infections are fatal and the parasite is 
unable to complete its life cycle (blue arrow). Wolves (gray) are hypothesized to 
trigger lethal and nonlethal cascade effects that influence parasite transmission 
from deer to moose. For example, deer are a primary prey species of wolves in 
Minnesota; thus, predation modulates deer density, which would consequently 
reduce P. tenuis shedding into the environment (dark gray arrow). Wolves also 
remove P. tenuis–infected, sick moose from the system, although this would not be 
expected to affect transmission because moose are an aberrant host [light gray 
arrow; (25, 26)]. We postulated and tested in this study the existence of nonlethal 
mechanisms (black arrows), such as behavioral responses by prey to predator pres-
ence, that influence habitat use and prey species overlap, where a reduction in the 
latter would reduce risk of parasite transmission between prey species. Inset: 
Moose exhibiting P. tenuis–induced neurological signs (80).
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model for both deer and moose was the full SSF model that included 
habitat (with covertype and elevation as proxies), predation risk, 
and their interactions with season (table S1, w ~ 1). Other simpler 
models received less support (table S1; AIC > 25 and w ~ 0). Both 
season and wolf predation risk modulated habitat selection of deer 
and moose (i.e., covertype and elevation; table S2). The second-best 
models suggested that changes in habitat selection were driven 
more by season for moose and by predation risk for deer (table S1). 
We observed differences between deer and moose in the association 
of habitat selection and predation risk (Fig. 3 and table S2).

The best deer and moose SSF models, which included all vari-
ables (i.e., predation risk, season, covertype, and elevation) and 
their interactions, were assessed under two specific wolf predation 
risk scenarios: average and minimum risk. Model outputs revealed 
that under average wolf predation risk during winter, deer and 
moose exhibited similar resource selection, except for elevation 
(Fig. 3 and table S2; coniferous forest was set as reference class). 
During winter, deer and moose selected mixed and deciduous for-
est, avoided wetlands, urban areas, and water bodies, and used open 
areas according to its availability (Fig. 3C); however, moose selected 
highlands, while deer selected lowlands (Fig. 3C). During spring 
migration, deer and moose selected open areas but switched eleva-
tion. That is, deer moved to high elevations and moose moved to 
low elevations (Fig. 3B). In summer, deer were generalists, moving 
through covertypes and elevations according to availability but con-
tinued avoiding urban areas and water bodies (Fig. 3A). In contrast, 

moose strongly selected open areas, wetlands, and mixed and decid-
uous forests, with low selection for coniferous forests, and indis-
criminate selection of elevation.

Under minimum wolf predation risk during winter, deer selected 
only coniferous forests (the reference class), used deciduous for-
est according to availability, and further selected lower elevations 
(Fig. 3F). Moose showed small increases in selection for open areas 
and highlands (Fig. 3F). In general, the observed selection of cover-
types in winter persisted during spring migration and summer, ex-
cept for elevation (Fig. 3, D to F). During migration and summer 
seasons under minimum wolf predation risk, both deer (which 
selected highlands under average risk) and moose (which selected 
lowlands under average risk) moved irrespective of elevation 
(Fig. 3, A, B, D, and E). This result revealed differentially selected 
habitats by hosts in association with predation risk.

Compartmentalization and P. tenuis risk
The overall parasite spillover risk from deer to moose was charac-
terized by tractable and predictable effects of predation risk on the 
spatial and temporal overlap of the two prey species. Accounting for 
availability of specific habitat types in the landscapes occupied by 
prey showed differences in the selection of rare habitats between 
prey species. For example, rare but highly selected habitats played 
little role in the overall prey overlap, while regularly distributed, 
common habitats contributed substantially to prey overlap. Parasite 
spillover risk was summarized in each season based on extent 
(RO50%) and overlap indices [D, I, and rank correlation (r)] be-
tween deer and moose hosts (36), in which RO50% depicts the area 
of overlap between the core distribution for each species, while in-
dices (D, I, and r) measure overlap by taking into account the entire 
surface of each species’ distribution probability (see the “Compart-
mentalization and spillover risk” section in Materials and Methods). 
Habitat suitability models, built according to habitat selection co-
efficients estimated in SSF, predicted moderate overall P. tenuis 
spillover risk based on deer-moose overlap (RO50% = 12 to 26%; 
D = 0.54 to 0.59; I = 0.84 to 0.85; r = −0.02 to 0.05; Figs. 4 and 5). 
Parasite spillover risk increased gradually from prey movement in 
winter (RO50% = 12%) through spring (RO50% = 16%) and to sum-
mer (RO50% = 26%). Spillover risk areas clustered at intermediate 
elevations, where deer and moose shifted from their divergent winter 
selection patterns during migration and summer (Figs. 4 and 5).

To validate the parasite spillover model, we necropsied 29 moose 
from the study area to test whether moose that died with P. tenuis 
infection used habitat with higher P. tenuis risk. Because our spill-
over risk map was a continuous heterogeneous surface of risk values 
and individual moose can (and did) move through areas of high and 
low risk, we overlaid the trajectories of each necropsied moose onto 
the risk map and averaged the risk values for the areas used by each 
moose. Thus, each necropsied moose received a value that captured 
the P. tenuis spillover risk for the area where it lived. Last, we com-
pared these risk values between moose that died with P. tenuis and 
moose that died from other causes. P. tenuis infection was con-
firmed in 21% (n = 6) of necropsied moose, and those confirmed 
with P. tenuis infection at mortality used areas that were 25% riskier 
(higher overlap with deer) than those areas used by moose that died 
from other causes (coefficient = 0.25, t = 2.19, P < 0.03; fig. S3). 
These findings demonstrate that our spillover risk model, which 
accounts for prey movement in association with predator pressure, 
was able to predict parasite spillover better than by chance.

Fig. 2. Migratory movements of moose (A. alces) and white-tailed deer 
(O. virginianus), Grand Portage Indian Reservation, northeastern Minnesota. 
Left: Estimated centroid of winter and summer range for each individual vertebrate 
host (deer and moose). Centroids were calculated by averaging easting and north-
ing coordinates after trajectory splitting in summer, spring migration, and winter 
locations. Right: Circular histogram of migration directions.
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Following model validation, we further explored how predator 
pressure might influence the overall spatial overlap between hosts 
and, consequently, P. tenuis spillover risk to moose by modeling the 
latter under low predation risk. Low levels of predation risk by 
wolves increased P. tenuis spillover risk by 1.01 to 1.81 times, mainly 
during migration and summer ranges [RO50% = 29% (1.81 times) 
and 39% (1.50 times), respectively; Figs. 4 and 5]. Low predation 
risk by wolves increased the overlap between deer and moose from 
slightly (D = 1.03 to 1.05 times; I = 1.01 to 1.03 times) to strongly 
(r = 2.15 to 5.08 times) depending on the index used. In other 
words, the presence of predators reduced host species overlap be-
tween deer and moose, decreasing the likelihood of disease emer-
gence in a vulnerable wildlife population (i.e., moose).

DISCUSSION
Ecological theories predict that predators modulate parasite trans-
mission risk by decreasing contact rates between hosts (8, 10). In 
this system of parasite spillover between prey species, we hypothe-
sized that lower contact rates among prey were related to nonlethal 

cascade effects triggered by predator presence, limiting parasite 
transmission to the aberrant host. Here, we describe a nonlethal 
mechanism of predator-induced cascade effect on parasite trans-
mission among prey through spatial segregation. We show that under 
higher predation pressure by wolves, moose and deer have less 
habitat overlap, thus potentially reducing parasite transmission 
risk. Because one of the prey species in our study is an aberrant host 
of P. tenuis, the nonlethal cascade effect provided survival benefits. 
This nonlethal predator effect could be interpreted as a potential 
compensatory mechanism that keeps aberrant host populations sta-
ble, in which increases of predation-induced mortality can be com-
pensated or surpassed by decreases in disease-induced mortality (9).

Spatial compartmentalization in our study was mainly driven by 
contrasting host habitat selection under wolf predation pressure. 
Elevational heterogeneity was a key landscape element influencing 
spatial compartmentalization. Deer and moose shifted habitat se-
lection in response to wolf pressure, becoming more similar in cover-
type but different in elevation. The differences in selection were 
primarily a result of selection changes by deer. Changes in habitat 
selection driven by wolf presence have been reported for several 

Fig. 3. Prediction of selection strength of vertebrate hosts [white-tailed deer (O. virginianus, purple) and moose (A. alces, blue)] for covertypes and elevation 
across seasons under two scenarios of predation risk. Expected selection strength under average wolf predation risk in summer range (A), spring migration (B), and 
winter range (C). Expected selection strength under minimum wolf predation risk in summer range (D), spring migration (E), and winter range (F). Predictions for average 
and minimum wolf predation risk scenarios were made by fixing the wolf predation risk covariate to the average and the minimum observed across space, respectively. 
Selection strength (between 0 and ∞+) depicts the relative risk (odds ratio) of a moving individual to choose a given habitat, conditional on its local availability. Values 
above dashed line indicate that covertype was selected, while those below the dashed line indicate an avoided covertype. Open circles represent estimates for moose, 
and closed dots represent deer estimates. Whiskers depict 95% confidence interval of estimates. Land-cover type abbreviations: mf, mixed forest; df, deciduous forest; 
open, open areas; wet, wetlands; wat, water bodies; urb, urban areas.
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prey species such as elk (7, 37), caribou (38), white-tailed deer (39), 
and moose (40, 41) and are also consistently observed as elevational 
shifts (37). We found that predator-associated changes in selection 
for elevation by deer were more evident during summer, consistent 
with previous reports (37). Such selection has been suggested as a 
predator escape strategy via flight (42). During winter, when snow 
impedes escape, antipredator behavioral strategies have been dis-
played, such as grouping (43). The fact that deer responded strongly 
to predator presence with altered habitat selection could be ex-
plained by the higher importance of deer than moose in the diet of 
wolves in this system (44, 45). Changes in moose habitat selection 
were associated more with season than predation and followed the 
general temporal expectation of covertype selection for this species 
[i.e., mixed forest in winter and wetlands/open areas in summer; 
(46)]. Although predator presence can affect how prey use different 
covertypes (7) and elevation (37), we found stronger shifts of prey 
by elevational distribution.

Migration is a strategy many species have evolved to maximize 
fitness in seasonal environments (47) and can provide benefits to a 
species through escape from parasites (48) or confer costs via expo-
sure to new parasites (49). In our parasite spillover system, spring 
migration and settlement in summer were detrimental for moose 
due to the increased spatial overlap with infected deer (29) at a time 
when P. tenuis shedding by deer is greatest and invertebrate inter-
mediate hosts are available for parasite transmission (26). There-
fore, the nonlethal effect of wolves gains relevance during these 

crucial seasons as the spatial compartmentalization associated with 
wolf presence reduced P. tenuis spillover risk.

Our P. tenuis risk estimates were guided by spatial and temporal 
overlap between infected and susceptible cervid hosts. We assumed, 
on the basis of previous studies (27), that infection among deer was 
high; thus, any overlap with deer in space presented a risk to aber-
rant hosts. There are factors that influence survival of larvae and 
intermediate hosts, which were not considered in our models. For 
example, weather patterns, such as the absence of snow, milder 
temperatures, and increased precipitation, favor first-stage larvae 
survival on deer feces and in leaf litter, as well as the abundance, 
activity, and survival of invertebrate hosts (26, 50). Shaded, wet 
habitats are similarly favorable for larvae and invertebrate hosts. 
Parasite prevalence in gastropods has been found to be six times 
higher in forested, wet habitats than in dry upland forest (51), al-
though conflicting evidence has demonstrated swamp conifer forest 
with the lowest gastropod abundance among covertypes (50) and 
upland conifer forest and upland shrub with higher parasite preva-
lence in gastropods than lowland coniferous or deciduous forest 
[(52); see the “Parelaphostrongylus tenuis life cycle” section in Extended 
methods in the Supplementary Materials]. Future studies should 
aim to include levels of invertebrate intermediate hosts (i.e., terres-
trial gastropods) at the cost of model complexity. Given the hetero-
geneity in gastropod abundance and P. tenuis prevalence rates 
across habitats (50–53), we expect that risk estimates accounting for 
the intermediate host may add greater specificity to forecasts. We 
neglected intermediate hosts in our models due to data limitations 
and because deer density combined with high rates of infection direct-
ly influences parasite prevalence among intermediate hosts (26, 54).

The overall impact of wolves on prey behavior (i.e., landscape of 
fear) is an open, exciting field of investigation in wildlife epidemiology. 
Beyond the alleviation of parasite transmission provided by wolves 
to moose described here, wolves are also the main predator of deer, 
the parasite reservoir. Thus, the suppression of deer density by wolf 
predation could provide further benefits to vulnerable moose by de-
creasing density-dependent parasite transmission from deer (26), as 
well as ecological competition release of moose (55, 56). On the other 
hand, wolves are also a primary predator of moose calves (32, 57). 
Summarizing these direct and indirect effects of predators in multi-
host parasite systems is a cornerstone step toward a better under-
standing of the ecology of spillover, as well as of the importance of 
top predators to modulate disease emergence in naïve host species 
(9). From a practical perspective, application of our discoveries 
could inform and improve ongoing deer management actions for 
disease control (e.g., chronic wasting disease, Fascioloides magna, 
and P. tenuis), such as broad-scale deer culling and increased deer 
hunting opportunities (58). Our findings also call for an adaptive 
management approach that not only examines the impact of wolf 
predation on moose calf survival but also considers the cascading 
disease transmission implications of wolves in the broader system 
due to their impact on deer density, habitat selection responses of 
cervid prey species, and P. tenuis incidence in moose.

This study demonstrates how incorporating predator occur-
rence, host movement, and habitat heterogeneity can reveal the spa-
tial profile of parasite spillover in prey. We uncovered a previously 
unrecognized spatial compartmentalization effect of predators on 
parasite spillover risk, manifested indirectly through nonlethal cas-
cade effects. These findings are particularly relevant to disease ecol-
ogy studies in wildlife hosts.

Fig. 4. Summary of spillover risk (RO50%) observed in the HSMs through time 
under two scenarios of wolf predation risk. Proportion of overlap (spillover risk) 
and exclusive areas for deer and moose during winter range, migration, and sum-
mer range under average predation risk (A) and under minimum wolf predation 
risk (B). Purple, blue, and orange bars indicate deer exclusive area, moose exclusive 
area, and overlap area of deer and moose, respectively.
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MATERIALS AND METHODS
Study area and species
We conducted this study in and around the Grand Portage Band 
of Lake Superior Chippewa Indian Reservation in northeastern 
Minnesota, United States, in the northern superior uplands forest 
region along the northwest Lake Superior shoreline (4°50′N, 92°8′W). 
The reservation (227 km2) is bordered to the north by the Pigeon 
River and Ontario, Canada; to the southeast by 39 km of Lake Supe-
rior shoreline; and to the west by a mix of federal, state, and private 
lands. The landscape was characterized by a matrix of forested stands 
and wetlands, dominated by conifer, deciduous, and mixed conifer-
deciduous forests (59). In this study area, moose co-occurred with deer, 
and both were primarily preyed upon by gray wolves (25, 31, 32). 

Moose density was approximately 0.26 individuals/km2 [90% confidence 
interval, 0.21 to 0.34] (24), deer density was 0.76 to 3.80 individuals/km2 
(60), and wolf density was approximately 0.03 individuals/km2 (61). 
The parasite P. tenuis occurred naturally in deer, where minimum 
to nil negative effects are observed, while accidental infections in naïve 
species, such as moose, are fatal. More details of the study site and 
the P. tenuis life cycle are available in the Supplementary Materials 
(Extended methods).

Animal capture, handling, and tracking
Captures of wolves, moose, and deer were part of long-term re-
search led the by the Grand Portage Band. We captured moose and deer 
January to March from 2010 to 2019 by netgunning or aerial darting 

Fig. 5. HSM of vertebrate hosts [white-tailed deer (O. virginianus) and moose (A. alces)] under two scenarios of predation risk. HSM in winter range, spring migra-
tion, and summer range from top to bottom, respectively. Left: HSM when predation risk was set as the observed values: winter range (A), spring migration (B), and 
summer range (C). Right: HSM when predation risk was set as the observed minimum: winter range (D), spring migration (E), and summer range (F). Purple polygons in-
dicate HSM for white-tailed deer, blue polygons indicate HSM for moose, and orange polygons indicate the core range overlap (RO50%) between moose and deer HSMs. 
Continuous probability surfaces were categorized according to the isopleth of 50% of the distribution probability from each species (core range). Note that this pattern 
was based on disperser and migrator individuals that represent over 80% of tracked individuals.
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from helicopter (for moose) or corn-baited Clover traps (for deer). 
We captured wolves throughout June to November from 2007 to 
2019 using foothold traps. Moose were chemically immobilized us-
ing either carfentanil citrate (4.5 mg), etorphine hydrochloride (8.5 
to 10 mg), or thiafentanil oxalate (10 mg) combined with xylazine 
(40 to 50 mg). Before removal from traps, deer were chemically im-
mobilized with ketamine hydrochloride (3.5 to 7.5 mg/kg) and xyla-
zine (1 to 3 mg/kg) and wolves with ketamine (7.5 mg/kg) and 
xylazine (1.5 mg/kg). We fitted captured individuals with a GPS 
collar programmed to record geographical locations and time-
stamps every 2 to 4 hours and equipped with a movement-based 
mortality sensor, communicating a mortality event via satellite 
transmission when movement diminished below a programmed 
threshold after a period of 6 hours. We tracked collared moose until 
mortality or collar failure, confirming cause of death based on a 
comprehensive site investigation and necropsy/histopathologic ex-
amination. When possible, we extracted and transported the full 
carcass to the University of Minnesota Veterinary Diagnostic Labo-
ratory (MNVDL) (St. Paul, MN) for complete necropsy, histopa-
thology, and disease screening. Otherwise, we performed a field 
necropsy and submitted a representative set of tissue samples to the 
MNVDL for histopathology. We characterized a moose as infected 
with P. tenuis (case) if we detected the nematode and/or lesions caused 
by its migration tract in neural tissues, combined with lymphoplas-
macytic encephalitis, leptomeningitis with plexus coroiditis, gliosis, 
and/or focal axonal spheroid formation (62). If we did not observe 
postmortem lesions, we considered the individual to be negative 
(control) for P. tenuis for further analyses. All capture and handling 
protocols were conducted in accordance with requirements of the 
University of Minnesota Institutional Animal Care and Use Com-
mittee (protocols 1410-31945A, 1601-33318A, 1812-36635A, and 
1803-35736A).

Habitat covariates
We classified the landscape into broad land-cover type classes 
(hereafter covertypes) and continuous values of landscape eleva-
tion. We used two open-source land-cover classifications available 
for the United States (National Land Cover Database, NLCD 2011) 
and Canada (Land Cover of Canada, LCC 2015). We aggregated 
original cover types into six classes (table S3): water bodies, wet-
lands, coniferous forest, deciduous forest, mixed forest, and urban/
developed areas. We accessed elevation using the digital elevation 
model generated by Shuttle Radar Topography Mission (NASA-
STRM) at 30-m horizontal resolution and 1-m vertical resolution, 
available for downloading in R using the elevatr package (63).

Mapping predation risk
We represented the continuous spatial variation in predation risk 
perception for deer and moose throughout the wolf territories by 
pack-based utilization densities, each weighted by pack size. First, 
we estimated the home range for each individual wolf by calculating 
the 95% isopleth (kernel 95%) of each animal’s utilization distribu-
tion (based on kernel density estimation) (64). We use the “h of 
reference” calculation to estimate the smoothing parameter used to 
build the two-dimensional Gaussian kernel function. We then cal-
culated a matrix of pairwise home range overlap values among indi-
viduals based on Bhattacharyya’s affinity method (65). This method is 
a symmetric index (i.e., only one value for each pair of individuals) 
that calculates the similarity between the utilization distributions of 

two individuals. The index ranges from 0 (no overlap) to 1 (perfect 
overlap) and takes into account the entire kernel density surface. 
We used a social network approach over the home range overlap 
matrix to estimate the number of packs and their individual compo-
sition. We built an undirected, weighted social network, in which 
individuals were vertices and the edges (degree of association 
among individuals) were depicted by the magnitude of overlap (66). 
We estimated the pack number and composition with a cluster 
algorithm that detects group structures within networks (67). This 
algorithm initialized with a unique group label for each vertex (in-
dividual), and at every iterative step, each vertex received the group 
label that most of its neighbors (individuals with high overlap) had. 
This process ran until densely connected individuals formed a con-
sensus on a unique label group to form a pack. Before cluster pro-
cessing, we removed edge values less than the median edge value.

Once we identified pack number and composition, we estimated 
the pack utilization distribution by summing the utilization distri-
butions of each home range within each pack. We rescaled each 
pack utilization distribution [0 (lowest density) to 1 (highest density)] 
and multiplied by its mean number of individuals. We estimated 
the mean number of individuals in each pack based on direct obser-
vations from aerial tracking flights. Last, we summed pack utiliza-
tion distributions (rescaled and multiplied) as a proxy of the overall 
spatial distribution of predation risk across the entire study area 
[sensu (7)]. We set the spatial distribution of predation risk as a 
raster with the same extent and resolution of the covertypes and 
elevation rasters. We also recorded collared wolves observed together 
(i.e., those belonging to the same pack). These records allowed us 
to validate the precision of our network cluster classification. We 
performed home range estimations using the adehabitatHR pack-
age (68), network building, handling, and clustering with the igraph 
package (69), and algebra of utilization distribution raster with the 
raster package (70) in R.

Movement syndrome classification by individual
We used a parametric NSD approach to classify individual deer and 
moose into four movement syndromes: nomadic, sedentary, dis-
persal, and migratory (71). The mean NSD is the linear distance 
between the initial location (starting point) and successive locations 
of a moving particle through time (71). The functional shape of 
NSD through time for each syndrome has specific theoretical ex-
pectations and can be captured through nonlinear models [see de-
tails in (71)]. Briefly, in Eq. 1, the NSD curve for nomadic trajectories 
(Brownian motion or diffusive regime) would increase linearly with 
time t. Accordingly

	​ NSD = 4 * Dt​	 (1)

where D is a diffusion constant. A sedentary trajectory is con-
strained by boundaries (i.e., home range) and NSD would initially 
increase linearly, but the increasing rate should decrease (subdiffu-
sive) over time t until it reaches an asymptotic value

	​ NSD  =  3 * ​D​​ 2​ / ​c​​ 2​​	 (2)

where c is an advection coefficient that quantifies the attraction 
strength to the starting point (home range center). A dispersal par-
ticle presents two stationary phases (departure and settlement) 
separated by a transient phase. Thus, the NSD curve would have a 
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sigmoidal shape over time t with values close to zero during depar-
ture, a linear increase while transient, until it reaches a new station-
ary value with settlement

	​ NSD  =  Asym / 1 + exp(tmid − t ) / scal​	 (3)

where Asym is the asymptote of settlement, tmid is the time of in-
flection point at transient phase, and scal is the scale determining 
the transient phase velocity. A migration particle would be a combi-
nation of two dispersal events, where the second event is the return 
to the starting point

	​ NSD  =  Asym / (1 + exp(​tmid​ 1​​ − t ) / ​scal​ 1​​ ) + Asym / 
(1 + exp(​tmid​ 2​​ − t ) / ​scal​ 2​​)​	 (4)

where subscript indices (1 and 2) depict parameters associated with 
transient phases of dispersal and return, respectively [see (68)].

We fit these models (Eqs. 1 to 4) for each individual using a non-
linear least-squares approach. We selected the best model (i.e., move-
ment syndrome) for each individual based on Akaike’s information 
criterion (AIC) (72). We applied the movement syndrome classifi-
cation only for adult deer and moose that we tracked for at least 
9 months. Because we were interested in large-scale movement 
patterns, we subsampled trajectories using one location per day 
to fit the models. We handled individual trajectories using the 
adehabitatLT package (68) and fit nonlinear models using nls.multstart 
packages (73) in R.

Seasonal movement
Rather than classify seasons based on standard, but arbitrary Julian 
dates [e.g., winter, spring, and summer; (34)], we used movement 
data to inform when individuals departed from one seasonal range 
(winter or summer) and settled in the other; this approach allowed 
for annual and individual variation in perception of environmental 
and internal cues that trigger migration events. We derived biological 
season dates by first defining the transient phase boundaries (71): 
from departure time in winter range (dw = tmid1 − 3*scal1) until 
settlement in summer range (ss = tmid1 + 3*scal1), and from return 
time in summer range (ds = tmid2 – 3*scal2) to resettlement in winter 
range (sw = tmid2 + 3*scal2). We thus split individual trajectories 
following individual estimated dates. We considered transient relo-
cations (spring and autumn migration) as those that occurred be-
tween dw and ss or between ds and sw, and summer relocations as 
those occurring between ss and ds and winter between sw and dw.

Habitat selection
We investigated habitat selection of deer and moose using SSFs 
(35). SSF models are an improvement over standard resource selec-
tion functions, which consider that resource availability is not fixed 
and depends on the individual’s position, as well as its movement 
and orientation capacity (35). First, we subsampled each individual 
trajectory to 4 hours (originally composed of 2 to 4 hours). We de-
composed trajectories into two components: step length and turn-
ing angle. For each individual location (step starting point), we 
measured resource availability by generating 30 random steps orig-
inating from it. We generated random steps by sorting independent 
random samples from each individual’s observed distribution of 
step lengths and turning angles [empirical sampling; (74)]. For each 
observed (coded as 1s) and random step (coded as 0s), we recorded 

the covertype (categorical), elevation (continuous), and predation 
risk (continuous) in which the ending point fell, as well as the sea-
son in which the step occurred (categorical: winter, summer, and 
the transient phase of spring migration).

We fit SSF models using unweighted mixed conditional Poisson 
regression (MCPR) (75). This mixed approach mathematically mim-
ics the traditional conditional logistic regression approach of SSF but 
with fast processing time and accurate selection estimates obtained 
by controlling for individual heterogeneity [see details in (75)]. We 
included habitat covariates (covertypes and elevation), season, and 
predation risk as fixed effects, and individual identity as a random 
intercept to account for individual heterogeneity in resource selec-
tion. We chose coniferous forest as the reference covertype. We also 
included interaction terms between the habitat covariates and season, 
and habitat covariates and predation risk, which permitted testing if 
selection strength for a given resource changed depending on season 
or predation risk. We conditioned MCPR to each step by also in-
cluding step identity as a random intercept, ensuring that each 
observed step (used) was compared with its respective surrounding 
availability. However, we did not estimate the variance of the random 
intercept for steps but instead fixed it to “infinite” (106) to avoid 
sub-estimation of SEs associated with fixed effects, as recommended 
by (75). We z-standardized continuous covariates before fitting the 
SSF model to allow comparisons among estimated coefficients.

We fitted four SSF models for moose and deer, separately. We 
built models in increasing order of complexity: (i) habitat model, 
which included habitat covariates: covertype and elevation; (ii) dynamic 
habitat model, which included covertype, elevation, and their inter-
action with season; (iii) habitat-predator model, which included habi-
tat covariates and predation risk; and (iv) full model, which included 
habitat and predator covariates, as well their interactions with season. 
We ranked these models for each species using AIC. If more than 
one model within a species were equally plausible (AIC < 4) (72), 
we averaged the estimated coefficients to draw conclusions. This 
approach allowed testing of concurrent models about how these two 
species perceive the landscape and what factors are most important 
to individuals’ spatial distribution. We only included disperser/
migrator adult individuals with more than 9 months of tracking within 
a year in SSF analyses. The effects of wolf predation risk on deer and 
moose habitat selection were assessed using the best-ranked SSF 
model for each species. We used these models to make predictions 
under two predation risk scenarios: average and minimum. For the 
average risk scenario, we made predictions setting the predation risk 
covariate to the average of the observed values of predation risk, 
while for the minimum risk scenario, we set it to the minimum 
observed. These two risk levels were selected because they repre-
sented two realistic extremes [observed wolf pressure and minimum 
wolf pressure (e.g., a sharp drop in wolf population)]. Maximum wolf 
predation risk was not a reasonable consideration because the wolf 
population at the study site is healthy, and it is unlikely to increase 
much in the near future. On the other hand, wolf management is 
changing and threats are present, so this predator population may 
decline, as has been observed throughout its distributional range. 
We handled trajectories using the amt package (76) and fit MCPR 
models using the glmmTMB package (77) in R.

Compartmentalization and spillover risk
The underlying assumption of our spillover risk map is that places 
with high overlap between moose and deer are risky areas for 
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P. tenuis spillover to moose. Estimated coefficients of SSF models 
have been used to inform habitat suitability models (HSMs) or spe-
cies distribution models [e.g., (78)]. Therefore, we used the estimated 
coefficients of the best-ranked models for moose and deer to predict 
an HSM for both species across the entire study area in each season. 
We used the best-ranked SSF model of both species to predict selec-
tion strength for each raster cell. We rescaled the predicted values in 
raster cells between 0 (low suitability) and 1 (high suitability) and 
then multiplied the HSM of deer and moose (i.e., overlapped) to 
obtain a map of P. tenuis risk. We summarized the degree of spatial 
overlap in each season by calculating the range overlap for isopleth 
of 50% (RO50%) and the niche overlap (D, I, and r) between HSMs 
[sensu (36)]. Range overlap and D and I indices vary from 0 (no 
overlap) to 1 (perfect overlap between HSM areas), while r index 
varies from −1 (opposite correlation between probability of distri-
bution) to 1 (positive correlation). These indices of overlap repre-
sent proxies for the degree of compartmentalization between species, 
in which higher values indicate compartmentalization by packing 
(high risk), while lower values indicate compartmentalization by 
segregation (low risk). While RO50% estimates the area of overlap 
between the core areas of distribution for each species, the indices 
measure the overlap taking into account the entire surface of the 
distribution probability for each species. Specifically, D (Schoener’s 
statistic) and I (Hellinger-based distance) sum up the absolute and 
the squared differences in standardized probability between pairs of 
pixels, respectively. We graphically represented the proposed risk 
map highlighting the overlapped areas retained in the RO50%. We 
manipulated rasters and spatial prediction with SSF model output 
using the raster package in R.

We validated the risk map using movement data from collared 
moose that died with P. tenuis infection versus those that died of other 
causes [e.g., wolf predation and winter tick (Dermacentor albipictus) 
infestation and other nonpredation health issues], where P. tenuis in-
fection was not detected. For confirmed cases of P. tenuis mortality, 
we extracted the last 180 days of tracking before death to represent 
the spatial range where individuals might have been exposed to 
P. tenuis, but excluded the last 60 days [expected incubation time for 
P. tenuis disease; (79)] of each trajectory to exclude any abnormal 
movement caused by P. tenuis infection or associated with other 
causes of death. Sequentially, we overlapped these trajectories over 
the proposed risk map and calculated the mean P. tenuis risk experi-
enced by each moose (i.e., mean of the map risk values linked to 
relocations). Last, we compared the observed mean of P. tenuis risk 
between cases and controls using a t test. We expected that moose 
that died with P. tenuis infection should present higher risk values 
than controls, thus validating the P. tenuis spillover risk map.

To quantify the impact of wolf presence on the overall spatial 
overlap between hosts and consequently on P. tenuis spillover risk 
to moose, we reestimated deer and moose HSM’s by fixing wolf pre-
dation risk values to the minimum observed. Sequentially, we recal-
culated the range overlap index (RO50%) and niche overlap indices 
(D, I, and r indices) and compared them with indices observed when 
wolf predation risk was set to observed values (i.e., indexlow-risk/
indexobserved-risk).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj5944
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