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Abstract

Our research on pathogenesis of disseminated candidiasis led to the discovery that antibodies specific for Candida albicans
cell surface b-1, 2–mannotriose [b-(Man)3] protect mice. A 14 mer peptide Fba, which derived from the N-terminal portion of
the C. albicans cytosolic/cell surface protein fructose-bisphosphate aldolase, was used as the glycan carrier and resulted in a
novel synthetic glycopeptide vaccine b-(Man)3-Fba. By a dendritic cell-based immunization approach, this conjugate
induced protective antibody responses against both the glycan and peptide parts of the vaccine. In this report, we modified
the b-(Man)3-Fba conjugate by coupling it to tetanus toxoid (TT) in order to improve immunogenicity and allow for use of
an adjuvant suitable for human use. By new immunization procedures entirely compatible with human use, the modified b-
(Man)3-Fba-TT was administered either alone or as a mixture made with alum or monophosphoryl lipid A (MPL) adjuvants
and given to mice by a subcutaneous (s.c.) route. Mice vaccinated with or, surprisingly, without adjuvant responded well by
making robust antibody responses. The immunized groups showed a high degree of protection against a lethal challenge
with C. albicans as evidenced by increased survival times and reduced kidney fungal burden as compared to control groups
that received only adjuvant or DPBS buffer prior to challenge. To confirm that induced antibodies were protective, sera from
mice immunized against the b-(Man)3-Fba-TT conjugate transferred protection against disseminated candidiasis to naı̈ve
mice, whereas C. albicans-absorbed immune sera did not. Similar antibody responses and protection induced by the b-
(Man)3-Fba-TT vaccine was observed in inbred BALB/c and outbred Swiss Webster mice. We conclude that addition of TT to
the glycopeptide conjugate results in a self-adjuvanting vaccine that promotes robust antibody responses without the need
for additional adjuvant, which is novel and represents a major step forward in vaccine design against disseminated
candidiasis.
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Introduction

Hematogenously disseminated candidiasis in humans has

become the third or fourth leading cause of hospital-acquired

blood stream infections and despite antifungal therapy at least

40% of affected individuals will die of this disease [1,2]. It’s

estimated that 60–70,000 cases of disseminated candidiasis occur

per year in the US alone, and associated health care costs are $2–4

billion/year [3]. The limited number and toxicity of antifungal

agents, and, most importantly, the poor outcome of almost half of

the number of candidemia patients treated with appropriate

antifungal therapy, militates in favor of disease prevention,

possibly through active and passive immunization strategies [4–

6]. Strong evidence has accumulated in the last decade that

antibodies specific for certain cell surface epitopes of fungi may be

beneficial for the fungal-infected host [7–13]. In addition, if a

vaccine maintains a long-lived protective antibody titer, we argue

that this form of disease prevention could be induced and protect

individuals who will enter into a possible transient immunocom-

promised state, such as those patients who will have elective

abdominal or other surgical procedures that will place them at risk

of developing candidiasis.

Depending on the clinical setting there is a wide spectrum of

Candida species that may cause disseminated candidiasis, but C.

albicans continues to be prevalent overall and this species is the

most virulent in experimental animals [14,15]. Antibodies have

long been considered irrelevant in host defense against invasive

candidiasis, but over the last two decades a number of antibodies

or their engineered derivatives directed against C. albicans cell-wall

polysaccharides and glycopeptides, as well as against some protein

or peptide epitopes, have been shown to confer protection

[6,12,16,17]. We previously demonstrated that complement-fixing

antibodies that recognize C. albicans cell surface b-1,2-linked

mannotriose [b-(Man)3] protect mice against candidiasis [18,19].

Our finding that a C. albicans cell surface peptide Fba, derived from

the N-terminal portion of C. albicans cell wall protein fructose-
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bisphosphate aldolase, may serve as an immunologic carrier for

the glycan has resulted in a novel fully synthetic glycopeptide

vaccine [7]. Following immunizations of mice, protection was

afforded by antibodies specific for the b-(Man)3 and the Fba

epitopes that comprised the vaccine [7]. The antibody dependency

of protection was evident by protection transferred to naı̈ve mice

by immune serum, but not by serum pre-absorbed with C. albicans.

These results enabled elucidation of an efficacious vaccine, but the

immunization protocol utilized dendritic cells and complete

Freund adjuvant (DC/CFA), which are cost prohibitive and

incompatible for human use, respectively. In this report, we have

investigated alternative vaccine presentation strategies to test our

hypothesis that an approved human adjuvant can be substituted

for the DC/CFA approach provided that the vaccine conjugate

can be appropriately modified to improve immunogenicity.

Prior to vaccine modification, we expanded our observation on

efficacy of the b-(Man)3-Fba vaccine in additional mouse strains

and against challenge with an additional C. albicans strain, and

tested whether the vaccine could be administered with alum or

monnophosphoryl lipid A (MPL) adjuvants in place of DC/CFA.

In subsequent experiments, the vaccine modification was the

covalent coupling of tetanus toxoid (TT) to the b-(Man)3-Fba. The

b-(Man)3-Fba-TT conjugate was administered alone or as a

mixture made with alum or MPL. The best protection results

occurred in animals immunized against the b-(Man)3-Fba-TT

conjugate vaccine with, or, surprisingly, without additional

adjuvant. This self-adjuvanting b- (Man)3-Fba-TT conjugate

vaccine, administered without any additional adjuvant, induced

robust antibody responses and antibody-mediated protection in

mice.

Results

Protective efficacy of b-(Man)3-Fba conjugate vaccine in a
different mouse strain and against an additional C.
albicans strain

As we described, the b-(Man)3-Fba conjugate vaccine induced

strong antibody responses and protective immunity in BALB/c

mice [7] that express the H-2d MHC haplotype and have a Th-2

immunologic bias [20,21]. C57BL/6 mice express an H-2b MHC

haplotype, are more prone to Th1 responses and supposedly more

resistant to disseminated candidiasis than are BALB/c mice [21–

23]. We derived dendritic cells in vitro as described before [7] and

used the same immunization DC/CFA-strategy on the C57BL/6

mice as was used in our work on BALB/c mice [7], which

included a priming dose followed by two boosters; the last booster

consisted of the vaccine emulsified in CFA. C57BL/6 mice

responded to the vaccine by making specific antibody against each

of the two vaccine epitopes, i.e., the b-(Man)3 and the Fba peptide

(data not shown). Following the first booster, an isotype switch

from IgM to IgG occurred in response to each epitope. The

immunized C57BL/6 mice showed 80% survival throughout the

120 days post challenge and survived significantly longer

(p,0.001) as compared to the control groups of mice given DPBS

buffer, DC or DC+CFA (Figure S1A). The survival data were

consistent with the trend of colony forming units (CFU) in kidney

homogenates. That is, immunized C57BL/6 mice had greatly

reduced or non-detectable kidney CFU as compared to controls

that were sacrificed when they became moribund following i.v.

challenge with the fungus (Figure S1B). Indeed, the protection in

C57BL/6 mice was similar to that which we observed for BALB/c

mice [7].

To answer whether antibody responses were responsible for the

protection, antisera were collected from separate groups of

immunized mice and transferred i.p. to naı̈ve mice 4 h before

i.v. challenge with a lethal dose of C. albicans strain 3153A. Control

groups were given either immune sera pre-absorbed with live C.

albicans yeast cells or DPBS buffer prior to the challenge. The

immune serum donors, which were immunized with b-(Man)3-Fba

by the DC/CFA method, were used as positive controls for

protection. After challenge, immunized mice and mice treated

with the antiserum had prolonged survival times as compared to

the two control groups (p,0.05) (Figure S1C), and as expected,

mice that received the antiserum had significantly reduced fungal

counts in their kidneys (p,0.05) (Figure S1D). These data provide

strong evidence that antibodies are responsible, at least in part, for

the vaccine-induced protection against a lethal challenge with the

fungus in C57BL/6 mice.

C. albicans strain 3153A was used in our previous studies

[7,17,19]. To test if DC/CFA vaccination with the b-(Man)3-Fba

protects C57BL/6 mice challenged with another C. albicans strain,

we challenged immunized mice with C. albicans strain SC5314, a

clinical isolate commonly used in research. As a positive control, a

group of immunized mice was challenged with strain 3153A.

Similar protection patterns were observed in both groups of mice

regardless of the challenge strain (Figure S1E). In addition to

prolonged survival times, immunized groups had reduced or non-

detectable CFUs in their kidneys as compared to non-immune mice

(data not shown). These results are similar to those we observed

from BALB/c mice challenged with the 3153A strain [7,19]. The

above experiments are important as they show that vaccine-induced

antibody protection is not animal or fungal-strain dependent.

Immunization with b-(Man)3-Fba combined with alum or
MPL induced modest antibody responses and slight
protection

Although the DC/CFA -based immunization approach was

successful in mice for protection against disseminated candidiasis,

the use of DC and complete Freund adjuvant are inappropriate for

human use. To test new adjuvants suitable for human use, the b-

(Man)3-Fba conjugate was administered as a mixture with either

alum or MPL adjuvants. After the first booster, immune sera from

vaccinated mice showed modest antibody responses (OD values of

a 1/100 serum dilution: 0.7–0.9) to the Fba peptide (Figure 1A),

and relatively weak antibody responses (OD values of a 1/100

serum dilution: 0.45–0.55) to the b-(Man)3 epitope (Figure 1B).

Following the second booster immunization, an isotype switch

from IgM to IgG of either b-(Man)3 or Fba specific antibodies was

low to negligible in immune sera (data not shown, results

summarized in table 1), which suggested that an immune memory

response had not occurred. In addition, the b-(Man)3-Fba

vaccinated groups had insignificantly longer survival times as

compared to the two non-immunized control groups after

challenge with a lethal dose of C. albicans cells (p = 0.77) (Figure 1C).

In an attempt to increase the antibody and protective responses,

the dose of b-(Man)3-Fba conjugate was increased from 2.5 mg to

10 mg in the b-(Man)3-Fba+alum formulation. Nonetheless, the

levels of anti-Fba peptide (Figure 2A) and anti-b-(Man)3 (Figure 2B)

were markedly less than antibody levels (OD values of a 1/100

serum dilution: 1.7–1.9) in sera from control animals immunized

with the b-(Man)3-Fba+DC/CFA. Likewise, when titers were

assessed by end-point dilution, the immune sera from the positive

control group showed significantly greater antibody responses for

both epitopes (Table 2 & 3). Interestingly, even though the

Vaccination against Disseminated Candidiasis
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antibody titers against both epitopes in response to the 10

microgram dosage was greater than the response to the 2.5 mg

dose, disease protection was not observed to the extent of

protection induced by the DC/CFA immunization approach

(Figure 2C). In summary, the greatest antibody responses occurred

in mice that received the b-(Man)3-Fba+DC/CFA, the animals of

which also showed evidence of an IgM-IgG shift (Table 2 & 3) and

the highest degree of protection [7].

Addition of tetanus toxoid (TT) to the vaccine, b-(Man)3-
Fba-TT, markedly enhanced antibody responses to both
epitopes in the presence of alum or MPL

In an attempt to improve immunogenicity of the glycopeptide

vaccine in the presence of adjuvant suitable for human use, we

modified the b-(Man)3-Fba conjugate by coupling it to tetanus

toxoid designated as b-(Man)3-Fba-TT. In a preliminary exper-

iment we also tested the Fba peptide as a Fba-TT conjugate. Both

conjugates were administered as mixtures with alum or MPL.

Negative control groups included adjuvant only and DPBS buffer

only. After the first booster, mice immunized with b-(Man)3-Fba-

TT prepared in either alum or MPL produced robust antibody

responses against both the Fba peptide (Figure 3A) and the b-

(Man)3 epitopes (Figure 3B), titers of which were 100 fold greater

than that of sera from groups that received Fba-TT (p,0.001)

(Table 2 & 3), the latter of which responded about the same as

animals that received Fba in alum without TT (Figure 3A). After

Figure 1. b-(Man)3-Fba administered along with either alum or MPL adjuvants induced modest antibody responses and slight
protection against disseminated candidiasis. The b-(Man)3-Fba conjugate was administered as a mixture with either alum or MPL adjuvants in
BALB/c mice. Serum samples were collected 14 days after immunization, diluted 1:100 and tested by ELISA on plates coated with synthetic b-(Man)3

or Fba-MAP. After the first booster immunization, immune sera from vaccinated mice showed modest antibody responses to Fba peptide (A) and
relatively weak antibody responses to b-(Man)3 epitope (B) (C) The survival was also slightly extended in mice that received b-(Man)3-Fba in MPL and
slight protection was observed when alum was used as the adjuvant as compared to DPBS or adjuvant unimmunized controls.
doi:10.1371/journal.pone.0035106.g001

Table 1. Antibody isotype distribution of responses to Fba
and b-(Man)3.

Sera induced by vaccines anti b-(Man)3 anti Fba-peptide

b-(Man)3-Fba-TT with MPL IgM;IgG1;IgG2a;IgG2b IgM;IgG1

b-(Man)3-Fba-TT with alum IgM;IgG1;IgG2a IgM;IgG1;IgG2a

b-(Man)3-Fba-TT IgM;IgG1;IgG2a IgM;IgG1;IgG2a

b-(Man)3-Fba IgM IgM

b-(Man)3-Fba with alum IgM IgM

b-(Man)3-Fba with MPL IgM IgM

b-(Man)3-Fba+DC+CFA IgM;IgG1 IgM;IgG1

doi:10.1371/journal.pone.0035106.t001

Vaccination against Disseminated Candidiasis
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the first booster, IgM and IgG antibodies against both epitopes

were detected in the sera of mice immunized with b-(Man)3-Fba-

TT with added alum or MPL adjuvants (Table 1), whereas very

low levels of anti-Fba IgM and IgG antibodies were detected in the

sera of mice that received Fba or Fba-TT in adjuvant. No

antibody against the epitopes was detectable in any of the negative

(i.e., adjuvant or DPBS mice) control sera (data not shown).

The b-(Man)3-Fba-TT conjugate vaccine induced high
antibody responses and protection even in the absence
of adjuvant

To determine whether the immunogenicity of b-(Man)3-Fba-

TT vaccine was dependent on additional adjuvant, b-(Man)3-Fba-

TT was administered alone and the response of these mice was

compared to those that received the vaccine as a mixture made

Figure 2. Comparison of DC/CFA and alum as adjuvants for induction of immune resopnses to the b-(Man)3-Fba conjugate vaccine.
Serum samples were collected 14 days after immunization, diluted 1:100 and tested by ELISA on plates coated with either synthetic Fba-MAP or b-
(Man)3. Immune sera from mice immunized with the b-(Man)3-Fba DC/CFA showed greater antibody titers to both the Fba peptide (A) and the b-
(Man)3 epitopes (B) than sera from groups that received b-(Man)3-Fba in alum. (C) A high degree of protection was induced by the b-(Man)3-Fba
pulsed DCs, and slight protection was observed when alum was used as the adjuvant as compared to DPBS, DC+CFA or alum adjuvant unimmunized
controls.
doi:10.1371/journal.pone.0035106.g002

Table 2. ELISA titers against microtiter wells coated with synthetic b-(Man)3 epitope.

Sera induced by vaccines anti b-(Man)3 ELISA titers* (*n = 5 mice per group)

b-(Man)3-Fba-TT with MPL I2,800 25,600 25,600 25,600 25,600

b-(Man)3-Fba-TT with alum I2,800 12,800 25,600 25,600 25,600

b-(Man)3-Fba-TT I2,800 25,600 25,600 12,800 25,600

b-(Man)3-Fba with alum I,600 400 400 400 800

b-(Man)3-Fba with MPL I,600 800 800 400 400

b-(Man)3-Fba 400 400 400 400 400

b-(Man)3-Fba+DC+CFA 51,200 25,600 25,600 25,600 51,200

doi:10.1371/journal.pone.0035106.t002
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with alum or MPL adjuvants. Mice that received the vaccine

prepared in either adjuvant responded as expected by making

robust antibody responses. Surprisingly, mice that received the b-

(Man)3-Fba-TT without adjuvant responded only slightly, but not

significantly, less than those that received the vaccine plus

adjuvant (Figure 4A+4B). Importantly, all three groups of mice,

vaccinated with b-(Man)3-Fba-TT conjugate vaccine with or

without additional adjuvant, showed a high degree of protection

against a lethal challenge with C. albicans (Figure 4C). The induced

protective immunity was evidenced by significantly prolonged

survival times (p,0.005)and reduced kidney fungal burden

(p,0.001) as compared to control groups that received only

adjuvants or DPBS buffer prior to challenge (Figure 4D). These

results showed the self-adjuvanticity power of the b-(Man)3-Fba-

TT vaccine.

Anti-b-(Man)3-Fba-TT immune sera induced by non-DC/
CFA-based immunization approaches provided passive
protection

In previous work we showed by passive transfer experiments

that antibodies induced by the DC/CFA-based immunization

approach are responsible for protection against disseminated

candidiasis. To confirm that vaccine-induced antibodies are

protective regardless of the use of dendritic cells, immune sera

were collected and pooled from b-(Man)3-Fba-TT (with or without

alum or MPL adjuvants) immunized mice and transferred i.p. to

naı̈ve mice 4 h before i.v. challenge with a lethal dose of C. albicans.

Control groups were given either immune serum pre-absorbed

with live C. albicans yeast cells or DPBS buffer prior to the

challenge. We tested for antibodies against the b-(Man)3 and Fba

eptiopes before and after absorption with yeast cells. Immune

serum donors, which were immunized with b-(Man)3-Fba-TT

conjugate vaccine, were used as a positive control for protection.

After challenge, immunized positive control mice and mice treated

with the antiserum had prolonged survival times as compared to

the two negative control groups (p,0.01) (Figure 5A), confirming

that induced antibodies were protective and that their induction

was not dependent on the use of dendritic cells or CFA during the

immunizations. Consistently, mice that received the antiserum had

significantly fewer fungal counts in their kidneys compared with

the infectious burden in mice that were given DPBS or pre-

absorbed serum prior to challenge (p,0.001) (Figure 5B).

Table 3. ELISA titers against microtiter wells coated with synthetic Fba peptide.

Sera from vaccine groups anti- Fba peptide ELISA titers* (*n = 5 mice per group)

b-(Man)3-Fba-TT with alum 51,200 25,600 51,200 51,200 25,600

b-(Man)3-Fba-TT with MPL 51,200 25,600 25,600 25,600 25,600

b-(Man)3-Fba-TT 51,200 25,600 25,600 51,200 25,600

Fba-TT with alum 400 400 200 N/A N/A

Fba-TT with MPL 400 400 200 N/A N/A

b-(Man)3-Fba with alum 800 800 1600 800 800

b-(Man)3-Fba with MPL 800 800 800 400 800

b-(Man)3-Fba 400 400 400 400 400

b-(Man)3-Fba+DC+CFA 51,200 102,400 51,200 51,200 102,400

doi:10.1371/journal.pone.0035106.t003

Figure 3. Vaccination with b-(Man)3-Fba-TT in either alum or MPL markedly increased both b-(Man)3 and Fba peptide-specific
antibody titers in sensitized mice as compared to controls. Serum samples were collected 14 days after immunization, diluted 1:100 and
tested by ELISA on plates coated with cell wall mannan or peptide. MAbs B6.1 and E2-9 that are specific for b-(Man)3 and Fba, respectively, were used
as positive controls. Mice immunized with b-(Man)3-Fba-TT prepared in either alum or MPL induced robust antibody responses against both the Fba
peptide (A) and the b-(Man)3 (B) epitopes. However, mice that received either Fba or Fba-TT in either adjuvant produced weak anti-Fba responses.
doi:10.1371/journal.pone.0035106.g003
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Immunization induced an isotype switch from IgM to IgG
for antibodies specific for either fungal epitope in the
vaccine conjugate

We compared antibody isotype responses to both the glycan and

peptide epitopes induced by the b-(Man)3-Fba conjugate when the

DC/CFA-based immunization approach was employed to that

produced by the b-(Man)3-Fba-TT modified conjugate adminis-

tered with alum or MPL or when given alone (Table 1). b-(Man)3-

Fba+DC/CFA and b-(Man)3-Fba-TT immunized mice produced

antibodies to both the b-(Man)3 epitope and Fba peptide, and the

isotype analysis revealed an abundance of IgM and IgG subclasses

in the immune sera against both epitopes, which is consistent with

the induction of a T cell-dependent memory immune response.

The isotype distribution of antibodies specific for the fungal

epitopes differed depending on the adjuvant system (Table 1).

Whereas IgM and IgG1 responses to b-(Man)3 were induced

regardless of the presence of adjuvant, an IgG2a response to the

glycan epitope was induced by b-(Man)3-Fba-TT with or without

the use of alum or MPL, but IgG1 was the only subclass detectable

in mice immunized by the DC/CFA approach. Only mice

immunized with the b-(Man)3-Fba-TT mixed with MPL produced

an IgG2b response to the glycan epitope. Antibody IgM and IgG1

isotype responses to the Fba peptide were similar for mice

immunized with the b-(Man)3-Fba regardless of the adjuvant

system, however, IgG2a specific for the peptide epitope was

induced only by b-(Man)3-Fba-TT with alum or when no adjuvant

was used. No IgG2a isotype was detected against the peptide when

MPL was the test adjuvant. The level of protection observed

against disseminated candidiasis was similar in mice immunized

with the glycan-peptide conjugate in the DC/CFA approach, or in

mice immunized with the glycan-peptide-TT with or without alum

or MPL, which indicated that the protective antibodies are likely

to be primarily of the IgM and IgG1 isotypes.

The glycopeptide-TT conjugate is immunogenic and
protective against disseminated candidiasis in outbred
mice

The efficacy of the b-(Man)3-Fba-TT conjugate vaccine against

disseminated candidiasis was also demonstrated in outbred mice.

Since a combination of MPL and alum may enhance the vaccine

response by rapidly triggering a local cytokine response leading to

an optimal activation of APCs [24], the tested Swiss Webster mice

were immunized with the b-(Man)3-Fba-TT conjugate alone or as

a mixture with both alum and MPL. Negative control mice were

Figure 4. b-Man)3-Fba-TT conjugate with or without adjuvant markedly induced high antibody titers and protection against
disseminated candidiasis in immunized mice as compared to controls. Mice immunized with b-(Man)3-Fba-TT prepared in either alum or
MPL, or without adjuvant developed robust antibody responses against both the Fba peptide (A) and the b-(Man)3 epitope (B). (C) Protective
immunity was induced by (b-Man)3-Fba-TT when either alum or MPL was used as the adjuvant. Protection was nearly as great even when adjuvant
was omitted as compared to DPBS or adjuvant only controls (P,0.01). (D) Immunized mice had reduced or non-detectable CFUs per kidney pairs
compared to control groups (P,0.001).
doi:10.1371/journal.pone.0035106.g004
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immunized with the adjuvant combination or DPBS only. The b-

(Man)3-Fba-TT, with or without adjuvant, induced robust and

consistent antibody responses against both the b-(Man)3
(Figure 6A) and the Fba epitopes (Figure 6B) in immunized

outbred mice. Fourteen days following the last booster, immunized

mice were infected via the tail vein with a lethal dose of C. albicans

3153A, as we have described previously. Similar to our previous

findings in BALB/c mice, the outbred mice vaccinated with b-

(Man)3 –Fba-TT conjugate vaccine, when administered alone or

with alum and MPL, markedly improved the survival of infected

mice (Figure 6C). Consistently, the immunized mice had

significantly lower live fungal cells in their kidneys as compared

to negative controls (p,0.001) (Figure 6D).

Antibodies in immune sera bind yeast and hyphal forms
of C. albicans

Immune serum from animals immunized with the b-(Man)3-

Fba-TT conjugate contained antibodies specifically reactive with

the cell surface of yeast forms as demonstrated by flow cytometric

analyses. A fluorescence shift similar in magnitude to the control

antibody, MAb B6.1, was observed upon testing of the immune

serum (Figure 7A). This reactivity of immune serum was removed

by pre-absorption with C. albicans yeast forms (Figure 7B). The

binding pattern was similar with immune sera collected from mice

vaccinated with b-(Man)3-Fba-TT alone, or when mixed with

either alum or MPL (data not shown).

Microscopic observations after immunofluorescence staining

with anti-b-(Man)3-Fba-TT conjugate immune serum showed

reactivity with both yeast and filamentous forms of C. albicans

strain 3153A (Figure 7C), which was expected since we previously

showed that the vaccine glycan and peptide epitopes are surface

expressed [7,17,18]. The microscopic analysis confirmed the flow

cytometry results and extended the observations to include hyphal

forms of the fungus. The specific antibody reactivity was again

confirmed by the absence of fluorescence by immune serum pre-

absorbed with yeast forms of the fungus (Figure 7C). As with the

flow cytometry analyses, the positive reaction of immune serum

Figure 5. Passive transfer experiment was performed to confirm that antibody is responsible for the protection. (A) As immunized
mice, immune sera recipients had a prolonged survival time (P,0.01), confirming that induced antibodies were protective. (B) The serum from (b-
Man)3-Fba-TT immunized animals was capable of reducing the fungal load in the mouse kidneys compared with the infectious burden in mice were
given DPBS or pre-absorbed sera (P,0.001).
doi:10.1371/journal.pone.0035106.g005

Vaccination against Disseminated Candidiasis
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compared favorably with reactivity of MAb B6.1, which is specific

for the glycan epitope [25,26]. Moreover, essentially the same

pattern of C. albicans fluorescence was observed with immune

serum from mice vaccinated with b-(Man)3-Fba-TT alone, or

when mixed with alum/MPL. No reactivity with the fungus was

observed upon testing of serum from mice given adjuvant only or

pooled serum from untreated normal mice. In addition to these

findings, serum from mice immunized with the b-(Man)3-Fba-TT

conjugate reacted similarly with another C. albicans isolate (strain

SC5314) (data not shown).

Discussion

The discovery of numerous antigens on the fungal cell wall that

elicit protective antibody responses raises the possibility of

obtaining combined or even synergistic efficacious effects of

vaccines designed with multiple antigens, and/or passive therapies

that combine antibodies with different specificities [27,28]. The

novel fully synthetic b-(Man)3-Fba glycopeptide vaccine, which is

based on two C. albicans cell surface epitopes, induces impressive

protection against disseminated candidiasis in BALB/c mice [7].

Furthermore, in previous work we provided strong evidence that

antibodies specific for the glycan and peptide epitopes contribute

to the protection [17,29,30].

In the present study we extended our observations to include

C57BL/6 mice, which are more prone to Th1 responses and more

resistant to disseminated candidiasis as compared to the BALB/c

mice. By the same DC/CFA-based immunization protocols that

favored production of protective antibody, the b-(Man)3-Fba

conjugate induced a similar level of protection in C57BL/6 mice

as we found for BALB/c animals. Furthermore, protection was

observed regardless of the challenge strain of C. albicans. As with

the BALB/c mice, passive transfer of antibodies against the two

fungal epitopes to C57BL/6 naı̈ve mice protected these animals

against disseminated candidiasis.

For the present and previous studies, the antigen-pulsed DC/

CFA immunization approach proved to be a powerful way of

overcoming the relatively weak immune response of the mouse to

Figure 6. The (b-Man)3-TT conjugate vaccine is immunogenic and protective against disseminated candidiasis in outbred mice.
Outbred CFWSwiss Webster (01S60) mice were immunized with the b-(Man)3-Fba-TT conjugate alone or mixed with adjuvants alum and MPL; control
mice were immunized with adjuvants (alum+MPL) only or DPBS buffer. Mice immunized with b-(Man)3-Fba-TT in either alum+MPL, or without
adjuvant induced robust antibody responses against both the b-(Man)3 epitope (A) and the Fba peptide (B). (C) Protective immunity was induced by
(b-Man)3-Fba-TT with or without adjuvant as noted by their prolonged survival time as compared to control mice that received DPBS or adjuvants
alone (P,0.01). (D) Immunized mice had reduced or non-detectable CFUs per kidney pairs compared to control groups.
doi:10.1371/journal.pone.0035106.g006
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the defined small glycan and peptide antigens that comprised the

vaccine. This immunization approach enabled us to arrive at the

defined vaccine composition [b-(Man)3-Fba] that provides a high

degree of protection against experimental hematogenously dis-

seminated candidiasis. The critical limitation of the immunization

approach is the use of DC and CFA, the former of which would

severely limit widespread vaccine use in humans and the latter of

which is unacceptable for human use. For those reasons we tested

the b-(Man)3-Fba along with alum and MPL as adjuvants in place

of DC and CFA. However, relatively weak anti-b-(Man)3 and

moderate anti-Fba responses were induced. Perhaps more

importantly, the new immunization approaches failed to induce

an IgM to IgG isotype shift, suggesting the lack of a memory cell

response. In addition, only the mice immunized with a

combination of the b-(Man)3-Fba conjugate and alum showed

evidence of protection, and even that group of animals was not

protected nearly as well as animals immunized by the DC/CFA

approach. The results did not improve by increasing the dose of

the b-(Man)3-Fba conjugate from 2.5 mg to 10 mg, which led us to

investigate modifications of the vaccine itself.

In an attempt to increase the immunogenicity of the b-(Man)3-

Fba conjugate when using an acceptable immunization approach

for human use, we investigated the effects of coupling the

conjugate to tetanus toxoid (TT). The new glycopeptide vaccine

conjugate, b-(Man)3-Fba-TT, proved to be highly immunogenic as

it induced robust antibody responses when administered with

either alum or MPL as adjuvants. Moreover, prior to the second

booster dose, an isotype switch occurred from IgM to IgG

antibodies against for both the b-(Man)3 and Fba peptide epitopes.

This result indicated a possible memory cell response and,

perhaps, a vaccine that induces long-term immunity. Most

importantly, the (b-Man)3-Fba-TT conjugate administered with

either alum or MPL induced protection against disseminated

candidiasis on a par with the high level of protection observed with

the original DC/CFA immunization approach [7].

In previous work involving the DC/CFA immunization

approach, we found that the Fba peptide itself was immunogenic,

inducing not only a robust antibody response, but the response was

protective as well against disseminated candidiasis [8,17]. We were

surprised, therefore, to find that the Fba-TT conjugate in adjuvant

did not perform well in mice (Figure 3A & Table 3). We do not yet

Figure 7. Immune serum from (b-Man)3-Fba-TT vaccinated mice detected the presence of the vaccine epitopes on the surface of C.
albicans. (A) Antibodies in immune sera binding to the both epitopes expressed on the C. albicans cell surface were confirmed by flow cytometry.
The reactivity of immune serum (green) with live C. albicans cells to that of MAb B6.1 (blue line), which is specific for the C. albicans cell surface
epitope (b-Man)3,. Control serum (red line) was non-immune serum from mice that received adjuvant only. (B) Pre-absorbed MAb B6.1 (blue line) and
pre-absorbed immune sera (green line) were not reactive with fungal cell surface. (C) Confocal microscopic analyses confirmed that antibodies in
immune serum detect the vaccine epitopes on the surface of yeast forms, but are also reactive with the surface of hyphal forms of C. albicans. The
epitope display was similar to that due to fungal reactivity with MAb B6.1, which is specific for b-(Man)3 and was used as a positive
immunofluorescence control. As an additional negative control, immune serum pre-absorbed with C. albicans 3153A yeast cells did not react with
either yeast or hyphal forms of C. albicans.
doi:10.1371/journal.pone.0035106.g007
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know the reason for this, but possibilities to consider include

immune interference caused by the acetylated modification at the

N-terminus (Figure 8) and, possibly, modifications may be

required of the tether between the small Fba moiety and the TT.

The large differences in vaccine efficacy between glycopeptide

conjugates b-(Man)3-Fba and b-(Man)3-Fba-TT when the same

adjuvant system was used led us to consider whether the tetanus

toxoid component was sufficient for inducing a protective immune

response. To test this hypothesis, b-(Man)3-Fba-TT administered

alone was compared to administration of the conjugate as either a

mixture made with alum or MPL. Mice that received the b-

(Man)3-Fba-TT conjugate prepared in either adjuvant responded

as expected by making robust antibody responses. Surprisingly,

mice that received the b-(Man)3-Fba-TT without any adjuvant

Figure 8. Scheme for synthesis of the conjugate vaccine. The glycoconjugate vaccine (GV) and the peptide vaccine lacking the mannotriose
component (PV) were synthesized from the advanced building blocks 1–3. The b-1,2 mannotriose derivatized with a triethylene glycol spacer 1; the
T-cell tetradecameric peptide (Fba) was assembled on a peptide synthesizer and a triethylene glycol tether was introduced at the C terminal end
followed by a single lysine residue which was derivatized on its side chain by a thioacetic acid residue, which gave the building blocks 2a or 2b.
Bromoacetate groups were introduced on approximately 20 of the lysine residues present in tetanus toxoid to give 3. GV was assembled by reacting
1 with 2a and then conjugating this product with 3. PV was prepared by conjugating 2b with 3. A detailed account of this synthesis will be reported
elsewhere (Cartmell et al. Carbohydr. Res submitted).
doi:10.1371/journal.pone.0035106.g008
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also responded well. All three groups of vaccinated mice showed a

high level of protection against a lethal challenge with C. albicans as

evidenced by significantly increased survival times and reduced or

non-detectable kidney fungal burden at the time of sacrifice as

compared to control groups that received only adjuvants or DPBS

buffer prior to challenge. Furthermore, sera from mice immunized

against the b-(Man)3-Fba-TT conjugate transferred protection

against disseminated candidiasis to naı̈ve mice, whereas C. albicans-

preabsorbed immune sera did not, which confirmed that induced

antibodies were protective. In conclusion, our results demonstrat-

ed that the addition of the TT to the vaccine conjugate provided

sufficient self-adjuvanting activity without the need for additional

adjuvant. This is the first report of which we are aware of a self-

adjuvanting glycopeptide vaccine against any infectious disease.

Prior to our work, immunostimulatory lipids conjugated to peptide

antigens resulted in self-adjuvanting (lipopeptide) vaccines now

tested in clinical trials [31,32]. The lipid parts of the lipopeptide

vaccines ranged from simple single fatty acid chains to complex

lipids and glycolipids. Several self-adjuvanting mRNA vaccines,

administered by an intradermal route, also induced anti-tumor

immune responses [33]. We show in our study, however, that the

coupling of a carrier protein component (TT) to the glycopeptide

vaccine resulted in a self-adjuvanting conjugate, which lays the

foundation for the novel concept of self-adjuvanting glycopeptide

vaccines.

Protein carriers can influence the specificity, function, avidity,

and idiotype of the antibody response to polysaccharide-protein

conjugate vaccines [34]. We compared antibody isotype distribu-

tion of responses to both b-(Man)3 and Fba peptide epitopes in

immune sera from mice vaccinated against b-(Man)3-Fba or b-

(Man)3-Fba-TT with different adjuvant systems. IgM specific for

both fungal epitopes was detected in sera of all immunized

animals. IgG1 against the two epitopes was produced in sera of

mice immunized with either b-(Man)3-Fba pulsed DC or b-

(Man)3-Fba-TT with or without adjuvant. Interestingly, conjuga-

tion of TT to b-(Man)3-Fba led to the appearance of IgG2a

specific for b-(Man)3 and Fba peptide epitopes. In contrast, the

antibody responses to b-(Man)3-Fba without adjuvant, or with

either alum or MPL as adjuvant consisted only of IgM antibodies.

IgG1 and IgG2a were the major IgG subclasses against both the

fungal glycan part and peptide parts of the b-(Man)3-Fba-TT

conjugate, but when MPL was used as adjuvant, the IgG2a and

IgG2b subclasses were detected with specificity for the b-(Man)3
epitope only. In the mouse, IgG2a and IgG3 efficiently fix

complement and promote opsonophagocytosis [35–38], and

IgG2a binds to the high-affinity macrophage Fcc receptor [39].

These considerations may well explain the higher level of

protection against candidiasis that was observed in mice

immunized against the b-(Man)3-Fba-TT with or without adjuvant

as compared to those that received the b-(Man)3-Fba formulation

with adjuvant. Although the mechanism of protection afforded by

antibodies specific for the Fba peptide part of the vaccine is under

investigation, the importance of complement fixation for protec-

tion provided by antibodies specific for the b-(Man)3 has been

established [18,19]. These results show that TT not only enhances

the immunogenicity of the glycopeptide vaccine, but also obviates

the use of adjuvants.

Antibodies induced by non-DC/CFA approaches are appar-

ently responsible for the protection against disseminated candidi-

asis. This was demonstrated by passive transfer of immune serum,

which conferred protection to naive animals. Moreover, such

protection was not conferred by normal serum from non-

immunized mice or by immune serum pre-absorbed by C. albicans

yeast forms. These results were not surprising since our previous

work showed that immune serum from mice immunized against

the fungal glycan [25,29], monoclonal antibodies specific for the

glycan [25,29,40], and monoclonal antibody specific for the Fba

peptide component [17] of the vaccine all conferred protection

when given to naı̈ve animals.

The efficacy of the b-(Man)3-Fba-TT conjugate vaccine in

prolonging the survival of mice after a lethal challenge with C.

albicans was also demonstrated in outbred mice. The b-(Man)3-

Fba-TT conjugate vaccine was immunogenic in Swiss Webster

mice in the absence of an adjuvant, eliciting strong glycan- and

peptide-specific antibodies and induced protection against candi-

diasis. Vaccine-mediated protection in this outbred mouse model

was associated with a reduction in the levels of CFU in kidneys.

Taken together, we found no evidence that protection had an

MHC bias as evidenced by vaccine efficacy in BALB/c and

C57BL/6 mice, and the vaccine effectiveness in outbred mice

provides further support that this formulation may induce

protection in humans as well. We also expect that establishment

of active immunity when the host is immunologically normal will

then protect that host upon an immunocompromised event later.

This expectation is based on our findings that antibodies specific

for the glycan part of the b-(Man)3-Fba-TT vaccine enhanced

resistance to disseminated candidiasis of normal and neutropenic

mice [29,41]. This is an important fundamental question because

a prevalent risk factor for enhancement of susceptibility to

disseminated candidiasis in humans and mice is neutropenia.

Detection of specific antibodies induced by the b-(Man)3-Fba-

TT vaccine were determined by ELISA in which wells of the plate

were coated with either b-(Man)3 conjugated to bovine serum

albumin or Fba peptide as a MAP conjugate to detect anti-glycan

and peptide antibodies, respectively. We also confirmed the

specificity of the response to both the glycan and peptide epitopes

by inhibition ELISA, in which free soluble b-(Man)3 or Fba

peptide inhibited the binding of antibodies in immune sera in a

dose-dependent manner (data not shown). The binding of the

specific antibodies to the actual fungal cell surface was confirmed

by flow cytometric analyses, which demonstrated binding to C.

albicans yeast forms, and by indirect immunofluorescence micros-

copy showing antibody reactivity with yeast and hyphal forms,

which is consistent with our reported observations on monoclonal

antibodies specific for the two fungal epitopes [17,25].

In other work, conjugates made of the synthetic glycan

covalently linked to tetanus toxoid was immunogenic in rabbits

[42,43], but was poorly immunogenic in mice [43]. In the present

work, the conjugate became highly immunogenic upon inclusion

of the Fba peptide [b-(Man)3-Fba-TT]. Since the Fba peptide

alone induces protection [7,17], its’ inclusion in the vaccine

construct not only increases immunogenicity, but also provides the

host with a dual immune recognition formulation to ensure

protection even against C. albicans mutants that may have lost the

ability to express one of the two vaccine epitopes. Additional

rationale for keeping the glycan as part of the vaccine is that,

although the Fba peptide is unique to C. albicans, responses against

the b-(Man)3 would be expected to protect against infection with a

variety of other clinically important Candida species [15], including

C. tropicalis [29,44], C. lusitaniae [45], C. guilliermondii [46,47] and

the majority of C. glabrata strains [48,49].

In summary, the development of an effective vaccine against

disseminated candidiasis represents an alternative to the often

ineffective antifungal drug therapeutic approach to management

of this disease. The findings in the present study indicate that the

b-(Man)3-Fba-TT glycopeptide vaccine is a promising candidate

for disease prevention. In a recent study, we obtained evidence

that antibody responses to at least the Fba component of the
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vaccine can be expected to occur even in mice modified to possess

gastrointestinal tract colonization with the fungus and are

producing serum antibodies in response to the colonization [16].

This modified mouse model more closely simulates the situation in

most humans, thus providing additional confidence for going

forward with our vaccine approach in humans.

Materials and Methods

Candida albicans strains
C. albicans 3153A and SC5314 were grown as stationary-phase

yeast cells in glucose-yeast extract-peptone broth at 37uC, washed

and suspended to the appropriate cell concentration (56106/ml) in

Dulbecco’s PBS (DPBS; Sigma), and used to infect mice

intravenously (i.v.) as described [29,40]. C. albicans strain 3153A

was used also for serum antibody absorption, immunofluorescence

staining and flow cytometric analysis.

Mouse strains
Inbred strains BALB/c and C57BL/6, and outbred Swiss

Webster (ND4) female mice (NCI Animal Production Program or

Harlan) 5 to 7 weeks old were used. Mice were maintained and

handled in accordance with a protocol (#150) approved by the

Institutional Animal Care & Use committee (IACUC) regulations

at Children’s Hospital Research Institute in New Orleans.

Synthesis of the Conjugate Vaccine
The glycoconjugate vaccine (GV) and the control vaccine

lacking the mannotriose component (CV) were synthesized from

the advanced building blocks 1–3 (Figure 8). The b-1,2

mannotriose derivatized with a triethylene glycol spacer 1 was

synthesized as previously described [50]. The T-cell tetradeca-

meric peptide (Fba) was assembled on a peptide synthesizer and a

triethylene glycol tether was introduced at the C terminal end

followed by a single lysine residue which was derivatized on its side

chain by a thioacetic acid residue. This gave the building blocks 2a
or 2b. Bromoacetate groups were introduced on approximately 20

of the lysine residues present in tetanus toxoid (State Serum

Institute, Cophenhagen) to give 3. GV was assembled by reacting

1 with 2a and then conjugating this product with 3. CV was

prepared by conjugating 2b with 3. A detailed account of this

synthesis will be reported elsewhere (Cartmell et al. Carbohydr.

Res submitted).

Immunizations of mice
Conjugates b-(Man)3-Fba or b-(Man)3-Fba-TT were adminis-

tered at a subcutaneous (s.c.) location in the nape of the neck. The

conjugates were given alone or as a mixture made either with alum

(aluminum hydroxide gel, Sigma) or MPL (Lipid A, monopho-

sphoryl, Sigma) or as a combination of both adjuvants. Negative

control groups of mice were given DPBS buffer or adjuvant only.

Immunization doses and schedules were 100 ml of 2.5 mg or 10 mg

of either conjugate alone, or as a mixture containing either

conjugate along with 50 mg alum or 10 mg MPL on days 1, 21 and

62. In some experiments the two adjuvants were combined and

mixed with antigen for the priming and booster doses. Serum

samples were collected 14 days after each immunization and tested

by ELISA.

Serological assays
Immune sera were analyzed for antibody titers after each

immunization as described below. Although the titers increased

after each dosing, the most profound changes were usually

observed after the first booster, which is the result we chose to

show for comparison of vaccine responses between the various

groups.

For DC/CFA-based immunizations, DCs were pulsed in vitro

with b-(Man)3-Fba vaccine as described [7]. The mice were given

a priming dose and boosted at day 14 with fresh antigen-pulsed

DCs and boosted a second time at day 28 with antigen (2.5 mg)

emulsified in complete Freund adjuvant (CFA) given subcutane-

ously (s.c.). Control groups consisted of mice given DPBS, DC, or

DC+CFA alone at the time of priming and boosters. For b-

(Man)3-Fba, Fba-TT or (b-(Man)3-Fba-TTadministered alone or

with alum or MPL, control groups were given adjuvant alone or

DPBS buffer. Serum samples were collected 14 days after each

immunization, diluted 1:100 and tested by ELISA on plates coated

with cell wall mannan extract from C. albicans, or Fba-MAP

peptide (GenScript) or b-(Man)3-BSA as previously described

[7,16]. Briefly, C. albicans mannan extract [51], which is composed

mainly of mannan, or synthetic b-(Man)3 coupled to BSA was

dissolved at 4 mg/ml in carbonate buffer (pH 9.6); Fba-MAP

(GenScript) was dissolved at 10 mg/ml in carbonate coating buffer

(pH 9.5). Each was used to coat 96-well ELISA plates for testing

duplicate 1:100 dilutions of samples of each immune serum and

control sera. Color development for each well was achieved by

secondary antibody, goat anti-mouse polyvalent immunoglobulin

(IgG, IgA, IgM) peroxidase conjugated antibody (diluted 1:10,000

in PBST) (Sigma) and substrate (O-phenylenediamine and H2O2);

OD reading was determined at 492 nm.

To determine dilution endpoint ELISA titers, serial 2-fold

dilutions of sera in blocking buffer were prepared. The endpoint

ELISA titer was taken as the reciprocal of the last serum dilution

with an OD reading at least two-fold greater than the mean OD of

negative control samples plus twice the standard deviation.

For antibody isotype and subclass determinations, peroxidase-

conjugated rabbit anti-mouse heavy chain specific IgM, IgG1,

IgG2a, IgG2b, and IgG3 (Rockland, PA) were diluted 1:10,000 in

blocking buffer and added to the appropriate wells, followed by

addition of O-phenylenediamine substrate and H2O2 for color

development and absorbance as before.

Fungal challenge and assessment of protection
Two weeks after the second boost, immune and control mice

were infected i.v. with a lethal dose of live C. albicans yeast cells

(56105 in 0.1 ml of DPBS) prepared as described above and as

before [7]. Passively immunized mice (below) also received the

same challenge dose. Protection was evaluated by monitoring

animal survival for 50–120 days, depending on the experiment.

The mice were monitored for development of a moribund state,

defined as being listless, disinterested in food or water, and

nonreactive to finger probing. At the time that a mouse was

deemed moribund, it was sacrificed and their kidneys were

homogenized in DPBS and plated onto a nutrient agar to

determine colony forming units (CFUs). After 50–120 days, the

experiments were terminated and all the survivors at that time

were sacrificed and their kidneys were assessed for CFU as before.

The lowest limit of detection for the CFU assay was 50 CFU per

kidney pair.

Passive transfer of immune sera
Immune sera were obtained from vaccinated mice, pooled and

stored at 220uC or absorbed before freezing with C. albicans

3153A yeast cells as before [7,17,29]. Immune sera pre-absorbed

with yeast or DBPS buffer were used as passive transfer negative

controls. Pre-absorbed immune sera were tested and found

negative for antibodies against both b-(Man)3 and Fba peptide

by ELISA as described above. Naı̈ve BALB/c mice received
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0.5 ml at an intraperitoneal (i.p.) location of full-strength immune

serum or control serum or DBPS buffer. Four hours later, all mice

were challenged i.v. with C. albicans (56105 yeast cells). All animals

received a second dose (200 ml) of serum or negative control

material i.p. 24 h after the first dose. Infected mice were sacrificed

when they became moribund and their kidneys were assessed for

CFUs as above.

Flow cytometric analysis and immunofluorescence
microscopy

Distribution of the b-(Man)3 and Fba peptide epitopes on yeast

cells was determined by use of immune serum for flow cytometric

analysis and indirect immunofluorescence. One hundred micro-

liters of immune serum (1:100 dilution in 1% BSA/DPBS) was

added to a pellet of C. albicans yeast cells (56106) that was

prewashed with DPBS buffer three times. The yeast cells were

suspended in the immune serum [from b-(Man)3-Fba-TT

immunized mice] preparation and incubated while shaking by

rotation at room temperature (RT, 22–24uC) for 1–2 h. After

incubation, the yeast cells were washed with DPBS three times,

suspended in 200 ml of fluorescein- labeled goat anti-mouse IgM

(u-chain specific; Sigma) (stock solution, 1 mg/ml; working

solution, 20 mg/ml of DPBS) and incubated at RT described

above for 0.5 h. The yeast cells were washed with DPBS three

times and suspended in 500 ml of DPBS. Flow cytometry was

performed using a BD Biosciences FACSVantage SE equipped

with an argon laser excitation at 488 nm. 10,000 cells in each

sample were analyzed (CellQuest Pro software)

For immunofluorescence assays, the fungal cells were immuno-

stained and washed as described above and suspended in the

200 ml DPBS buffer. The cells were observed by confocal

microscopy (LSM 510, Zeiss). The distribution of the b-(Man)3
and Fba peptide epitopes on the yeast cell surface was compared to

that obtained with yeast cells fluorescently stained for detection of

the MAb B6.1 epitope. Negative controls included showing non-

reactivity of an irrelevant isotype control IgM MAb S-9 [52] (data

not shown) and use of fluorescein-labeled goat anti-mouse

secondary antibody only. As an additional control, pre-absorbed

immune serum prepared as described above was tested for the

binding reactivity to the C. albicans cell surface.

Statistical analysis
Data were analyzed by GraphPad Prism 4 software (GraphPad

Inc.). ELISA data were assessed for statistical significance by curve

fit analysis. Differences in median survival time and in survival

rates in C. albicans–challenged mice were analyzed by nonpara-

metric two-tailed Mann-Whitney U test or Fisher’s exact test,

respectively. Differences in survival curves were assessed by the

log-rank test. Data from CFU counts, in both in vitro and in vivo

experiments, were analyzed by two-tailed Student’s t test. Multiple

comparisons were made by analysis of variance (one-way

ANOVA) followed by Newman-Keuls post-test.

Supporting Information

Figure S1 b-(Man)3-Fba pulsed DC/CFA vaccine in-
duced protective responses in C57BL/6 mice against
disseminated candidiasis. (A) Vaccination with b-(Man)3-Fba

by the DC/CFA-based approach induced protection against

disseminated candidiasis by C. albicans strain 3153A in C57BL/6

mice. Vaccinated mice had a prolonged survival time as compared

to control mice that received DCs+CFA, DCs alone or DPBS

(P,0.001). (B) Immunized mice also had greatly reduced or non-

detectable CFU in their kidneys as compared to control mice

(P,0.01). (C) Pooled serum from immune mice transferred

protection to naı̈ve mice. Note that the immunized mice had a

similar survival curve as the naı̈ve mice that received the immune

serum. (D) Immunized mice and mice that received antiserum had

significantly fewer or non-detectable CFU in kidneys as compared

to the control groups that received either the immune serum that

was preabsorbed with C. albicans yeast cells, or DPBS buffer

(P,0.001). (E) Vaccination induced significant protection regard-

less of the fungal strain. Similar protection patterns were obtained

when immunized mice were challenged with C. albicans strains

SC5314 and 3153A.

(TIF)
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