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Abstract 

Background: Progressive cardiac fibrosis is the central aspect of the myocardial involvement in systemic sclerosis 
(SSc). We hypothesized that circulating biomarkers of the cardiac fibrosis may be useful in the early diagnosis of the 
cardiac manifestation in this disease. Thus, we investigated the potential correlations between the levels of galectin‑3, 
soluble suppression of tumorigenicity‑2 (sST2) and the echocardiographic markers of the myocardial mechanics in 
SSc patients.

Methods: Forty patients (57.3 ± 13.7 years, 36 female) were investigated. In addition to the conventional echocardi‑
ography, tissue Doppler and speckle tracking‑derived strain techniques were used to assess the function of both ven‑
tricles and atria. To estimate the correlations between galectin‑3 and sST2 levels and the echocardiographic variables, 
partial correlation method was used with age as correcting factor.

Results: In age adjusted analysis galectin‑3 level showed significant correlation with left ventricular global longitudi‑
nal strain (r = 0.460, p = 0.005); grade of left ventricular diastolic dysfunction (r = 0.394, p = 0.013); septal e’ (r = − 0.369, 
p = 0.021); septal E/e’ (r = 0.380, p = 0.017) and with the grade of mitral regurgitation (r = 0.323, p = 0.048). No signifi‑
cant correlation was found between sST2 levels and the echocardiographic variables.

Conclusions: Galectin‑3 levels, but not sST2 levels show significant correlation with the parameters of the left ven‑
tricular systolic and diastolic function. Galectin‑3 may be a useful biomarker for the screening and early diagnosis of 
SSc patients with cardiac involvement.
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Introduction
Systemic sclerosis (SSc) is a connective tissue disease 
characterized by vascular abnormalities and diffuse fibro-
sis of the skin and various internal organs [1]. Although 

its pathogenesis is still not fully elucidated, recurrent 
ischaemic episodes resulting from coronary microcircu-
latory abnormalities may be responsible for the myocar-
dial fibrosis [2], which represents the primary myocardial 
involvement of the disease [3]. Myocardial fibrosis may 
lead to left ventricular (LV) diastolic dysfunction, which 
is highly prevalent in SSc [4–6]. Although impaired LV 
ejection fraction is not common in this disease [7], myo-
cardial fibrosis may eventuate in subclinically impaired 
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LV systolic function, as it was proved by speckle track-
ing-derived global longitudinal strain (GLS) data [8, 9]. 
Subclinical right ventricular (RV) dysfunction was also 
proved, even in SSc patients without manifest pulmonary 
hypertension, using tissue Doppler or speckle tracking 
measurements [10–12]. Besides, impaired left (LA) and 
right atrial (RA) function have recently been reported 
in SSc, by the help of speckle tracking technique [10, 
13–15].

Cardiac involvement implies poor prognosis in SSc 
[16, 17], thus its early, biomarker-based screening would 
be crucial. Utility of the well know cardiac biomarker, 
N-terminal pro–B-type natriuretic peptide (NT-proBNP) 
has already been proved in SSc [3, 18, 19]. In contrast, 
the potential clinical value of the circulating biomark-
ers reflecting myocardial fibrosis is less known in this 
disease.

Galectin-3 is a beta-galactoside-binding protein mem-
ber of the lectin family that activates a variety of profi-
brotic factors, supports fibroblast proliferation and 
transformation, and mediates collagen production [20]. 
It plays an important role in cardiac remodelling by 
enhancing myocardial fibrosis [21]. In addition, it has 
been shown to be an independent predictor of outcome 
in heart failure [22, 23].

Soluble suppression of tumorigenicity-2 (sST2) is 
member of the interleukin-1 receptor family. It enhances 
myocardial hypertrophy and fibrosis by blocking the 
favourable influence of IL-33 [24]. Its prognostic value 
has been reported both in acute and chronic heart failure 
[24, 25].

Both galectin-3 and sST2 concentrations showed sig-
nificant correlation with the echocardiographic markers 
of LV or LA size and function in heart failure patients 
[26–31]. Besides, in patients with pulmonary arterial 
hypertension, significant associations were reported 
between galectin-3 levels and the RV size and function 
whereas sST2 levels reflected disease severity [32–34].

Thus, in this study we aimed to investigate the potential 
associations between the levels of galectin-3 and sST2 
and the echocardiographic markers of the myocardial 
mechanics in SSc patients.

Patients and methods
Study population
Our prospective study included 40 consecutive SSc 
patients diagnosed in the tertiary centre of the Depart-
ment of Rheumatology and Immunology, University 
of Pécs. All enrolled cases fulfilled the updated ACR/
EULAR classification criteria [35]. Patients with pul-
monary arterial hypertension, atrial fibrillation, sig-
nificant left sided valvular disease or known coronary 
artery disease were excluded from the study. Baseline 

clinical, laboratory and spirometry data were collected at 
enrolment. Duration of the disease was defined as time 
between the onset of the first non-Raynaud symptom of 
SSc and the inclusion, in years.

The study complied with the Declaration of Helsinki. 
The institutional ethics committee approved the study. 
Written informed consent was obtained from all patients.

Echocardiography
All patients underwent echocardiographic examination 
performed by a single investigator using Philips EPIQ 7 
ultrasound system (Philips Healthcare, Best, The Neth-
erlands). M-mode and 2D data were collected: LV ejec-
tion fraction measured by biplane Simpson’s method; 
basal, mid-cavity, and longitudinal dimensions of the RV 
corrected for body surface area; tricuspid annular plane 
systolic excursion (TAPSE); RV fractional area change 
(RVFAC); maximal and minimal diameters of the inferior 
vena cava (IVC); collapsibility index of IVC (the percent 
decrease in the diameter during inspiration). LV mass 
was calculated according to the Devereux formula and 
corrected for body surface area (LV mass index). RV wall 
thickness was measured at end-diastole [36, 37]. Mitral 
and tricuspid regurgitations were evaluated according to 
the recent recommendation [38]. In addition to the spec-
tral Doppler parameters of the trans-mitral and trans-tri-
cuspid flow (E, A), myocardial systolic (S), early- (e’) and 
late- (a’) diastolic velocities were measured from apical 
four-chamber view at the lateral and septal border of the 
mitral annulus as well as on the tricuspid annulus using 
pulsed tissue Doppler imaging. Lateral and septal mitral 
myocardial velocities were averaged. Mitral and tricuspid 
E/A and E/e’ ratios were calculated [39]. Systolic pulmo-
nary artery pressure was calculated from tricuspid regur-
gitation velocity added to the RA pressure. RA pressure 
(5 to 15 mmHg) was estimated using the diameter and 
collapsibility index of IVC [37]. Doppler measurements 
were obtained from ≥3 consecutive beats during end-
expiratory apnoea. Elevated RV filling pressure was diag-
nosed if tricuspid E/e′ > 6 [36]. LV diastolic function was 
graded according to the current recommendation [39]. In 
“indeterminate” cases further parameters were also con-
sidered for the classification according to the 2020 revi-
sion of the recommendation [40].

Strain measurements
For strain analysis, three consecutive heart cycles were 
recorded digitally. Care was taken to obtain true api-
cal images using standard anatomic landmarks in each 
view. Foreshortening was avoided. Recordings were pro-
cessed off-line, using a dedicated software (QLab, Philips 
Healthcare, Andover, MA, USA). Analysis was performed 
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by a single investigator, blinded to the clinical and con-
ventional echocardiographic data.

To estimate LV GLS, apical four-, three- and two-
chamber movies were obtained using 2D echocardiog-
raphy. The frame rate was set between 50 and 55 frames 
per second. Regional peak systolic longitudinal strain was 
determined in all 17 segments. LV GLS was automatically 
provided by the software as the average of the regional 
peak systolic longitudinal strain values.

For atrial speckle tracking analysis, atrium-focused api-
cal four- and two-chamber view movies (four-chamber 
view for RA analysis) were obtained. The frame rate was 
set between 80 and 90 frames per second. The onset of 
R-wave on the electrocardiogram was used as zero-ref-
erence point of the strain analysis. Reservoir strain was 
defined as the peak systolic strain, just before mitral valve 
opening. This was followed by a plateau and a second late 
peak at the onset of the P-wave indicating the contrac-
tile strain. Conduit strain was calculated as the difference 
between reservoir and contractile strain. Results obtained 
in apical four- and two-chamber views were averaged for 
LA strain analysis [41].

Atrial volume curves were generated by the same soft-
ware using the endocardial borders created for speckle 
tracking analysis. The following atrial volumes were 
obtained: maximal volume (Vmax) at the end of T wave 
on electrocardiogram, just before the opening of the 
mitral valve; minimal volume (Vmin) at QRS complex, 
just at the closure of the mitral valve; and preceding atrial 
contraction, at the beginning of P wave (Vp). LA volumes 
obtained in apical four- and two-chamber views were 
averaged. All volume values were corrected for body sur-
face area (Vmax-, Vmin- and Vp index).

Biomarkers
Blood samples were obtained immediately prior to the 
echocardiographic studies. Samples were stored at − 80 
∘C until testing.

Analysis of galectin-3 levels was performed using 
Human Galectin-3 Platinum ELISA kit developed by eBi-
oscience (San Diego, CA, USA).

Analysis of sST2 levels was performed using Pres-
age ST2 assay kit developed by Critical Diagnostics (San 
Diego, CA, USA).

Plasma concentrations of NT-proBNP were analysed 
by electrochemiluminescence immunoassay (Elecsys 
2010 system, Roche Diagnostics, Mannheim, Germany).

Statistical analysis
Categorical data were expressed as frequencies and per-
centages; continuous data were expressed as mean ± SD. 
Mann–Whitney U-test was used for comparisons of vari-
ables between two subgroups. Since concentrations of 

galectin-3, sST2 and NT-proBNP did not show normal 
distribution, logarithmic transformation was performed. 
Pearson bivariate method was used to investigate the cor-
relations between ln galectin-3, ln sST2 and the other 
single variables. As age-related changes in the echocar-
diographic parameters are well known, in a second step, 
partial correlation method was applied using age as 
correcting factor. Partial regression plots were used to 
visualize these correlations. As creatinine or estimated 
glomerular filtration rate did not show correlation with 
galecin-3 or sST2 levels in our study, partial correlations 
were not adjusted for renal function. A p value of < 0.05 
was considered significant. Data were analysed using 
IBM SPSS 25 statistical software.

Results
A total of 40 SSc patients were enrolled into the study. 
Detailed clinical data of the patients are reported in 
Tables 1 and 2.

Standard echocardiographic and tissue Doppler meas-
urements were successfully performed in all patients. 
GLS, LA atrial strain and RA strain data were success-
fully obtained in 38, 39 and 37 patients, respectively. 
Rest of the measurements have failed due to inadequate 
acoustic window or foreshortening.

Correlations between clinical variables and biomarker 
levels are reported in Table  1. Galectin-3 and sST2 val-
ues did not show correlation with each other or with NT-
proBNP levels. Neither galectin-3 nor sST2 levels showed 
significant correlation with age. Galectin-3 levels showed 
positive correlation with the duration of SSc, even in 
age adjusted analysis. Both Forced expiratory volume 
in 1 s (FEV1) and Diffusing capacity of carbon monox-
ide (DLCO) showed significant inverse correlation with 
galectin-3 levels. No significant correlations were found 
between sST2 levels and clinical variables. Table 2 com-
prises the galectin-3 and sST2 levels in various subgroups 
of the study population. Gender-related differences were 
not significant. In patients requiring loop diuretic treat-
ment significantly higher galectin-3 levels were found.

LV ejection fraction was preserved (≥ 55%) in 39 
(97.5%), whereas mildly reduced (45–54%) in 1 (2.5%) 
patients. LV diastolic function was impaired (Grade I 
diastolic dysfunction) in 17 (42.5%) patients whereas 
echocardiographic data suggested elevated LV filling 
pressure in 12 (30%) patients (all in Grade II). No patients 
with restrictive pattern (Grade III) were found.

RVFAC < 35%, TAPSE < 16 mm and tricuspid 
S < 10 cm/s were found in 1 (2.5%), 1 (2.5%) and 4 
(10%) patients, respectively. Tricuspid E/e’ suggested 
elevated RV filling pressure in 13 (32.5%) patients. 
Elevated pulmonary artery systolic pressure (tricus-
pid Vmax> 2.8 m/s) was obtained in 11 patients with a 
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maximum of 41 mmHg. Detailed echocardiographic data 
of the study population as well as correlations between 
galectin-3 and sST2 levels and the echocardiographic 
variables are reported in Tables 3 and 4.

Galectin-3 levels showed significant correlation with 
GLS (Fig. 1A), with the grade of LV diastolic dysfunction 
(Fig. 1B), with septal E/e’(Fig. 1C), and with the grade of 
mitral regurgitation, even in age adjusted analysis. Cor-
relation between galectin-3 level and septal e’ became 
significant after age correction (Fig.  1D). No significant 
correlation was found between sST2 values and the echo-
cardiographic variables.

Discussion
Progressive cardiac fibrosis has been reported as a central 
aspect of the myocardial involvement in SSc [3]. Thus - 
although the causative role of galectin-3 and sST2 is not 
proved in the pathogenesis of SSc - we hypothesized that 
circulating biomarkers of the cardiac fibrosis may be use-
ful in screening and early diagnosis of the cardiac mani-
festation in this disease. Therefore, in the present study 
we aimed to investigate the correlations between the lev-
els of sST2, galectin-3 and the echocardiographic mark-
ers of the myocardial mechanics in SSc patients.

ST2 is part of the interleukin (IL)-1 receptor fam-
ily which may be found on cardiac myocytes and fibro-
blasts. ST2 exists in two forms. The transmembrane 
isoform (ST2L) is responsible for the cardioprotective 
effect of IL-33: IL-33 has antihypertrophic and antifi-
brotic effects transduced by ST2L. The soluble isoform 
(sST2), in contrast, eliminates the cardioprotective path-
way of the IL-33/ST2L interaction, by binding circulating 
IL-33 molecules. All clinical conditions that increase wall 
stress, inflammation and macrophage activation increase 
sST2 level and may therefore lead to an increase of car-
diac fibrosis [42]. sST2 has been reported to be increased 
in patients with heart failure, myocardial infarction, 
hypertension, severe obesity, diabetes and pulmonary 
arterial hypertension [33, 34, 43]. In the PRIDE (ProBNP 
Investigation of Dyspnea in the Emergency Department) 
study, sST2 concentrations were higher in patients with 
acute heart failure and were strongly predictive of mor-
tality at 1 year even when used together with NT-proBNP 
[44]. sST2 is equally prognostic in heart failure patients 
with preserved ejection fraction (HFpEF) as it is in those 
with reduced ejection fraction (HFrEF), although its 
concentrations are lower in patients with HFpEF [45]. 
Among dyspnoeic patients with and without acute heart 
failure, sST2 concentrations were linked to higher LV 

Table 1 Baseline characteristics of the systemic sclerosis population (n = 40) and their correlations with galectin‑3 and sST2 levels

Statistically significant p-values (p < 0.05) are formatted in bold

Clinical variable Value Correlation with 
ln galectin-3

Correlations with 
ln galectin-3, 
corrected for age

Correlations 
with ln sST2

Correlations 
with ln sST2, 
corrected for 
age

r p r p r p r p

Age (years) 57.3 ± 13.7 0.059 0.719 −0.010 0.951

Body surface area  (m2) 1.8 ± 0.2 0.206 0.202 0.206 0.208 0.063 0.700 0.063 0.704

Disease duration (years) 8.0 ± 6.2 0.406 0.009 0.406 0.010 0.038 0.817 0.042 0.799

Modified Rodnan skin score 12.6 ± 9.6 −0.291 0.069 −0.286 0.077 0.200 0.216 0.205 0.210

New York Heart Association functional class I n (%) 14 (35%) 0.179 0.269 0.171 0.297 −0.021 0.899 −0.018 0.912

II n (%) 16 (40%)

III n (%) 10 (25%)

6‑min walking distance (m) 397.6 ± 78.3 −0.107 0.516 −.086 0.607 −0.001 0.996 0.001 0.996

Modified Borg dyspnoea index 1.8 ± 1.8 0.229 0.161 0.221 0.183 −0.234 0.151 −0.263 0.111

Forced expiratory volume in 1 s (%) 92.1 ± 15.5 −0.320 0.044 −0.334 0.032 −0.067 0.682 −0.066 0.689

Forced vital capacity (%) 94.9 ± 16.0 −0.246 0.126 −0.272 0.094 −0.157 0.333 −0.160 0.330

Diffusing capacity of carbon monoxide (%) 62.7 ± 16.2 −0.318 0.045 −0.324 0.044 0.106 0.515 0.123 0.456

Erythrocyte sedimentation rate (mm/h) 19.6 ± 13.5 −0.070 0.666 −0.079 0.633 0.099 0.545 0.101 0.541

C‑reactive protein (mg/l) 4.2 ± 6.8 0.092 0.572 0.104 0.527 −0.118 0.468 −0.122 0.460

Creatinine (μmol/l) 63.8 ± 13.2 −0.013 0.936 −0.042 0.802 0.000 0.999 0.005 0.976

NT‑proBNP (pg/ml; ln in correlations) 177.5 ± 148.6 0.094 0.566 0.081 0.623 −0.129 0.426 −0.131 0.425

Galectin‑3 (ng/ml; ln in correlations) 12.9 ± 4.0 −0.217 0.178 −0.217 0.184

sST2 (ng/ml; ln in correlations) 28.5 ± 11.3 −0.217 0.178 −0.217 0.184
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dimensions and volumes, poorer LV ejection fraction, 
worse right ventricular function, and higher pulmonary 
pressures. sST2 levels also showed correlation with the 
tissue Doppler-derived mitral annular e’ velocity, but not 
with other indices of LV diastolic function [31]. In other 
studies, sST2 levels did not correlate significantly with 
the echocardiographic markers of LV size or function but 
showed positive correlation with LA volume index [29], 
or inverse correlation with LA reservoir strain [28].

The behaviour of the IL-33/ST2 pathway has already 
been widely investigated is SSc. Serum IL-33 levels were 
elevated in SSc patients compared with healthy individu-
als, especially in patients with diffuse cutaneous form. 
IL-33 levels correlated with the extent of skin sclerosis 
and the severity of pulmonary fibrosis [46]. Correlations 
between sST2 levels and the myocardial involvement of 
the disease, however, have not been investigated up to 
now. In our present study, unlike to the previous findings, 
we failed to demonstrate any relationship between sST2 
levels and the clinical characteristics of the disease or the 
echocardiographic markers of the myocardial mechanics 
in SSc patients.

Recent studies suggest that galectin-3 plays key role in 
the fibrogenesis in different organ systems, such as liver, 
kidney and lung [20]. In addition, galectin-3 is considered 
an active contributor to the development of heart failure 
as mediator of the myocardial fibrosis. Clinically, serum 
galectin-3 levels are significantly increased in patients 
with heart failure and are often associated with a greater 
risk of adverse cardiovascular events [22, 23]. Galectin-3 
levels are more markedly associated with outcomes in 
HFpEF population compared with HFrEF patients [47].

Although the pathogenic role of galectin-3 is not 
proved in SSc, the potential associations between serum 
galectin-3 levels and the clinical features of the patients 
have already been investigated. Taniguchi et  al. found 
that serum galectin-3 levels were significantly lower in 
the early diffuse cutaneous form of the disease compared 
with control subjects and showed significant correlation 
with total skin score. On the other hand, galectin-3 levels 
showed increase with the course of the disease and were 
higher in SSc patients with elevated right ventricular sys-
tolic pressure than in those without pulmonary hyperten-
sion [48]. Recently, Mora et al. reported lower galectin-3 

Table 2 Galectin‑3 and sST2 levels in various subgroups of the study population

* Mann–Whitney U-test. Statistically significant p-values (p < 0.05) are formatted in bold

Clinical variable Galectin-3 sST2

Level (ng/ml) p* Level (ng/ml) p*

Female patients (n = 36; 90%) 13.2 ± 4.1 0.123 27.3 ± 9.8 0.207

Male patients (n = 4; 10%) 9.6 ± 0.2 40.1 ± 18.7

Limited cutaneous form (n = 12; 30%) 12.9 ± 3.1 0.805 30.1 ± 9.5 0.389

Diffuse cutaneous form (n = 28; 70%) 12.9 ± 4.4 27.9 ± 12.1

Anti‑centromere antibody positive (n = 8; 20%) 11.3 ± 2.8 0.354 28.6 ± 9.4 0.871

Anti‑centromere antibody negative (n = 32; 80%) 13.0 ± 4.1 29.1 ± 11.8

Anti‑topoisomerase antibody positive (n = 19; 47.5%) 12.8 ± 4.5 0.901 27.0 ± 8.6 0.989

Anti‑topoisomerase antibody negative (n = 21; 52.5%) 12.8 ± 3.7 29.5 ± 13.6

Patients with diabetes (n = 2; 5%) 13.4 ± 6.3 0.877 36.5 ± 15.2 0.400

Patients without diabetes (n = 38; 95%) 12.8 ± 4.0 28.1 ± 11.2

Current smokers (n = 3; 7.5%) 11.5 ± 5.5 0.518 30.7 ± 27.4 0.518

Non‑smokers (n = 37; 92.5%) 13.1 ± 3.8 26.9 ± 9.4

Hypertension (n = 25; 62.5%) 13.3 ± 3.9 0.581 26.9 ± 9.6 0.391

No hypertension (n = 15; 37.5%) 12.2 ± 4.3 31.2 ± 13.6

Treated with angiotensin convertase enzyme inhibitors (n = 12; 30%) 14.1 ± 3.6 0.218 26.6 ± 9.0 0.938

Not treated with angiotensin convertase enzyme inhibitors (n = 28; 70%) 12.3 ± 4.1 28.4 ± 12.0

Treated with calcium channel blockers (n = 18; 45%) 12.8 ± 3.6 0.925 27.1 ± 10.3 0.545

Not treated with calcium channel blockers (n = 22; 55%) 12.9 ± 4.4 29.7 ± 12.2

Treated with loop diuretics (n = 12; 30%) 15.5 ± 3.8 0.006 25.5 ± 7.9 0.457

Not treated with loop diuretics (n = 28; 70%) 11.7 ± 3.6 29.8 ± 12.4

Treated with mineralocorticoid receptor antagonists (n = 10; 25%) 13.5 ± 4.3 0.569 29.7 ± 10.5 0.432

Not treated with mineralocorticoid receptor antagonists (n = 30; 75%) 12.7 ± 4.0 28.1 ± 11.7

Treated with pentoxifylline (n = 20; 50%) 12.8 ± 3.6 0.758 28.4 ± 11.3 0.968

Not treated with pentoxifylline (n = 20;50%) 12.9 ± 4.5 28.7 ± 11.6
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expression in the skin lesions of SSc patients compared 
with healthy subjects. Nevertheless, relatively higher 
galectin-3 values were found in SSc patients with pulmo-
nary hypertension or higher modified Rodnan skin score 
[49]. In addition, galectin-3 has recently been reported 
as an independent predictor of all-cause and cardiovas-
cular mortality in SSc. Higher levels of galectin-3 were 
associated with more severe pulmonary involvement and 
raised inflammatory markers [50]. Our current findings 
also suggest that galectin-3 is a biomarker of pulmonary 
fibrosis in SSc. These results are in line with the work of 
Ho et  al. They reported that in the general population 

elevated galectin-3 concentrations are associated with 
interstitial lung abnormalities including decreased lung 
volumes and altered gas exchange [51]. Correlations 
between galectin-3 levels and the echocardiographic 
markers of the myocardial mechanics, however, have not 
been investigated yet in SSc.

LV diastolic dysfunction is frequent in SSc [4–6], as it 
represents the primary myocardial involvement of the 
disease [3]. In our present study, galectin-3 levels showed 
significant correlation not only with the grade of LV dias-
tolic dysfunction, but with two well defined parameters 
of the LV diastolic function and filling pressure: septal 

Table 3 Correlations of galectin‑3 (ln) and ST2 (ln) with the echocardiographic parameters of the LV and LA size and mechanics in SSc 
patients

Statistically significant p-values (p < 0.05) are formatted in bold

Parameter Value Correlations 
with ln 
galectin-3

Correlations 
with ln 
galectin-3,
corrected for 
age

Correlations 
with ln ST2

Correlations 
with ln ST2,
corrected for 
age

r p r p r p r p

LV ejection fraction (%) 60.6 ± 4.6 −0.273 0.089 −0.267 0.100 0.082 0.614 0.082 0.618

LV GLS (%) −17.5 ± 2.3 0.454 0.005 0.460 0.005 0.003 0.988 − 0.007 0.969

LV mass index (g/m2) 93.5 ± 19.7 0.009 0.958 −0.039 0.814 −0.147 0.367 −0.184 0.262

Grade of mitral regurgitation Mild n (%) 37 (92.5%) 0.321 0.046 0.323 0.048 −0.078 0.637 −0.080 0.632

Moderate n (%) 3 (7.5%)

Severe n (%) 0 (0%)

Mitral E (cm/s) 73.9 ± 15.7 0.006 0.970 0.028 0.867 −0.022 0.892 −0.027 0.869

Mitral A (cm/s) 72.8 ± 16.9 0.320 0.044 0.334 0.038 0.132 0.417 0.156 0.342

Septal S (cm/s) 7.3 ± 1.2 −0.224 0.166 − 0.220 0.178 0.080 0.624 0.084 0.612

Septal e’ (cm/s) 7.4 ± 2.0 −0.306 0.055 −0.369 0.021 −0.088 0.591 −0.131 0.426

Septal a’ (cm/s) 8.7 ± 1.6 −0.012 0.939 −0.018 0.912 0.181 0.263 0.183 0.265

Septal E/e’ 10.5 ± 2.8 0.375 0.017 0.380 0.017 0.002 0.989 0.006 0.970

Lateral S (cm/s) 9.2 ± 1.8 −0.008 0.963 0.004 0.980 0.212 0.189 0.214 0.190

Lateral e’ (cm/s) 9.2 ± 2.8 −0.132 0.418 −0.119 0.471 0.019 0.906 0.016 0.922

Lateral a’ (cm/s) 10.6 ± 2.5 0.031 0.848 0.012 0.944 0.276 0.085 0.298 0.066

Lateral E/e’ 8.7 ± 3.0 0.109 0.502 0.106 0.522 −0.063 0.699 − 0.063 0.705

Averaged S (cm/s) 8.3 ± 1.3 −0.107 0.510 −0.093 0.573 0.182 0.261 0.189 0.248

Averaged e’ (cm/s) 8.3 ± 2.2 −0.224 0.165 −0.248 0.128 −0.027 0.867 −0.045 0.784

Averaged a’ (cm/s) 9.7 ± 1.7 0.017 0.918 −0.001 0.998 0.282 0.078 0.298 0.066

Averaged E/e’ 9.3 ± 2.3 0.252 0.117 0.246 0.132 −0.032 0.846 −0.030 0.856

Grade of LV diastolic function Normal n (%) 11 (27.5%) 0.325 0.040 0.394 0.013 −0.073 0.655 −0.091 0.582

Impaired relaxation (Grade I) n (%) 17 (42.5%)

Pseudonormal (Grade II) n (%) 12 (30%)

LA Vmax index (ml/m2) 22.8 ± 7.4 0.016 0.925 0.001 0.994 −0.294 0.081 −0.392 0.076

LA Vmin index (ml/m2) 10.3 ± 5.0 0.056 0.747 0.044 0.803 −0.305 0.071 −0.410 0.078

LA Vp index (ml/m2) 14.2 ± 6.1 0.095 0.580 0.088 0.617 −0.237 0.164 −0.360 0.111

LA reservoir strain (%) 43.0 ± 8.7 −0.148 0.383 −0.154 0.370 −0.045 0.790 −0.005 0.978

LA conduit strain (%) 23.5 ± 6.9 −0.117 0.491 −0.137 0.426 −0.066 0.700 0.005 0.979

LA contractile strain (%) 19.5 ± 4.8 −0.102 0.549 −0.106 0.538 0.012 0.945 −0.014 0.936
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e’ and E/e’. Similar finding was reported by Shah at al., 
where higher levels of galectin-3 showed clear associa-
tions with the Doppler indices of impaired myocardial 
relaxation and higher filling pressure in patients with 
heart failure [27]. Likewise, Beltrami et al. reported sig-
nificant correlation between E/e’ and galectin-3 levels in 
HFpEF patients [26].

Reduced LV ejection fraction is not common in SSc [7], 
but myocardial fibrosis may contribute to the subclini-
cal impairment of the LV systolic function. By speckle 
tracking-derived 2D strain method, reduced GLS values 
were found in SSc patients compared to healthy subjects 
[8, 9]. In the study of Cameli et  al., GLS showed good 
correlation with the extent of myocardial fibrosis in LV 
tissue samples obtained from heart transplantation recip-
ients [52]. In addition, in hypertrophic cardiomyopathy 
patients, strong correlation was found between LV GLS 
and the extent of late gadolinium enhancement obtained 

by contrast-enhanced cardiac MRI [53]. These results 
suggest an unequivocal correlation between LV GLS and 
the severity of LV myocardial fibrosis and may explain 
the significant correlation found between GLS and galec-
tin-3 levels in our study. Similarly to our findings, in the 
study of Hromádka et  al., galectin-3 showed significant 
correlation with the cardiac MRI-derived parameters of 
the myocardial fibrosis (extracellular volume, native T1 
values) and also with the speckle tracking-derived LV 
GLS in SSc patients [54].

Speckle tracking technique and, to a lesser extent, tis-
sue Doppler imaging are useful in recognizing early 
myocardial involvement not only in the LV, but in the 
other cardiac chambers. Subclinical RV dysfunction was 
proved in SSc patients using tissue Doppler or speckle 
tracking measurements [10–12]. Impaired LA and RA 
function have also been reported in SSc, by the help of 
speckle tracking technique [10, 13–15]. LA reservoir 

Table 4 Correlations of galectin‑3 (ln) and ST2 (ln) with the echocardiographic parameters of the RV and RA size and mechanics in SSc 
patients

Statistically significant p-values are formatted in bold (p < 0.05)

Parameter Value Correlations 
with ln 
galectin-3

Correlations 
with ln 
galectin-3,
corrected for 
age

Correlations 
with ln ST2

Correlations 
with ln ST2,
corrected for 
age

r p r p r p r p

Pulmonary artery systolic pressure (mm Hg) 28.6 ± 7.5 0.225 0.251 0.260 0.191 −0.174 0.375 −0.188 0.348

RV basal diameter index (mm/m2) 18.3 ± 2.4 −0.254 0.119 −0.253 0.126 −0.015 0.928 −0.015 0.928

RV mid‑cavity diameter index (mm/m2) 13.0 ± 2.1 −0.169 0.311 −0.169 0.318 −0.037 0.827 −0.037 0.828

RV longitudinal diameter index (mm/m2) 30.0 ± 3.6 −0.011 0.948 −0.011 0.948 −0.342 0.135 −0.341 0.148

Inferior vena cava (mm) 13.2 ± 3.9 −0.053 0.765 −0.052 0.775 −0.255 0.146 −0.254 0.153

Collapsibility index (%) 55.2 ± 10.7 0.134 0.449 0.134 0.457 −0.131 0.462 −0.132 0.465

RV wall thickness (mm) 5.1 ± 1.2 −0.091 0.597 −0.106 0.545 −0.051 0.766 −0.086 0.622

RV fractional area change (%) 47.9 ± 6.8 −0.138 0.423 −0.142 0.415 −0.001 0.997 0.013 0.943

Tricuspid annular plane systolic excursion (mm) 21.4 ± 2.6 −0.249 0.121 −0.243 0.136 0.315 0.248 0.321 0.284

Grade of tricuspid regurgitation Mild n (%) 38 (95%) 0.168 0.307 0.165 0.321 −0.105 0.523 − 0.105 0.530

Moderate n (%) 2 (5%)

Severe n (%) 0 (0%)

Tricuspid E cm/s 47.4 ± 8.0 −0.073 0.658 −0.087 0.602 −0.060 0.751 −0.050 0.767

Tricuspid A cm/s 40.1 ± 8.5 0.371 0.020 0.372 0.022 −0.160 0.330 −0.162 0.331

Tricuspid S (cm/s) 12.4 ± 2.0 −0.170 0.293 −0.169 0.305 0.363 0.221 0.363 0.227

Tricuspid e’ (cm/s) 10.0 ± 2.8 −0.038 0.817 −0.009 0.956 0.006 0.972 0.001 0.996

Tricuspid a’ (cm/s) 13.1 ± 2.9 −0.100 0.539 −0.147 0.372 0.154 0.342 0.182 0.267

Tricuspid E/e’ ratio 5.2 ± 1.6 0.003 0.985 0.004 0.983 −0.001 0.995 −0.008 0.963

RA Vmax index (mL/m2) 19.9 ± 5.8 −0.013 0.947 0.017 0.929 −0.048 0.800 −0.101 0.602

RA Vmin index (mL/m2) 8.1 ± 4.0 0.227 0.227 0.245 0.201 −0.136 0.473 −0.163 0.397

RA Vp index (mL/m2) 14.3 ± 5.5 0.058 0.760 0.083 0.668 −0.112 0.555 −0.156 0.419

RA reservoir strain (%) 45.3 ± 9.0 −0.239 0.167 −0.236 0.179 0.218 0.209 0.229 0.193

RA conduit strain (%) 24.2 ± 6.4 −0.213 0.220 −0.210 0.233 0.199 0.253 0.220 0.212

RA contractile strain (%) 22.0 ± 6.1 −0.220 0.204 −0.231 0.188 0.065 0.713 0.056 0.753
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strain showed significant correlation with the amount of 
LA wall fibrosis as assessed by cardiac MRI in patients 
with atrial fibrillation [55], and with the extent of LA 
interstitial fibrosis in patients with mitral valve disease in 
histopathologic specimens [56]. RV free wall strain has 
been reported to correlate with the extent of RV myo-
cardial fibrosis in heart transplantation recipients [57]. 
Nevertheless, no correlations were found between galec-
tin-3 levels and the tissue Doppler and strain parameters 
of the RV or LA and RA function in our SSc patients. 
These data may suggest an uncoupling between galec-
tin-3, myocardial fibrosis, and myocardial function in 
these chambers, but this phenomenon requires further 
investigation.

Limitations of the study
Some limitations of our study need to be acknowledged. 
First, in the lack of healthy control group, we could not 
define the cut-of value between normal and elevated 
serum galectin-3 or sST2 levels. Recent data suggest, 

however, that in the general population normal plasma 
concentration of galectin-3 is < 11.0 ng/ml [58], whereas 
the mean normal values of sST2 for males and for females 
are 24.9 ng/ml and 16.9 ng/ml, respectively [59].

Circulating levels of the tested fibrosis markers may not 
reflect the histologically proven cardiac fibrosis. Thus, 
circulating biomarker levels require careful interpreta-
tion in relation to myocardial involvement [60].

RV strain may better reflect the subclinical impairment 
of the RV systolic function than our traditional and tissue 
Doppler parameters. Nevertheless, in the lack of appro-
priate analytical software, RV strain analysis was not per-
formed in our study.

Conclusion
In SSc patients, galectin-3 levels show significant corre-
lation with the parameters of LV diastolic function and 
with GLS, a parameter reflecting the subclinical impair-
ment of LV systolic function. Our results suggest that 
galectin-3 may be a useful and simple biomarker for the 

Fig. 1 Partial regression plots demonstrate that in age adjusted analyses galectin‑3 (ln) correlates with LV GLS (A); with the grade of LV diastolic 
dysfunction (B); with septal E/e’(C) and with septal e’ (D) 
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screening and early identification of SSc patients with 
cardiac involvement. Our data does not support the use 
of sST2 for the same purpose.
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